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Outline

• MPC framework
• Runtime Optimizations
• Programming model 
• Tools



CEA, DAM, DIFGCDV 3

Context

• Starting point: legacy codes 
Most used standards: MPI and/or OpenMP 
Current architectures: petaflopic machines such as TERA100
Languages: C, C++ and Fortran
Large amount of existing codes and libraries

• Main target: ease the transition to Exascale for user codes and libraries
Provide efficient runtime to evaluate mix of programming models

• Unique programming model for all codes and libraries may be a non-optimal 
approach
Provide smooth/incremental way to change large codes and associated 

libraries
• Avoid full rewriting before any performances results
• Keep existing libraries at their full current performances coupled with 

application trying other programming model
• Example: MPI application calling OpenMP-optimized schemes/libraries

• Multi-Processor Computing (MPC)
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MPC Overview

• Multi-Processor Computing (MPC) framework
Runtime system and software stack for HPC
Project started in 2003 at CEA/DAM (PhD work)
Team as of October 2012 (CEA/DAM and ECR Lab)
• 3 research scientists, 2 postdoc fellows, 8 PhD students, 1 apprentice, 1 
engineer
Freely available at http://mpc.sourceforge.net (version 2.4.0)
• Contact: marc.perache@cea.fr or patrick.carribault@cea.fr

• Summary
Unified parallel runtime for clusters of NUMA machines

• Unification of several parallel programming models
MPI, POSIX Thread, OpenMP, …

• Integration with other HPC components
Parallel memory allocator, patched GCC, patched GDB, HWLOC, …
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MPC Framework
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Runtime Optimization

• Provide standard programming models
MPI
OpenMP
PThread (integration with other runtimes)

• Optimized runtime for current architectures
Petascale architectures: T100, Curie

• Deal with manycore issues
Manycore scheduler optimization
Memory-consumption reduction
Memory allocation in multithread context

• Provide mechanisms to integrate multiple programming 
models

Applications, libraries, numerical schemes using different programming model to reach 
high scalability



MPC Execution Model: Example #1

• Application with 1 MPI task



MPC Execution Model : Example #1

• Initialization of OpenMP regions (on the whole node)



MPC Execution Model : Example #1

• Entering OpenMP parallel region w/ 6 threads



MPC Execution Model: Example #2

• 2 MPI tasks + OpenMP parallel region w/ 4 threads (on 2 cores)
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MPI

• Goals
Smooth integration with multithreaded model
Low memory footprint
Deal with unbalanced workload

• MPI 1.3
Fully MPI 1.3 compliant

• Thread-based MPI 
Process virtualization
Each MPI process is a thread

• Thread-level feature
From MPI2 standard
Handle up to MPI_THREAD_MULTIPLE level (max level)
Easier unification with PThread representation

• Inter-process communications
Shared memory within node
TCP, InfiniBand

• Tested up to 80,000 cores with various HPC codes



MPI Approach
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MPC Approach
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MPI (Cont.)

• Optimizations
Good integration with multithreaded model [EuroPar 08]
• No spin locks: programming model fairness without any busy waiting
• Scheduler-integrated polling method
• Collective communications directly managed by the scheduler
Low memory footprint
• Merge network buffer between MPI tasks [EuroPVM/MPI 09]
• Dynamically adapt memory footprint (on going)
Deal with unbalanced workload
• Collaborative polling (CP) [EuroMPI 12]



Message progression in MPI

• Progression-Threads: overheads
Reactivity of the scheduler: how much time is required to switch to the progression 
thread?
Length of a Time-Slice: is one TS enough to retrieve the message?
One solution would to use Real-Time threads [HOEFLER08].



Collaborative Polling: Overview (1/3)

• MPI provides non-blocking calls for point-to-point 
communications

Ability to hide communication latencies with computation

(a) Without overlapping (b) With overlapping



Collaborative Polling: Overview (2/3)

• Common MPI implementations do not provide an 
efficient support of asynchronous MPI calls.

Messages only progressed when an MPI function is called.
Issue with long computation loops with no call to MPI (e.g., BLAS, I/O, …)
Possibility to enable a progression thread (Open MPI, MVAPICH2) for true 
asynchronous support.

• But an additional thread may harm code performance in 
some cases (e.g., low communication/computation ratio)

• Development of Collaborative Polling in MPC to benefit 
from asynchronous communications



Collaborative Polling: Overview (3/3)

(a) Without Collaborative Polling (b) With Collaborative Polling



Collaborative Polling: Experimental Results

• Experiments on Curie cluster (PRACE)
4-socket Nehalem EX @ 2.27Ghz (32 cores)
Mellanox Infiniband QDR

• Comparison of time spent in MPI libraries
MPC w/o Collaborative Polling (CP)
MPC w/ CP
Open MPI
Intel MPI
MVAPICH2

• Applications
EulerMHD: MPI C++
Gadget-2: MPI C



Collaborative Polling: EulerMHD on 1024 cores (1/2)



Collaborative Polling: EulerMHD on 1024 cores (2/2)

(a) Speedup with Collaborative Polling

(b) Collaborative Polling statistics

‐ MPI time decreased by a factor of 2!
‐ 11 % improvement in execution time



Collaborative Polling: Gadget-2 on 256 cores (1/2)



Collaborative Polling: Gadget-2 on 256 cores (2/2)

(a) Speedup with Collaborative Polling

(b) Collaborative Polling statistics
7% improvement in MPI
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OpenMP

• OpenMP 2.5 
OpenMP 2.5-compliant runtime integrated to MPC
Directive-lowering process done by patched GCC (C,C++,Fortran)
• Generate calls to MPC ABI instead of GOMP (GCC OpenMP implementation)

• Lightweight implementation
Stack-less and context-less threads (microthreads)
Dedicated scheduler (microVP)
• On-the-fly stack creation
Support of oversubscribed mode
• Many more OpenMP threads than CPU cores

• Hybrid optimizations
Unified representation of MPI tasks and OpenMP threads [IWOMP 10]
Scheduler-integrated Multi-level polling methods
Message-buffer privatization
Parallel message reception
Large NUMA node optimization [IWOMP 12]



OpenMP Scalability: Tree on Mesca Node (1/2)

• Flat tree is the most simple structure to use
Fast to wake few threads
Large overhead to traverse many threads



OpenMP Scalability: Tree on Mesca Node (2/2)

• Tree following the architecture topology
4 NUMA nodes with 8 cores “4-8” tree
More parallelism to wake large number of threads
Overhead for few threads (tree height)



OpenMP Scalability: Mixed Tree for Mesca Node

• Contribution
Exploit sub-trees inside the topology tree for efficient synchronization
Depending on the number of threads, use different sub-trees



OpenMP Scalability: Experimental Results

• Experimental environment
TERA 100 node (32 cores)
Node w/ BCS (128 cores)

• Benchmark
EPCC microbenchmarks
Measure overhead of OpenMP construct
Focus on 2 constructs
• #pragma omp parallel
• #pragma omp barrier

• Evaluation
MPC with multiple trees
Intel ICC compiler (v. 12.1)
GCC compiler (v. 4.4.4)



OpenMP Scalability: Parallel Construct (1/2)

• Mix tree with “4-32” and “4-4-8”
• Results in better performance of both trees

Parallel Region Overhead on 128 Cores
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OpenMP Scalability: Parallel Construct (2/2)

Parallel Region Overhead on 128 Cores
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• Comparison of Intel ICC, GCC and MPC with Mixed Tree
Large overhead for GCC
Speed up of 4x for MPC compared to state-of-the-art ICC



OpenMP Scalability: Barrier Construct (1/2)

• Mix tree with “4-32” and “4-4-8”
• Results in better performance of both trees

Barrier Overhead on 128 Cores
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OpenMP Scalability: Barrier Construct (2/2)

• Comparison of Intel ICC, GCC and MPC with Mixed Tree
Large overhead for GCC
Speed up of 2x for MPC compared to state-of-the-art ICC

Barrier Overhead on 128 Cores
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PThreads

• Thread library completely in user space
Non-preemptive library 
User-level threads on top of kernel threads (usually 1 per CPU core)
Automatic binding (kernel threads) + explicit migration (user threads)
MxN O(1) scheduler
• Ability to map M threads on N cores (with M>>N)
• Low complexity

• POSIX compatibility
POSIX-thread compliant
Expose whole PThread API

• Integration with other thread models:
Intel’s Thread Building Blocks (TBB)

Small patches to remove busy waiting
Unified Parallel C (UPC)
Cilk
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Memory for Manycore Architectures

• Memory allocation 
Optimize memory allocation in heavily multithreaded context
Optimize memory alignment and reduce cache conflicts
• Offset for large arrays
• Contiguous physical memory allocation
Optimize memory allocation on node with a large number of cores
• Trade-of memory consumption/performances

Alloc. Tot. (s) Sys.(s) Mem. (GB)

Jemalloc 140.9 12.4 2.2
MPC v2.4.1 165.9 12.3 2.7
MPC v2.2.0 153.6 4.5 4.4
Glibc 147.4 4.2 3.7
Tcmalloc 137.6 2.1 3.7
Hoard 492.7 182.1 2.8



Memory Allocator: General Design

2MX * 2M

• Define an allocation chain :
A « Thread Pool » to manage non used chunks.
A memory source

• An allocation chain per thread.
• Exchange by macros-blocs of 2M.



Memory for Manycore Architectures



Memory for Manycore Architectures

• One example of memory optimization: lazy “zero-page”



MPC vs MPI with HERA: TERA-100 results 

• MPC Multithreading: 1 process per node, 1 thread per core (32 
threads) 

• 35 million AMR cells, 3 AMR levels (3x3), multi-material 2D 
hydro 

426 s
371 s

184 s
254 s

22.12 µs

12.63 µs

OpenMPI               
(total time + grind
time)

+131%
+46%

OpenMPI           
overhead

11.16 µs2048

8.88  µs1024

MPC Multithread + 
InfiniBand (total time 
+ grind time)

Core
count

• 1024 cores: small number of cells per core (~35k), OpenMPI is much slower than MPC (46%)
• 2048 cores: even smaller number of cells per core (~17k), a gain is still observed with MPC 

thanks to non-blocking multithreading, a slow down appears with OpenMPI.
• Very satisfactory multithreading results for future many-core hardware with very small memory

per core (ex: Intel Xeon Phi, …)
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Programming Models

• Provide a way to move to “Exascale” programming models
Starting point: MPI everywhere
Provide a way to add threads within MPI applications without breaking everything
• MPI + OpenMP taxonomy and optimizations
• Extended Thread Local Storage (Extended TLS) 
Provide methods to reduce data replication in MPI 
• Hierarchical Local Storage (HLS)
Provide methods to exploit dedicated hardware  (aka. accelerators) in current 
applications
• Incremental method

• Emerging models evaluation
How to integrate multiple runtimes (PGAS + X, MPI + X)
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MPI + OpenMP

• Deal with current applications and prepare future
Start for an MPI code
Smoothly move to MPI + X
Require good integration to keep performance on actual hardware
Prepare next generation of numerical schemes on current programming models 
Taxonomy of possible ways to mix MPI and OpenMP:



Extended TLS [IWOMP 11]

• Cooperation between compiler and runtime system
Compiler part in GCC
Runtime part in MPC (Message-Passing Computing)
Linker optimization

• Compiler part (GCC)
New middle-end pass to place variables to the right extended-TLS level
Modification of backend part for code generation (link to the runtime system)

• Runtime part (MPC)
Integrated to user-level thread mechanism
Copy-on-write optimization
Modified context switch to update pointer to extended TLS variables

• Linker optimization (GLIBC)
Support all TLS modes
Allow Extended TLS usage without overhead



Hierarchical Local Storage (HLS) [IPDPS 12]

• Context
Allow the possibility to share data among MPI tasks located on the same node
Target common variables (mainly read, barely written)
E.g., physics constants

• Goal
Directive-based design and implementation for C, C++ and Fortran
Compiler part in GCC, runtime part in MPC, optimization part in linker

• Current status
Available since MPC 2.3.0
Directive specification
#pragma hls scope(variable1, …)
#pragma hls single(variable1, …) [nowait]
Complete implementation in GCC, Binutils and MPC
Application porting: easy on known applications



Example of HLS

Example of one global variable named a
Duplicated in standard MPI environment
May be shared to save memory with directive
● #pragma hls node(a)

Memory

Socket 0 Socket 1

L3 L3

L2 L2 L2 L2

L1 L1 L1 L1

Core 0 Core 5 Core 0 Core 5

hls node var



Example of HLS

Multiple level available
Example of cache level 3
● #pragma hls cache(a) level(3)

Memory

Socket 0 Socket 1

L3 L3

L2 L2 L2 L2

L1 L1 L1 L1

Core 0 Core 5 Core 0 Core 5

hls cache var hls cache var



HLS Experiments

• EulerMHD 4096x4096 with 128 MB of physics constants per MPI task
Up to 3.5 less memory consumed than OpenMPI
On 2-socket 4-core Core2Quad
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Heterogeneous Task Scheduler

• Goal: Harness at the same time CPUs and accelerators in the context 
of irregular numerical computations

• Balance workload between each architecture by introducing a two-level 
work stealing mechanism:

• Improve locality with a software cache strongly coupled to the 
scheduler 

Designed to reduce memory transfers by retaining data in off-chip memory 
Scheduler guided by cache affinity to avoid unnecessary transfers 

Hierarchical scheduling scheme



2x AMD 6164HE (24 cores @ 1.7 GHz)
1x Nvidia Geforce GTX 470 (448 cores @ 1.215GHz)

LU Decomposition with Dense  & Sparse Blocks, 
cumulated perf. of step 3 (SGEMM –> MKL & CUBLAS) vs Matrix size

> Paper presented at MULTIPROG  (January 2012)
Jean-Yves Vet, Patrick Carribault, Albert Cohen, Multigrain Affinity

for Heterogeneous Work Stealing, MULTIPROG  ‘12

> Could be used to exploit several types of many-core 
processors (Nvidia GPUs, AMD GPUs/APUs, Intel MIC, …) 

Heterogeneous Task Scheduler



2x Intel Xeon Nehalem EP E5620 (8 cores @ 2.4 GHz)
2x NVIDIA Tesla M2090

Linpack
(N = 46080, N B = 512, P = 1, Q = 1, WC10L2L2)

Heterogeneous BLAS Library 

Based on Intel MKL and
NVIDIA CUBLAS 
optimised kernels

Transparent for users

Internal decomposition into
super-tasks and tasks

LINPACK: Homogeneous
performance close 

to parallel MKL 
(62.11 vs 68.94 GFLOP/s)

LINPACK: Heterogeneous
performance reaches

482.4 GFLOP/s 

Heterogeneous Task Scheduler



PN
Numerical flux numerical_flux

function

two large matrix multi-
plications, 

four independent small
matrix multiplications

several tasks taking as 
input data generated by 

previous operations

two other large matrix
multiplications exploiting
data generated by the 

preceding step

How to avoid coslty
data transfers ?

1

2

3

4

Heterogeneous Task Scheduler



PN
(N = 15, Z=X=1536) 

2x Intel Xeon Nehalem EP E5620 (8 cores @ 2.4 GHz)
2x NVIDIA Tesla M2090

Data centric
scheduling scheme

Program clearly limited by 
data transfers (via PCIe)

Reasoning on data locality
for some tasks, and 
hampering transfers for 
load balancing gives
additional performance

Scenarios
0: sequential (CPU)
1: homogeneous (CPUs)
2: heterogeneous

small tasks on CPUs only
3: heterogeneous

small tasks (perf centric mode)
4-5: heterogeneous

small tasks (data centric mode)
6: heterogeneous w/o data transfer

Heterogeneous Task Scheduler
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Emerging Programming Models

• Language evaluations 
UPC

• Berkeley UPC on the top of MPC 
Cilk

• Cilk on the top of MPC 
• Evaluation of mix MPI + OpenMP + Cilk

OpenACC
• Evaluation of an OpenACC implementation (compiler part in GCC with CUDA 

backend)
OpenCL

• Evaluation of language capabilities
OpenMP tasks

• Prototype a task engine
• How to mix multiple task models?
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Tools: Debug/Profiling

• Debugging tools
User-level thread debugger
Help the conception and the maintainability of MPI + X applications
Provide tools to solve bugs occurring during nights and week-ends on large number of 
cores
Static/dynamic communications schemes checking

• Profiling tools
Tools adapted to MPC
Tools for very large executions

• Compiler support 
Help the programmer to move from MPI-everywhere to MPI + X
Integration of our solutions in production compiler
Dynamic analysis for potential HLS 
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Debugging

• Static analysis
Use GCC compiler to analyze

• MPI, OpenMP, MPI + OpenMP
• Detect wrong usage of MPI (collective communications with control flow)

• Dynamic (based on traces)
Use traces to debug large scale applications
Crash-tolerant trace engine
Parallel trace analyzer

• User level thread debugging [MTAAP 10]
Provide a generic framework to debug user-level thread

• Evaluated on MPC, Marcel, GNUPth
Provide a patched version of GDB
Collaboration with Allinea DDT 

• MPC support in Allinea DDT
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Profiling

• Application profiling
Unable to reduce the test case due to network topology impact on performance
Unable to store very large traces

• Huge impact on the execution 
• Stress up the file system

In situ analysis

• Collaboration with other profiling tools
TAU is now MPC compliant

• Thanks to Extended TLS
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Compiler support

• Global variables
Expected behavior: duplicated for each MPI task
Issue with thread-based MPI: global variables shared by MPI tasks located on the 
same node

• Solution: Automatic privatization
Automatically convert any MPI code for thread-based MPI compliance
Duplicate each global variable

• Design & Implementation
Completely transparent to the user
New option to GCC C/C++/Fortran compiler (-fmpc_privatize)
When parsing or creating a new global variable: flag it as thread-local
Generate runtime calls to access such variables (extension of TLS mechanism)
Linker optimization for reduce overhead of global variable access
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Les mini-apps (topologie)



Une vraie application (topologie)



Les mini-apps (matrice des communications)



Une vraie application (matrice des communications)



Une vraie application (matrice des communications)



Possibilité d’asynchronisme



Sensibilité du code



Sensibilité du code



Temps non MPI



Temps non MPI



Attente dans les collectives



Attente dans les collectives



Allocation mémoire



Allocation mémoire



Que faire???
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Conclusion

• Runtime optimization
Provide widely spread standards
MPI 1.3, OpenMP 2.5, PThread
Available at http://mpc.sourceforge.net
Optimized for manycore and NUMA architectures

• Programming models
Provide unified runtime for MPI + X applications
Evaluation of new programming models

• Tools
Debugger support
Profiling
Compiler support
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