
Multigrid computational methods are
well known for being the fastest
numerical methods for solving
elliptic boundary-value problems.

Over the past 30 years, multigrid methods have
earned a reputation as an efficient and versatile ap-
proach for other types of computational problems
as well, including other types of partial differential
equations and systems and some integral equations.
In addition, researchers have successfully devel-
oped generalizations of the ideas underlying multi-
grid methods for problems in various disciplines.
(See the “Multigrid Methods Resources” sidebar
for more details.)

This introductory article presents the funda-
mentals of multigrid methods, including explicit al-
gorithms, and points out some of the main pitfalls
using elementary model problems. This material is
mostly intended for readers who have a practical
interest in computational methods but little or no
acquaintance with multigrid techniques. The arti-
cle also provides some background for this special
issue and other, more advanced publications.  

Basic Concepts
Let’s begin with a simple example based on a prob-
lem studied in a different context.1

Global versus Local Processes
The hometown team has won the regional cup.
The players are to receive medals, so it’s up to the
coach to line them up, equally spaced, along the
goal line. Alas, the field is muddy. The coach, who
abhors mud, tries to accomplish the task from afar.
He begins by numbering the players 0 to N and
orders players 0 and N to stand by the left and
right goal posts, respectively, which are a distance
L apart. Now, the coach could, for example, order
player i, i = 1, �, N – 1, to move to the point on
the goal line that is at a distance iL/N from the left
goal post. This would be a global process that would
solve the problem directly. However, it would re-
quire each player to recognize the left-hand goal
post, perform some fancy arithmetic, and gauge
long distances accurately. Suspecting that his play-
ers aren’t up to the task, the coach reasons that if
each player were to stand at the center point be-
tween his two neighbors (with players 0 and N
fixed at the goal posts), his task would be accom-
plished. From the local rule, a global order will
emerge, he philosophizes.

With this in mind, the coach devises the follow-
ing simple iterative local process. At each iteration,
he blows his whistle, and player i, i = 1, �, N – 1,
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moves to the point that’s at the center between the
positions of player i – 1 and player i + 1 just before
the whistle was blown. These iterations are re-
peated until the errors in the players’ positions are
so small that the mayor, who will be pinning the
medals, won’t notice. This is the convergence crite-
rion. Undeniably, the coach deserves a name; we’ll
call him Mr. Jacobi.

Figure 1a shows the players’ initial haphazard
position, and Figure 1b the position after one it-
eration (whistle blow). (For clarity, we assume that
the players aren’t even on the goal line initially.
This pessimistic view does not alter our analysis
significantly. We can envision purely lateral move-
ments by projecting the players’ positions onto
the goal line.) As I’ll show, Jacobi’s method is con-

MULTIGRID METHODS RESOURCES

R adii Petrovich Fedorenko1,2 and Nikolai Sergeevitch
Bakhvalov3 first conceived multigrid methods in the

1960s, but Achi Brandt first achieved their practical utility
and efficiency for general problems in his pioneering work
in the 1970s.4–6 Classical texts on multigrid methods in-
clude an excellent collection of papers edited by Wolfgang
Hackbusch and Ulrich Trottenberg,7 Brandt’s guide to
multigrid methods,8 and the classical book by Hackbusch.9

Notable recent textbooks on multigrid include the intro-
ductory tutorial by William Briggs and his colleagues10 and
a comprehensive textbook by Trottenberg and his col-
leagues.11 Many other excellent books and numerous
papers are also available, mostly devoted to more specific
aspects of multigrid techniques, both theoretical and
practical.
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Figure 1. Jacobi’s player-alignment iteration. Red disks show the current position, and blue disks show the previous
position, before the last whistle blow: (a) initial position, (b) one whistle blow, (c) slow convergence, (d) fast
convergence, (e) overshoot, and (f) damped iteration.
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vergent—that is, the errors in the players’ posi-
tions will eventually be as small as we wish to
make them.

However, this might take a long time. Suppose
the players’ positions are as shown in Figure 1c. In
this case, the players move short distances at each
iteration. Sadly, this slow crawl toward convergence
will persist for the duration of the process. In con-
trast, convergence is obtained in a single iteration
in the position shown in Figure 1d.

What is the essential property that makes the
convergence slow in the position of Figure 1c, yet
fast in Figure 1d? In Figure 1c, we have a large-
scale error. But Jacobi’s process is local, employing
only small-scale information—that is, each player’s
new position is determined by his near neighbor-
hood. Thus, to each player, it seems (from his my-
opic viewpoint) that the error in position is small,
when in fact it isn’t. The point is that we cannot
correct what we cannot detect, and a large-scale
error can’t be detected locally. In contrast, Figure
1d shows a small-scale error position, which can
be effectively detected and corrected by using the
local process.

Finally, consider the position in Figure 1e. It
clearly has a small-scale error, but Jacobi’s process
doesn’t reduce it effectively; rather, it introduces
an overshoot. Not every local process is suitable.
However, this problem is easily overcome without
compromising the process’s local nature by intro-
ducing a constant damping factor. That is, each
player moves only a fraction of the way toward his
designated target at each iteration; in Figure 1f, for
example, the players’ movements are damped by a
factor 2/3.

Multiscale Concept
The main idea behind multigrid methods is to
use the simple local process but to do so at all
scales of the problem. For convenience, assume
N to be a power of two. In our simple example,
the coach begins with a large-scale view in which
the problem consists only of the players num-

bered 0, N/2, and N. A whistle blow puts player
N/2 halfway between his “large-scale neighbors”
(see Figure 2a). Next, addressing the intermedi-
ate scale, players N/4 and 3N/4 are activated, and
they move at the sound of the whistle to the mid-
point between their “mid-scale neighbors” (see
Figure 2b). Finally, the small scale is solved by Ja-
cobi’s iteration at the remaining locations (Figure
2c). Thus, in just three whistle blows—generally,
log2(N)—and only N – 1 individual moves, the
problem is solved, even though the simple local
process has been used. Because the players can
move simultaneously at each iteration—in paral-
lel, so to speak—the number of whistle blows is
important in determining the overall time, and
log2(N) is encouraging. For 1 million players, for
example, Jacobi’s process would require a mere 20
whistle blows.

Researchers have successfully exploited the idea
of applying a local process at different scales in
many fields and applications. Our simple scenario
displays the concept but hides the difficulties. In
general, developing a multiscale solver for a given
problem involves four main tasks:

• choosing an appropriate local process,
• choosing appropriate coarse (large-scale) variables,
• choosing appropriate methods for transferring

information across scales, and
• developing appropriate equations (or processes)

for the coarse variables.

Depending on the application, each of these tasks
can be simple, moderately difficult, or extremely
challenging. This is partly the reason why multi-
grid continues to be an active and thriving re-
search field. We can examine these four tasks for
developing a multiscale solver by using a slightly
less trivial problem. Before doing this, let’s ana-
lyze Jacobi’s player-alignment algorithm and give
some mathematical substance to our intuitive no-
tions on the dependence of its efficiency on the
scale of the error.

(a) (b) (c)

Figure 2. Multiscale player alignment. Red disks show the current position, and blue disks show the previous position,
before the last whistle blow: (a) large, (b) medium, and (c) small scales.
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Analyzing Jacobi’s
Player-Alignment Algorithm
First, observe that Jacobi’s iteration acts similarly
and independently in the directions parallel and
perpendicular to the goal line. Therefore, it suffices
to consider the convergence with respect to just
one of these directions. Accordingly, let the column
vector denote the players’
initial errors, either in the direction perpendicular
or parallel to the goal line. We can define the error
as the player’s present coordinate, subtracted from
the correct coordinate (to which he should eventu-
ally converge.) For convenience, we don’t include
players 0 and N in this vector, but we keep in mind
that . For n = 1, 2, �, the new error
in the location of player i after iteration n is given
by the average of the errors of his two neighbors
just before the iteration—namely,

. (1)

We can write this in vector-matrix form as

e(n) = Re(n–1), (2)

where R is an N – 1 by N – 1 tridiagonal matrix with
one-half on the upper and lower diagonals and 0 on
the main diagonal. For example, for N = 6, we have

(3)

The behavior of the iteration and its relation to
scale is most clearly observed for an error, e,
which is an eigenvector of R, satisfying Re = �e,
for some (scalar) eigenvalue, �. The matrix R has
N – 1 eigenvalues; for k = 1, �, N – 1, they are
given by

. (4)

The  N – 1 corresponding eigenvectors are given by

(5)

(To verify this, use the trigonometric identity,

to show that Rv(k) = �(k)v(k).) Figure 3 shows the
first, third, and sixth eigenvectors. We associate
scale with the wavelength, which is inversely pro-
portional to k. Thus, small k corresponds to large-
scale eigenvectors, and vice versa.

The eigenvectors v(k) are linearly independent,
spanning the space RN–1, so we can write any initial
error as a linear combination of the eigenvectors,

, (6)

for some real coefficients, ck. Repeated multiplica-
tion by the iteration matrix, R, yields the error af-
ter n iterations:

(7)

Because |�(k)| = |cos(k�/N)| < 1 for 1 � k � N – 1,
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Figure 3. Three eigenvectors. We associate scale with the wavelength, which is inversely proportional to k : (a) v (1),
(b) v (3), and (c) v (6).
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we conclude that Jacobi’s method converges be-
cause |�(k)|n tends to zero as n tends to infinity. It’s
illuminating to examine the rate of convergence for
different values of k. For k/N << 1, we have

, (8)

where we can verify the approximation by using a
Taylor series expansion. We find that the coeffi-
cients of eigenvectors corresponding to small k
values change only slightly in each iteration (see
Figure 1c). Indeed, we see here that n = O(N2) it-
erations are required to reduce such an error by
an order of magnitude. For 1 million players, for
example, hundreds of billions of whistle blows are
required, compared to just 20 using the multiscale
approach.

For k = N/2, �(k) = cos(k�/N) = 0, and conver-
gence is immediate (see Figure 1d). As k ap-
proaches N, the scale of the error becomes even
smaller, and cos(k�/N) approaches –1, which is
consistent with the overshoot we saw in Figure
1e—that is, at each iteration, the error mainly
changes sign, with hardly any amplitude change.

Damped Jacobi
Iteration’s Smoothing Factor
To overcome the overshoot problem, we introduce
a damping factor. If we damp the players’ move-
ments by a factor 2/3, we obtain

, (9)

and in vector-matrix form,

, (10)

with Rd denoting the damped Jacobi iteration ma-
trix and I the identity matrix. The eigenvectors
clearly remain the same, but the eigenvalues of Rd

are given by

. (11)

We can now quantify the claim that Jacobi’s it-
eration, damped by a factor 2/3, is efficient in re-
ducing small-scale errors. To do this, let’s
(somewhat arbitrarily at this point) split the spec-
trum down the middle, roughly, and declare all
eigenvectors with 1 � k < N/2 smooth (large scale),
and eigenvectors with N/2 � k < N rough (small
scale). Observe that, as we vary k from N/2 to N –
1, spanning the rough eigenvectors, cos(k�/N)
varies from 0 to (nearly) –1, and therefore 
varies from 1/3 to (nearly) –1/3. The fact that

� 1/3 for all the rough eigenvectors im-
plies that the size of the coefficient of each rough
eigenvector is reduced in each iteration to at most
1/3 its size prior to the iteration independently of
N. We say that the iteration’s smoothing factor is
1/3. If we begin with an initial error that’s some
haphazard combination of the eigenvectors, then
after just a few iterations, the coefficients of all the
rough eigenvectors will be greatly reduced. Thus,
the damped Jacobi iteration (usually called relax-
ation) is efficient at smoothing the error, although,
as we’ve seen, it is inefficient at reducing the er-
ror once it has been smoothed. Figure 4 exhibits
these properties. Relaxation, one observes, irons
out the wrinkles but leaves the fat.

1D Model Problem
The idea of using a local rule to obtain a global or-
der is, of course, ancient. Perhaps the most com-
mon example in mathematics is differential
equations, which have a global solution deter-
mined by a local rule on the derivatives (plus
boundary conditions). To advance our discussion,
we require an example that’s slightly less trivial
than player alignment. Consider the 1D boundary-
value problem:
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(12)

where f is a given function, u� and ur are the bound-
ary conditions, and u is the solution we’re seeking.
We adopt the common numerical approach of
finite difference discretization. A uniform mesh is
defined on the interval [0, 1], with mesh size h =
1/N and N + 1 mesh points given by xi + ih for i = 0,
1, ..., N.

Our vector of unknowns—the discrete approx-
imation to u—is denoted as ,
where we exclude the boundary values for conve-
nience but keep in mind that , .
The right-hand side vector is denoted by f h =

, with . Alternatively,
we could use some local averaging of f. The stan-
dard second-order accurate finite  difference dis-
cretization of the second derivative now yields a
system of equations for uh, which we can write as

. (13)

We can also write this system more concisely as
Lhuh = f h. The system is tridiagonal and easy to
solve by standard methods, but it’s useful for ex-
amining the multigrid solver’s aforementioned
tasks. Observe the similarity to the player-align-
ment problem: if we set f � 0, the solution u is ob-
viously a straight line connecting the point (0, u�)
with (1, ur). The discrete solution is then a set of
values along this line, each equal to the average
of its two neighbors.

We can easily adapt Jacobi’s algorithm to Equa-
tion 13. Let uh(0) denote an initial approximation
to uh that satisfies the boundary conditions.
Then, at the nth iteration, we set , i = 1, �,
N – 1, to satisfy the ith equation in the system in
Equation 13, with the neighboring values taken
from the n – 1st iteration:

(14)

The convergence behavior of Jacobi’s algorithm
is identical to its behavior in the player-alignment

problem. Denote the error in our approximation
after the nth iteration by

, (15)

with because all our approxima-
tions satisfy the boundary conditions. Now, sub-
tract Equation 14 from the equation

,

which we get by isolating in Equation 13. This
yields

, (16)

which is exactly like Equation 1. Similarly, damped
Jacobi relaxation, with a damping factor of 2/3, is
defined by

, (17)

and its error propagation properties are identical
to those of the player-alignment problem in Equa-
tions 9 through 11.

Naïve Multiscale Algorithm
We next naïvely extend the multiscale algorithm of
the player-alignment problem to the 1D model
problem. The main point of this exercise is to show
that in order to know what to do at the large scales,
we must first propagate appropriate information
from the small scales to the large scales.

For convenience, we still assume N is a power of
two. Similarly to the player-alignment process, we
begin by performing Jacobi’s iteration for the prob-
lem defined at the largest scale, which consists of the
variables . The mesh size at this scale
is 0.5, and and are prescribed by the bound-
ary conditions. The Jacobi step thus fixes :

.

Next, based on the values of the largest scale, we
perform a Jacobi iteration at the second-largest
scale, obtaining and . We continue
until we have determined all variables, just as in the
player-alignment problem.

This algorithm is obviously computationally ef-
ficient. Unfortunately, it fails to give the correct an-
swer (unless f is trivial) because we aren’t solving
the right equations on the coarse grids. More pre-
cisely, the right-hand sides are wrong.
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Aliasing
Figure 5a shows a smooth eigenvector (k = 3) sam-
pled on a grid with N = 16 and also on a twice-
coarser grid, N = 8, consisting of the fine grid’s
even-indexed mesh points. This repeats in Figure
5b, but for a rough eigenvector (k = 13 on the
finer grid), with coefficient –1. Evidently, the two
are indistinguishable on the coarse grid, which
demonstrates the well-known phenomenon of
aliasing. The coarse grid affords roughly half as
many eigenvectors as the fine grid, so some pairs
of fine-grid eigenvectors must alias. Specifically,
by Equation 5, the even-indexed terms in eigen-
vectors v(k) and v(N–k) are equal to the negative of
each other. Thus, if f h contains some roughness—
that is, if we write f h as a linear combination of
eigenvectors, it will have rough eigenvectors with
nonzero coefficients—it won’t be represented cor-
rectly on the coarse grid. As a somewhat extreme
example, if f h is a linear combination of v(k) and
v(N–k) for some k, with weights of equal magnitude
but opposite sign, it will vanish when sampled on
the coarser grid.

The definition of the smoothing factor, which
was based on a partitioning of the spectrum into
smooth and rough parts, foreshadowed our use of
a twice-coarser grid. Smooth eigenvectors are
those that can be represented accurately on the
twice-coarser grid, whereas rough eigenvectors
alias with smooth ones.

We can conclude that constructing correct
equations for coarse grids requires information

from the fine grid. For the 1D model problem, we
can get around the aliasing problem by successive
local averaging. However, in more general prob-
lems, we can’t do this without spending a substan-
tial computational effort, which would defeat the
purpose of the multiscale approach. We must
come to grips with the fact that coarse grids are
useful only for representing smooth functions.
This means that we must take care in choosing our
coarse-grid variables.

Taxonomy of Errors
We’ve seen that damped Jacobi relaxation
smoothes the error. In this context, it is important
to distinguish between two distinct types of error.
The discretization error, given at mesh point i by

, is the difference between the solution
of the differential equation (sampled on the grid)
and that of the discrete system. This error is deter-
mined by the problem, the discretization, and the
mesh size. Iteration has no effect on this error, of
course, because it only affects our approximation
to uh. Only the algebraic error, which is the differ-
ence between the discrete solution and our current
approximation to it (Equation 15), is smoothed.
Our plan, therefore, is to first apply damped Jacobi
relaxation, which smoothes the algebraic error, and
then construct a linear system for this error vector
and approximate it on a coarser grid. This can con-
tinue recursively, such that, on each coarser grid,
we solve approximate equations for the next-finer
grid’s algebraic error.

The motivation for using the algebraic error as
our coarse-grid variable is twofold. Because we’re
limited in our ability to compute an accurate ap-
proximation to uh on the coarse grid due to alias-
ing, we need to resort to iterative improvement.
We should therefore use the coarse grid to ap-
proximately correct the fine-grid algebraic error,
rather than to dictate the fine-grid solution.
Moreover, relaxation has smoothed the algebraic
error, and thus we can approximate it accurately
on the coarse grid.

Let denote our current approximation to uh

after performing several damped Jacobi relax-
ations, and let denote the corres-
ponding algebraic error, which is known to be
smooth (see Figure 4). Subtract from Equation 13
the trivial relation

,

to obtain a system for the algebraic error,

� ��u u u uh
N
h

r0 = =,

L u L u i Nh h
i

h h
i

� �( ) = ( ) = −, , ..., ,1 1

e u uh h h= − �

�uh

u x ui i
h( ) −

(a)

(b)

Figure 5. Aliasing. Red disks correspond to the
coarse grid: (a) v (3) and (b) –v (13). 
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,

,

where is the ith residual. This is the problem we
must approximate on the coarser grid. We can
write it concisely as Lheh = rh. Once we compute a
good approximation to eh, we then add it to , and
thus improve our approximation to uh.

Multigrid Algorithm
To transfer information between grids, we need
suitable operators. Consider just two grids: the fine
grid, with mesh size h and with N – 1 mesh points
excluding boundary points, and the coarse grid,
with mesh size 2h and N/2 – 1 mesh points. We use
a restriction operator, denoted , for fine-to-coarse
data transfer. Common choices are injection, de-
fined for a fine-grid vector, gh, by

,

that is, the coarse-grid value is simply given by the
fine-grid value at the corresponding location, or full
weighting, which is defined by

where we apply a local averaging. For coarse-to-fine
data transfer, we use a prolongation operator, de-
noted by . A common choice is the usual linear
interpolation, defined for a coarse-grid vector g2h by

Additionally, we must define an operator on the
coarse grid, denoted L2h, that approximates the fine
grid’s Lh. A common choice is to simply discretize
the differential equation on the coarse grid using a
scheme similar to the one applied on the fine grid.
Armed with these operators, and using recursion to
solve the coarse-grid problem approximately, we
can now define the multigrid V-Cycle (see Figure 6).
We require two parameters, commonly denoted by
�1 and �2, that designate, respectively, the number
of damped Jacobi relaxations performed before and
after we apply the coarse-grid correction. The
multigrid algorithm is defined as 

Algorithm V-Cycle: uh = VCycle(uh, h, N, f h, �1, �2)
1. If N == 2, solve Lhuh = f h and return uh;
2. uh = Relax(uh, h, N, f h, �1);

relax �1 times.
3. rh = f h – Lhuh;

compute residual vector.
4. f 2h = ;

restrict residual.
5. u2h = 0;

set u2h to zero, including boundary conditions.
6. u2h = VCycle(u2h, 2h, N/2, f 2h, �1, �2);

treat coarse-grid problem recursively.
7. ;

interpolate and add correction.
8. uh = Relax(uh, h, N, f h, �2);

relax �2 times;
9. Return uh.

Let’s examine the algorithm line by line. In line
1, we check whether we’ve reached the coarsest
grid, N = 2. If so, we solve the problem. Because
there’s only a single variable there, one Jacobi iter-
ation without damping does the job. In line 2, �1
damped Jacobi iterations are applied. We compute
the residual in line 3, and restrict it to the coarse
grid in line 4. We now need to tackle the coarse-
grid problem and obtain the coarse-grid approxi-
mation to the fine-grid error. Noting that the
coarse-grid problem is similar to the fine-grid one,
we apply a recursive call in line 6. Note that the
boundary conditions on the coarse grid are zero
(line 5) because there’s no error in the fine-grid
boundary values, which are prescribed. Also, the
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Figure 6. A schematic description of the V-Cycle. The algorithm
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grid) and back up again. On each grid but the coarsest, we relax �1

times before transferring (restricting) to the next-coarser grid and
�2 times after interpolating and adding the correction.
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initial approximation to u2h must be zero. After re-
turning from the recursion, we interpolate and add
the correction to the fine-grid approximation (line
7). In line 8, we relax the fine-grid equations �2
times, and the resulting approximation to the solu-
tion is returned in line 9.

Generally, the V-Cycle doesn’t solve the problem
exactly, and it needs to be applied iteratively. How-
ever, as I’ll demonstrate later, each such iteration
typically reduces the algebraic error dramatically.

2D Model Problem
The multiscale algorithm isn’t restricted to one
dimension, of course. Consider the 2D boundary-
value problem:

,

(18)

where f and b are given functions and u is the so-
lution we’re seeking. For simplicity, our domain
is the unit square, � = (0, 1)2, with �� denoting
the boundary of �. This is the well-known Pois-
son problem with Dirichlet boundary conditions.
To discretize the problem, we define a uniform
grid with mesh size h and mesh points given by

where h = 1/N. Our vector of unknowns—the dis-
crete approximation to u—is again denoted uh, bh

denotes the discrete boundary conditions and f h is
the discrete right-hand side function. The standard
second-order-accurate finite difference discretiza-
tion now yields a system of equations for uh, which
we can write as

(19)

or more concisely as Lhuh = f h.
We can easily adapt Jacobi’s algorithm to the 2D

problem: at each iteration, we change our approxi-
mation to , i, j = 1, �, N – 1, to satisfy the (i, j)th
equation in the system in Equation 19, with the
neighboring values taken from the previous itera-

tion. We can generalize our smoothing analysis of
damped Jacobi relaxation to this case. By minimiz-
ing the smoothing factor with respect to the damp-
ing, we then find that the best achievable smoothing
factor is 0.6, obtained with a damping factor of 0.8.

To apply the multigrid V-Cycle to the 2D model
problem, we still need to define our coarse grids,
along with appropriate intergrid transfer operators.
We coarsen naturally by eliminating all the mesh
points with either i or j odd, such that roughly one-
fourth of the mesh points remain. For restriction,
we can once again use simple injection, defined for
a fine-grid vector, gh, by

that is, the coarse-grid value is simply given by the
fine-grid value at the corresponding location, or
full weighting, defined by

where a local averaging is applied. For coarse-to-
fine data transfer, a common choice is bilinear in-
terpolation, defined for a coarse-grid vector g2h by

for i = 1, �, N – 1.
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Numerical Tests
To demonstrate the multigrid algorithm’s effec-
tiveness, we test it on the 1D and 2D model prob-
lems with N = 128 and compare its convergence
behavior to that of simple Jacobi relaxation. We
apply V-Cycles with �1 = 2, �2 = 1—denoted V(2,
1)—to a problem with a known solution, begin-
ning with a random initial guess for the solution.
(It’s easy to show that the asymptotic convergence
behavior is independent of the particular solu-
tion.) We use (bi)linear interpolation and full-
weighting restriction and plot the fine-grid
algebraic error’s root mean square (RMS) versus
the number of iterations. Figure 7 shows the re-
sults for the 1D and 2D model problems. The V-
Cycle’s computational cost is similar to that of a
few Jacobi iterations, as I will show in the next
section. Hence, for fairness, we consider every 10
Jacobi relaxations as a single iteration in the com-
parison, so that 100 iterations marked in the plot
actually correspond to 1,000 Jacobi relaxations.
Thus, a V-Cycle in these plots is no more costly
than a single Jacobi iteration.

We can see that each V-Cycle reduces the error
by roughly an order of magnitude, whereas Jacobi
relaxation converges slowly. The smoothing analy-
sis can approximately predict the fast multigrid
convergence: on the fine grid, the reduction factor
of rough errors per each relaxation sweep is
bounded from above by the smoothing factor,
whereas the smooth errors are nearly eliminated al-
together by the coarse-grid correction.

Computational Complexity
The number of operations performed in the V-
Cycle on each grid is clearly proportional to the
number of mesh points because this holds for each
subprocess—relaxation, residual computation, re-
striction, and prolongation. Because the number
of variables at each grid is approximately a con-
stant fraction of that of the next finer grid (one-
half in 1D and one-fourth in 2D), the total number
of operations per V-Cycle is greater than the num-
ber of operations performed on just the finest grid
only by a constant factor. In 1D, this factor is
bounded by 1 + 1/2 + 1/4 + � = 2, and in 2D by 1
+ 1/4 + 1/16 + � = 4/3. The amount of computa-
tion required for a single Jacobi relaxation on the
finest grid (or a calculation of the residual, which
is approximately the same) is called a work unit
(WU). Our V-Cycle requires three WUs for re-
laxation on the finest grid and one more for com-
puting the residual. The prolongation plus the
restriction operations together require no more
than one WU. Thus, the fine-grid work is roughly

five WUs per V-Cycle. Therefore, the entire work
is approximately 10 WUs per V-Cycle in 1D and
seven in 2D.
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Figure 7. Convergence of the algebraic error. Multigrid V(2, 1)
cycles versus Jacobi iterations comprised of 10 relaxations each,
with N = 128: (a) 1D and (b) 2D.
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Figure 8. A schematic description of the full multigrid algorithm for
� = 1. The algorithm proceeds from left to right and top (finest
grid) to bottom (coarsest grid.) Initially, we transfer the problem
down to the coarsest grid. We solve the problem on the coarsest
grid and then interpolate this solution to the second-coarsest grid
and perform a V-Cycle. These two steps are repeated recursively to
finer and finer grids, ending with the finest grid. 
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Finally, observe that on each grid in the hierar-
chy, the operations (relaxation, prolongation and
restriction) can be performed in parallel. Thus, the
number of sequential steps required by the V-Cycle
is proportional to the number of grids, which is
merely O(log N).

The Full Multigrid Algorithm
In the numerical experiments, we’ve used a ran-
dom initial guess for the solution for testing pur-
poses. In practice, we want to enlist the best
possible initial guess. A natural and effective ap-
proach is to first solve the problem approximately
on a coarser grid and interpolate this solution to
the fine grid to be used as a first approximation.
This is applied recursively, yielding the full multi-
grid (FMG) algorithm. (Figure 8 gives a schematic
description.) We need a positive parameter, �,
which denotes the number of V-Cycles applied at
each level of the algorithm. The FMG algorithm
is then defined as

Algorithm FMG: uh = FMG(h, N, f h, bh, �1, �2, �)
1. If N == 2, solve Lhuh = f h and return uh;
2. ;

restrict f h.
3. ;

restrict boundary conditions.
4. u2h = FMG(2h, N/2, f 2h, b2h, �1, �2, �);

recursive call;
5. ;

interpolate initial approximation, excluding
boundary conditions.

6.Repeat � times: uh = VCycle(uh, h, N, f h,
�1, �2);
apply � V-Cycles.

7. Return uh.

Here, is a restriction operator for the
boundary values, and is a prolongation oper-
ator that might differ from the one we use in the
V-Cycle. Generally, it must be more accurate, so
a common choice is (bi)cubic interpolation. Re-
call the distinction we made earlier between the
discretization and algebraic errors. The total er-
ror is the sum of these two errors—that is, the dif-
ference between the solution to the differential
equation (sampled on the fine grid) and the cur-
rent discrete approximation. This is the relevant
measure of the current approximation’s accuracy.
Once the algebraic error becomes smaller than
the discretization error, the latter begins to dom-
inate the total error.

Clearly, no advantage exists in working hard to
reduce the algebraic error much further. Indeed,

if we want to spend an additional computational
effort at this point, we should reduce the dis-
cretization error by appealing to a yet finer grid.
For many problems, researchers have shown that
the FMG algorithm can yield small algebraic er-
rors compared to the discretization error even
with just � = 1. The FMG algorithm’s computa-
tional complexity is linear (an FMG algorithm
with � = 1 costs about twice as much as a V-Cycle
in 1D and about one and a third as much in 2D).
The FMG algorithm, therefore, yields an accu-
rate solution to the problem at the cost of just a
few WUs—typically only several dozen opera-
tions per fine-grid variable.

The multigrid algorithms I describe in
this article provide a glimpse into the
complex and often subtle machinery
of multiscale computational methods.

These algorithms are immediately useful for sim-
ple linear elliptic problems on simple domains.
With relatively minor modifications, they can be
generalized to handle nonlinear, anisotropic, or
moderately inhomogeneous problems as well as el-
liptic systems. Still more elaborate modifications
are required to obtain efficient solvers for singular-
perturbation problems and for problems with dis-
continuous coefficients, complex domains, or
unstructured grids. These topics have been re-
searched widely over the last 30 years, and several
of them are addressed in this special issue. Re-
searchers have resolved many of the difficulties,
while others remain open and subject to research.
Exploiting these ideas outside the realm of differ-
ential equations is particularly challenging. 

While the details of the methods that turn out
to be optimal for different problems vary widely,
the concepts and fundamental tasks I describe in
this article are at the basis of most efficient multi-
scale approaches.
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