
HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Ècole “Programmation Hybride”:
une étape vers le many-cœurs

Ĺ’ÉSCANDILLE – AUTRANS, FRANCE

Parallel Codes and High Performance Computing:
Massively parallelism and Multi-GPU

Luigi Genovese

L_Sim – CEA Grenoble

October 10, 2012

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

A basis for nanosciences: the BigDFT project

STREP European project: BigDFT(2005-2008)
Four partners, 15 contributors:
CEA-INAC Grenoble (T.Deutsch), U. Basel (S.Goedecker),
U. Louvain-la-Neuve (X.Gonze), U. Kiel (R.Schneider)

Aim: To develop an ab-initio DFT code
based on Daubechies Wavelets, to be
integrated in ABINIT.
BigDFT 1.0 −→ January 2008
. . . Not only a DFT adventure.

In this presentation
Present HPC scenario

Developers’ and users’ challenges

Outcomes and general considerations

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Ab initio calculations with DFT

Several advantages
4 Ab initio: No

adjustable parameters

4 DFT: Quantum
mechanical
(fundamental)
treatment

Main limitations
8 Approximated approach

8 Requires high computer
power, limited to few
hundreds atoms in most
cases

Wide range of applications: nanoscience, biology, materials

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Outline

1 Parallel computing and architectures
From past to present: software
HPC nowadays
Memory bottleneck

2 (DFT) Developer point of view
Future Scenarios
Present Situation
Optimization

3 User viewpoint
Frequent mistakes
Performance evaluation
A (old) example S_GPU library

4 Performances
Recent situation: Evaluating GPU gain
Practical cases

5 Conclusion and Messages

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

What is Parallel Computing?

Easy to say. . .
Simultaneous use of multiple compute resources
to solve a computational problem

. . . but not so easy to implement
A problem is broken in multiple parts which can be
solved concurrently

Each part is associated to a series of instructions

Instruction from each part are executed simultaneously
on different Compute Processing Units

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

The Compute Processing Unit(s)

A computing machine (node) is made of:
Control Unit

Arithmetic Logic Unit

Memory Unit

They might exist in different ratio of different architectures

After all, they are transistors

What does technology offer us?

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Moore’s law

40 years of improvements
Transistor counts double every
two years. . .

. . . but how?

Power is the limiting factor (around 100 W nowadays)

Power ∝ Frequency3 * Clock rate is limited
Multiple slower devices preferable than one superfast device
* More performance with less power→ software problem?

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Why software problem?

The power cost of frequency

Cores Hz (Flop/s) W Flop/s/W
Superscalar 1 1.5 × 1.5 × 3.3 × 0.45

Multicore 2 0.75 × 1.5 × 0.8 × 1.88

Exercise:
Take a given computational problem

Write a code at a time t0.
Solve the problem on a computer.

Freeze your code and wait some time t1− t0
Take a new computer at time t1.
Solve again the same problem.

What happens to your performances?

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

HPC thumb-rules have changed

Frequency-dominated era
4 Parallelism is not improved by the architecture

4 Frequency increases→ No. Flop/s increases

* Code runs faster

Manycore era
4 Parallelism is dramatically changed in the architecture

4 Frequency decreases

* Code runs slower

6 The code should be changed

The parallel behaviour of a code (oversimplification)
Capacity computing: many independent jobs

Capability computing: single job, parallel intensive

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

How to parallelize your data?

Distributed Memory

Private Memory

Processors operate
independently

Data transfer should be
programmed explicitly
(MPI)

Relies (also) on network
performances

Shared Memory

Memory is common to all
processors

Threads operate
concurrently on data

Relies on bandwidth
perfomances

Memory operations are crucial for parallelism

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

The cost of the memory transfer

1W × 1 Year = 1$ (neglecting cooling and storage)

Some facts about memory transfer: Memory bandwidth
40 GB/s (CPU); 20 GB/s (RAM); 3.5 GB/s (interconnect)

Bandwidth evolves less faster than computational power:
4 ∼90’s (Math co-processor): 1 Flop/s each 4 Bytes transferred
6 Nowadays: 62 Flop/s per Bytes transferred

The cost in energy of data movement
Computation: a FMA costs now 100 pJ (10 pJ in the future)

Move data in RAM costs 4.8 nJ (1.92 nJ)

Communicating data (MPI) costs 7.5 nJ (2.5 nJ)

* Moore’s law revisited:
Thread number executions will double each year

A complicated scenario for HPC (with ab initio) codes

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Top500

World Top Supercomputer Ranking

Some considerations
Faster than Moore’s law (doubles every 14 months)

* In 8 years top 1 goes off the list

Hybrid (CPU/GPU) architectures are emerging

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Distribute the data on hybrid supercomputer

How a code can be executed on hybrid CPU-GPU
architectures?

Network

CPU

GPU

GPUCPU

GPU

GPU

CPU

CPU

Data transfer is still
MPI-based

Only on-board
communication between

GPU and CPU

Data distribution should depend on the presence of GPUs on
the nodes→ Multilevel parallelization required

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Hybrid Supercomputing nowadays

GPGPU on Supercomputers
Traditional architectures are somehow saturating
More cores/node, memories (slightly) larger but not faster

Architectures of Supercomputers are becoming hybrid
3 out to 5 Top Supercomputers are hybrid machines

Extrapolation: In 2015, No. 500 will become petafloppic
Likely it will be a hybrid machine

Codes should be conceived differently
MPI processes is limited for a fixed problem size

Performances increase only by enhancing parallelism

Further parallelisation levels should be added (OpenMP,
GPU)

Does (electronic structure calculations) codes are suitable?

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Future scenarios for the supercomputing

Exascale is foreseen for 2018: we cannot wait
Simulation: limited money (200 M$) and power (20 MW)
How can you get exascale (1000 times more powerful)?

100 times more memory

100× for bandwidth

Interrupt time 10 times smaller (one each day)

The Blue-Gene like scenario
100 thousands nodes with 1000 cores on it

The GPU-like scenario
10 thousands node with 10 thousands "cores"

First observations:
Huge thread concurrency
Fault resiliance might become crucial

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Future problems from the supercomputing

Architectures change way faster than codes
Number of CPU hours is increasing

* Should not be scared in asking Mhours

Which scientific codes are exempted?
Might we ignore this? What is the price to pay?

Produce new science by preserving system size
(possible only for new scientific domains)

Stop coding→ Parallelism is not altered

“Easy” things have already been done→ life is hard

This approach cannot last: a (yet) new challenge
Architectures for HPC are market driven

Low-power is now dominating (smartphones)

BigDFT on ARM architecture: 1/30 of Power, 10 times slower!

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

How far is petaflop (for DFT)?

At present, with traditional architectures
Routinely used DFT calculations are:

Few dozens (hundreds) of processors

Parallel intensive operations (blocking communications,
60-70 percent efficiency)

Not freshly optimised (legacy codes, monster codes)

* Optimistic estimation: 5 GFlop/s per core × 2000 cores ×
0.9 = 9 TFlop/s = 200 times less than Top 500’s #3!

It is such as
Distance Earth-Moon = 384 Mm
Distance Earth-Mars = 78.4 Gm = 200 times more

Moon is reached. . . can we go to Mars? (. . . in 2015?)

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Using GPUs in a given (DFT) code

Developer and user dilemmas
Does my code fits well? For which systems?

How much does porting costs?

Should I always use GPUs?

How can I interpret results?

Evaluating GPU convenience
Three levels of evaluation

1 Bare speedups: GPU kernels vs. CPU routines
Does the operations are suitable for GPU?

2 Full code speedup on one process
Amdahl’s law: are there hot-spot operations?

3 Speedup in a (massively?) parallel environment
The MPI layer adds an extra level of complexity

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Case study: 1D convolutions (BigDFT code)
Initially, naive routines (FORTRAN?)

y(j, I) =
U

∑
`=L

h`x(I + `, j)

Easy to write and
debug

Define reference
results

do j=1,ndat
do i=0,n1
tt=0.d0
do l=lowfil,lupfil

tt=tt+x(i+l,j)*h(l)
enddo
y(j,i)=tt

enddo

enddo

Optimisation can then start (Ex. X5550,2.67 GHz)

Method GFlop/s % of peak SpeedUp
Naive (FORTRAN) 0.54 5.1 1/(6.25)

Current (FORTRAN) 3.3 31 1
Best (C, SSE) 7.8 73 2.3

OpenCL (Fermi) 97 20 29 (12.4)

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

How to optimize?

A trade-off between benefit and effort

FORTRAN based
4 Relatively accessible (loop unrolling)

4 Moderate optimisation can be achieved relatively fast

6 Compilers fail to use vector engine efficiently

Push optimisation at the best
About 20 different patterns have been studied for one
1D convolution

Tedious work, huge code −→ Maintainability?

* Automatic code generation?

Consider new programming paradigms
New coding approaches are most welcome

→ Kronos’ OpenCL standard

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

GPU-ported operations in BigDFT (double precision)

Convolutions Kernels
* (OpenCL (re)written)
4 Fully functional (all BC)
4 Based on the former

CUDA version
4 A 10 to 60 speedup

 0

 10

 20

 30

 40

 50

 60

 70

M
agicfilter

M
agicfilter_reverse

M
agicfilter_grow

M
agicfilter_shrink

K
inetic

K
inetic_k

A
nalysis

S
ynthesis

S
ynthesis_grow

A
nalysis_shrink

U
ncom

press

C
om

press

R
at

io
 to

 C
P

U

Kernels

Performances of CPU vs NVIDIA vs AMD

CPU
NVIDIA

AMD

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 10 20 30 40 50 60 70

G
P

U
 s

pe
ed

up
 (

D
ou

bl
e

pr
ec

.)

Wavefunction size (MB)

locden
locham

precond

GPU BigDFT sections
GPU speedups between 5
and 20, depending of:
4 Wavefunction size
4 CPU-GPU Architecture

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Interpretation of HPC behaviour:

Evaluate the code behaviour:
A not so easy task (especially nowadays)
Frequent mistakes:

Parallel efficiency is not walltime

Scalability is not only communication-driven
Performance evaluation is a multicritierion evaluation
process

Best scalability (Machine point of view)
Best acceleration efficiency (Vendor point of view)
Best walltime (User point of view)

But also robustness, fault tolerance, best Flop/W ratio

Anticipated messages
Far from trivial situation:

No golden rule

HPC Optimal Stategies should be interpreted

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Amdahl’s law

A basic concept
The speedup with N cores depends of the parallel fraction
(P) of the code:

speedup =
1

P
N +(1−P)

It represents the limits to the scalability of a given code

An important definition

Parallel Efficiency = Time(Nref)
Time(N)

N
Nref

Often used as a benchmark
of a code in a parallel environment

Lots of factors involved
Scalability of the problem

Communication performances

Computational cost of operations

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Intranode bandwidth problem

 0

 20

 40

 60

 80

 100

1x1 2x1 4x1 8x1 1x2 2x2 4x2 1x4 2x4 1x8
 1

 2

 3

 4

 5

 6

 7
P

e
rc

e
n

t

S
p

e
e

d
u

p

MPI proc x OMP threads

B80 Cage, Free BC, 120 Orbitals, CCRT Titane: 2 x 4-core Intel Xeon X5570

Comms
LinAlg
Conv
NL PSP
PSolverXC
Other
Speedup
Efficiency (%)

Scalability does not depend only on communication
Amdahl’s law is a upper limit!

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Task repartition for a small system (ZnO, 128 atoms)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

16 24 32 48 64 96 144 192 288 576
 1

 10

 100

 1000
P

er
ce

nt

S
ec

on
ds

 (
lo

g.
 s

ca
le

)

No. of cores

1 Th. OMP per core

Comms
LinAlg
Conv
CPU
Other
Time (sec)
Efficiency (%)

What are ideal conditions for acceleration (e.g. GPU)
To-be-accelerated routines should take the majority of the time

What happens to parallel efficiency?

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Parallelisation and architectures

Same code, same runs. Which is the best?

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

16 24 32 48 64 96 144 192 288 576
 1

 10

 100

 1000
P

er
ce

nt

S
ec

on
ds

 (
lo

g.
 s

ca
le

)

No. of cores

1 Th. OMP per core

Comms
LinAlg
Conv
CPU
Other
Time (sec)
Efficiency (%)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

16 24 32 48 64 96 144 192 288 576
 1

 10

 100

 1000

P
er

ce
nt

S
ec

on
ds

 (
lo

g.
 s

ca
le

)

No. of cores

1 Th. OMP per core

Comms
LinAlg
Conv
CPU
Other
Time (sec)
Efficiency (%)

CCRT Titane (Nehalem, Infiniband) CSCS Rosa (Opteron, Cray XT5)

Titane is 2.3 to 1.6 times faster than Rosa!

Degradation of parallel performances: why?
1 Calculation power has increased more than networking
2 Better libraries (MKL)

* Walltime reduced, but lower parallel efficiency

This will always happen while using GPU!
Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Architectures, libraries, networking

Same runs, same sources; different user conditions

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 100 200 300 400 500 600

C
p

u
 H

o
u

rs

No. of cores

Titane MpiBull2 no MKL
Jade MPT

Titane MpiBull2, MKL
Titane OpenMPI, MKL

Rosa Cray, istanbul

Differences
up to a
factor of 3!

A case-by-case study
Consideration are often system-dependent, a thumb rule not
always exists.

* Know your code!

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

A (even more) frequent mistake

Example: two DFT codes running on the same system.
Naive question: Which one is faster?

The running conditions
Machine generation (CPU, cores, cache,. . .)

Parallel environment (MPI procs, OMP threads, GPUs)

Binaries (libraries, compiler,. . .)

Network vs. Computation performance

The code conditions (DFT example)
Basis set (formalism, cut-off, . . .)

Self-Consistentcy (Input Guess, minimization scheme)

How this question should be posed?
Which is lowest time-to-solution possible for this system
on a given machine?

Which is the fastest machine for this system?

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Data repartition on a node

Non-hybrid case
GPU not used→ homogeneous repartition

MPI 0 MPI 1 MPI 2 MPI 3

DATA DATA DATA DATA

GPU

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Data repartition on a node

“Naive” repartition
All the cores use the GPU at the same time

MPI 0 MPI 1 MPI 2 MPI 3

DATA DATA DATA DATA

GPU

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Data repartition on a node
Inhomogeneous repartition

Only one node use the GPU with more data

MPI 0 MPI 1 MPI 2 MPI 3

DATA DATA DATA

DATA

GPU

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Data repartition on a node

The S_GPU approach
S_GPU library manages GPU resource within the node

MPI 0 MPI 1 MPI 2 MPI 3

DATA DATA DATA DATA

GPU

S_GPU

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

S_GPU library (M. Ospici, LIG / Bull / CEA)

De-synchronisation of operations
Two semaphores are activated for each card on the node:

Data transfer (CPU→ GPU and GPU→ CPU)

Calculation on the GPU

Each operation (e.g. convolution of a wavefunction) is
associated to a stream.

Operation overlap
Calculation and data transfer of different stream may overlap
Operation are scheduled on a first come - first served basis

Several advantages
The time for memory transfers is saved

Heavy calculation can be passed to the card one - by -
one, avoiding scheduling problems

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Example of a time chart

The GPU can be viewed as a shared co-processor

MPI 3

MPI 2

MPI 1

MPI 0

Time

CPU → GPU Calculation GPU → CPU

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Convenience of S_GPU approach (end of 2009)

Different tests thanks to BigDFT flexibility
We have performed many tests, with different ratios
GPU/CPU on the same node

Speedup on the full code (examples)
S_GPU is the best compromise speedup/easiness
Examples:

CPU -GPU 8 - 1 8 - 2 4-2 2-2

S_GPU 1.96 3.69 3.73 5.09
Inhomogeneous (best) 2.08 2.64 2.32 2.40

Full code tested on Multi-GPU platforms
CINES -Iblis
48 GPU, Prototype calculations

CCRT - Titane
Up to 196 GPU (Grand challenge 2009)

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

Case study: BigDFT in hybrid codes

Acceleration of the full BigDFT code
Considerable gain may be achieved for suitable systems
Amdahl’s law should always be considered

Resources can be used concurrently (OpenCL queues)
More MPI processes may share the same card!

 0

 20

 40

 60

 80

 100

C
PU

-m
kl

C
PU

-m
kl-m

pi

C
U
D
A

C
U
D
A-m

kl

O
C
L-cublas

O
C
L-m

kl

C
U
D
A-m

pi

C
U
D
A-m

kl-m
pi

O
C
L-cublas-m

pi

O
C
L-m

kl-m
pi

 0

 2

 4

 6

 8

 10

P
e
rc

e
n
t

S
p
e
e
d
u
p

Badiane, X5550 + Fermi S2070 , ZnO 64 at.: CPU vs. Hybrid

Comms
LinAlg
Conv
CPU
Other
Speedup

(Lower time-to-solution for a given architecture)

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

The time-to-solution problem I: Efficiency

Good example: 4 C at, surface BC, 113 Kpts

Parallel efficiency of 98%, convolutions largely dominate.

Node:
2× Fermi + 8 ×
Westmere
8 MPI processes

GPU added 2 4 8

SpeedUp (SU) 5.3 9.8 11.6
MPI equiv. 44 80 96

Acceler. Eff. 1 .94 .56

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

S
p

e
e

d
U

p

No. of MPI proc

ideal
CPU+MPI

GPU

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

The time-to-solution problem II:Robustness

Not so good example: A too small system

 0

 20

 40

 60

 80

 100

1 2 4 6 8 12 24 32 48 64 96 144 1 2 4 6 8 12 24 32 48 64 96 144
 0

 1

 2

 3

 4

 5

 6

 7

P
er

ce
nt

S
pe

ed
up

 w
ith

 G
P

U

No. of MPI proc

Titane, ZnO 64 at.: CPU vs. Hybrid

Comms
LinAlg
Conv
CPU
Other
Efficiency (%)

Speedup

Hybrid code (rel.)CPU code

8 CPU efficiency is poor (calculation is too fast)

8 Amdahl’s law not favorable (5x SU at most)

4 GPU SU is almost independent of the size

4 The hybrid code always goes faster

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

A look in near future: science with HPC codes

A concerted set of actions
Improve codes functionalities for present-day and next
generation supercomputers

Test and develop new formalisms

* Transform challenges in opportunities (needs work!)

The Mars mission
Is Petaflop performance possible?

Multilevel parallelization→ one order of magnitude

Bigger systems, heavier methods→ (more than) one
order of magnitude bigger

Two challenges comes from HPC
Conceive unprecedented things on new machines

Preserve and maintain to-date functionalities on future
machines

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

A rapidly evolving situation

Architecture evolutions
Manycore era (multilevel parallelisation)

Memory traffic as the limiting factor

Software evolutions
Superposition of parallelization layers

Optimization issues: maintainability vs. robustness

Users ability
Architecture dimensioning: adapt the runs to the system

Performance evaluation approach

And it is not going better:
New set of architectures (GPU, MIC, BG/Q,. . .)
New development paradigms
(MPI, OpenMP, OpenCL,. . .)
HPC codes must follow
(HPC projects, Users how-to,. . .)

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

HPC and
Multi-GPU

Architectures
Software problem

HPC nowadays

Memory bottleneck

Developer
approach
Future Scenarios

Present Situation

Optimization

User
viewpoint
Frequent mistakes

Performance
evaluation

S_GPU

Performances
GPU

Practical cases

Conclusion

General considerations

What is desirable? (Does it open new directions?)
Performance should lead to improvements

Optimisation effort
Know the code behaviour and features
Careful performance study of the complete algorithm

Identify and make modular critical sections
Fundamental for mainainability and architecture evolution

Optimisation cost: consider end-user running conditions
Robustness is more important than best performance

Performance evaluation know-how
No general thumb-rule: what means High Performance?
A multi-criterion evaluation process

Multi-level parallelisation always to be used
Your code will not (anymore) become faster via hardware

Laboratoire de Simulation Atomistique http://inac.cea.fr/L_Sim Luigi Genovese

	Parallel computing and architectures
	From past to present: software
	HPC nowadays
	Memory bottleneck

	(DFT) Developer point of view
	Future Scenarios
	Present Situation
	Optimization

	User viewpoint
	Frequent mistakes
	Performance evaluation
	A (old) example S_GPU library

	Performances
	Recent situation: Evaluating GPU gain
	Practical cases

	Conclusion and Messages

