Model reduction by POD

Laurent Cordier

Institut Pprime

亮

Physical system $+\quad$ Data

Simple prototype flows

Transport vehicles

Energy systems

Production etc.

From Brunton, Noack, AMR, 2015

Ecoulement « naturel » : isoW0.avi

Ecoulement contrôlé de manière optimale par rotation : isoWopt.avi

Ecoulement contrôlé de manière optimale par oscillation verticale du cylindre :

Cylinder_control_oscillation_MPEG4.avi

From L. Mathelin (LIMSI)

Reduced-Order Modelling

e Ex. from Spalart et al. (1997): wing considered at cruising flight conditions i.e.
$\operatorname{Re}=\mathcal{O}\left(10^{7}\right)$. Converged solution obtained for
e about 10^{11} grid points,
e about 5×10^{6} time steps.
40 years for the first LES of a wing !!
a Nearly impossible to solve numerically problems where
a either, a great number of resolution of the state equations is necessary (continuation methods, parametric studies, optimization problems or optimal control,....),
e either a solution in real time is searched (active control in closed-loop control for instance).
e Objective: reduce the number of degrees of freedom.
In fluid mechanics/turbulence :
e Prandtl boundary layer equations,
e RANS models ($k-\epsilon, k-\omega$),
Q Large Eddy Simulation (LES),
e Low-order dynamical system based on Proper Orthogonal Decomposition (Lumley, 1967),
a Reduced-order models based on balanced and/or global modes.

Proper Orthogonal Decomposition

e Also known as:
a Karhunen-Loève decomposition: Karhunen (1946), Loève (1945) ;
e Principal Component Analysis: Hotelling (1953) ;
a Singular Value Decomposition: Golub and Van Loan (1983).
Q Applications include:
e Random variables (Papoulis, 1965) ;
e Image processing (Rosenfeld and Kak, 1982) ;
e Signal analysis (Algazi and Sakrison, 1969) ;
e Data compression (Andrews, Davies and Schwartz, 1967) ;
e Process identification and control (Gay and Ray, 1986) ;
e Optimal control (Ravindran, 2000 ; Hinze et Volkwein 2004 ; Bergmann, 2004) and of course in fluid mechanics
e Introduced in turbulence by Lumley (1967)
Lumley J.L. (1967) : The structure of inhomogeneous turbulence. Atmospheric Turbulence and Wave Propagation, ed. A.M. Yaglom \& V.I. Tatarski, pp. 166-178.
e Two possibilities of presentation:

1. Mathematical framework: SVD
2. Turbulence framework: Hilbert-Schmidt theory

From data to Snapshot Data Matrix

Thanks P. Schmid for the inspiration !

Data analysis as a matrix decomposition

Model reduction: exploit the redundancy

Snapshot Data Matrix

$\boldsymbol{u}=\left(u_{1}, u_{2}, \cdots, u_{n_{c}}\right) ; \boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n_{x}}\right) ; \boldsymbol{t}=\left(t_{1}, t_{2}, \cdots, t_{N_{t}}\right) ; N_{x}=n_{x} \times n_{c}$
$S=\left(\begin{array}{c|c|c|c|c}u_{1}\left(x_{1}, t_{1}\right) & u_{1}\left(x_{1}, t_{2}\right) & \cdots & u_{1}\left(x_{1}, t_{N_{t}-1}\right) & u_{1}\left(x_{1}, t_{N_{t}}\right) \\ u_{2}\left(x_{1}, t_{1}\right) & u_{2}\left(x_{1}, t_{2}\right) & \cdots & u_{2}\left(x_{1}, t_{N_{t}-1}\right) & u_{2}\left(x_{1}, t_{N_{t}}\right) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ u_{n_{c}}\left(x_{1}, t_{1}\right) & u_{n_{c}}\left(x_{1}, t_{2}\right) & \cdots & u_{n_{c}}\left(x_{1}, t_{N_{t}-1}\right) & u_{n_{c}}\left(x_{1}, t_{N_{t}}\right) \\ \hline u_{1}\left(x_{2}, t_{1}\right) & u_{1}\left(x_{2}, t_{2}\right) & \cdots & u_{1}\left(x_{2}, t_{N_{t}-1}\right) & u_{1}\left(x_{2}, t_{N_{t}}\right) \\ u_{2}\left(x_{2}, t_{1}\right) & u_{2}\left(x_{2}, t_{2}\right) & \cdots & u_{2}\left(x_{2}, t_{N_{t}-1}\right) & u_{2}\left(x_{2}, t_{N_{t}}\right) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ u_{n_{c}}\left(x_{2}, t_{1}\right) & u_{n_{c}}\left(x_{2}, t_{2}\right) & \cdots & u_{n_{c}}\left(x_{2}, t_{N_{t}-1}\right) & u_{n_{c}\left(x_{2}, t_{N_{t}}\right)} \\ \vdots & \vdots & \vdots & & \vdots \\ \hline u_{1}\left(x_{N_{x}}, t_{1}\right) & u_{1}\left(x_{N_{x}}, t_{2}\right) & \cdots & u_{1}\left(x_{N_{x}}, t_{N_{t}-1}\right) & u_{1}\left(x_{N_{x}}, t_{N_{t}}\right) \\ u_{2}\left(x_{N_{x}}, t_{1}\right) & u_{2}\left(x_{N_{x}}, t_{2}\right) & \cdots & u_{2}\left(x_{N_{x}}, t_{N_{t}-1}\right) & u_{2}\left(x_{N_{x}}, t_{N_{t}}\right) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ u_{n_{c}}\left(x_{N_{x}}, t_{1}\right) & u_{n_{c}}\left(x_{N_{x}}, t_{2}\right) & \cdots & u_{n_{c}\left(x_{N_{x}}, t_{N_{t}-1}\right)} & u_{n_{c}\left(x_{N_{x}}, t_{N_{t}}\right)}\end{array}\right) \in \mathbb{R}^{N_{x} \times N_{t}}$

The POD basis problem

- Given a collection of N_{t} functions $\boldsymbol{u}\left(\boldsymbol{x}, t_{i}\right)$
e Find a k dimensional subspace $V_{k}^{\text {POD }}=\operatorname{span}\left(\phi^{(1)}, \cdots, \phi^{(\boldsymbol{k})}\right)$ which minimizes

$$
\mathcal{J}\left(\Pi_{\mathrm{POD}}\right)=\sum_{i=1}^{N_{t}}\left\|\boldsymbol{u}\left(\boldsymbol{x}, t_{i}\right)-\Pi_{\mathrm{POD}} \boldsymbol{u}\left(\boldsymbol{x}, t_{i}\right)\right\|_{\Omega}^{2}
$$

where \mathcal{J} is the mean squared error.
$\Pi_{\text {POD }}$ is the orthogonal projector on the space spanned by the functions $\left\{\phi^{(i)}\right\}_{i=1}^{k}$.
e Minimizing \mathcal{J} is equivalent to minimize

$$
\mathcal{J}\left(\phi^{(1)}, \cdots, \phi^{(\boldsymbol{k})}\right)=\sum_{i=1}^{N_{t}}\left\|\boldsymbol{u}\left(\boldsymbol{x}, t_{i}\right)-\sum_{j=1}^{k}\left(\boldsymbol{u}\left(\boldsymbol{x}, t_{i}\right), \phi^{(\boldsymbol{j})}(\boldsymbol{x})\right)_{\Omega} \boldsymbol{\phi}^{(\boldsymbol{j})}(\boldsymbol{x})\right\|_{\Omega}^{2}
$$

e The functions $\phi^{(j)}$ are orthonormal, i.e.

$$
\left(\phi^{\left(\boldsymbol{k}_{1}\right)}, \phi^{\left(\boldsymbol{k}_{2}\right)}\right)_{\Omega}=\int_{\Omega} \phi^{\left(\boldsymbol{k}_{1}\right)}(\boldsymbol{x}) \cdot \phi^{\left(\boldsymbol{k}_{2}\right)}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\delta_{k_{1} k_{2}}= \begin{cases}0 & \text { for } k_{1} \neq k_{2} \\ 1 & \text { for } k_{1}=k_{2}\end{cases}
$$

- The solutions of the minimization problem are given by the truncated Singular Value

Decomposition of length k of S.

Singular Value Decomposition (SVD)

$$
S=U \Sigma V^{H} \in \mathbb{C}^{N_{x} \times N_{t}} \quad \text { with }
$$

e $U \in \mathbb{C}^{N_{x} \times N_{x}}$ unitary: $U U^{H}=U^{H} U=I_{N_{x}}$

$$
\text { Left singular vectors: } U=\left(u_{1}, u_{2}, \cdots, u_{N_{x}}\right)
$$

e $V \in \mathbb{C}^{N_{t} \times N_{t}}$ unitary: $V V^{H}=V^{H} V=I_{N_{t}}$

$$
\text { Right singular vectors: } \quad V=\left(v_{1}, v_{2}, \cdots, v_{N_{t}}\right)
$$

e Σ 'diagonal' matrix
Singular values: $\Sigma=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{p}, 0 \cdots, 0\right)$ with $\quad p=\min \left(N_{x}, N_{t}\right)$

$$
\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>\sigma_{r+1}=\sigma_{r+2}=\cdots=\sigma_{p}=0 \quad \text { where } \quad r=\operatorname{rank}(S) \leq p
$$

$$
\Sigma=\left(\begin{array}{cccc}
\Sigma_{p} & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right) \quad ; \quad \Sigma_{p}=\left(\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
\vdots & \ddots & 0 \\
0 & \cdots & \sigma_{p}
\end{array}\right)
$$

SVD and eigenvalue problems

1. Singular values

$$
\sigma_{i}=\sqrt{\lambda_{i}\left(S^{H} S\right)}=\sqrt{\lambda_{i}\left(S S^{H}\right)} \quad i=1, \cdots, r
$$

2. $\left(S^{H} S\right) V=V \Sigma^{2}=V \Lambda$, hence columns of V are ev's of $S^{H} S \in \mathbb{C}^{N_{t} \times N_{t}}$
3. $\left(S S^{H}\right) U=U \Sigma^{2}=U \Lambda$, hence columns of U are ev's of $S S^{H} \in \mathbb{C}^{N_{x} \times N_{x}}$
\triangleright Geometric interpretation
e Columns $u_{i}, i=1, \cdots, r$ define an orthonormal basis of S
e Columns $v_{i}, i=1, \cdots, r$ define an orthonormal basis of S^{H}
e Singular values σ_{i} indicate amplification factors in the sense that

$$
S \boldsymbol{v}_{\boldsymbol{i}}=U \Sigma V^{H} \boldsymbol{v}_{\boldsymbol{i}}=U \Sigma \boldsymbol{e}_{\boldsymbol{i}}=\sigma_{i} \boldsymbol{u}_{\boldsymbol{i}} \quad i=1, \cdots, r
$$

which shows that S maps input $\boldsymbol{v}_{\boldsymbol{i}}$ to output $\boldsymbol{u}_{\boldsymbol{i}}$ with amplification σ_{i}.

A

SVD

Example for $N_{x}<N_{t}$ i.e. $p=N_{x}$
$S=U \Sigma V^{H}$ where S has more columns than rows.

SVD

$S=U \Sigma V^{H}$ where S has more rows than columns.

\triangleright Truncated approximations
\star If $r=\operatorname{rank}(S)$, then the SVD of $S \in \mathbb{C}^{N_{x} \times N_{t}}$ can be written as

$$
\begin{aligned}
& S=\left(\begin{array}{ll}
\underline{U}_{N_{x} \times r} & \bar{U}_{N_{x} \times\left(N_{t}-r\right)}
\end{array}\right)\left(\begin{array}{cc}
\underline{\Sigma}_{r \times r} & 0 \\
0 & 0
\end{array}\right)\left(\underline{V}_{N_{t} \times r}\right. \\
& \left.S=\bar{U}_{N_{t} \times\left(N_{t}-r\right)}\right)^{H} \\
& \underline{\Sigma}_{r \times r} \underline{V}_{N_{t} \times r}^{H}
\end{aligned}
$$

$$
S=\sigma_{1} \boldsymbol{u}_{\mathbf{1}} \boldsymbol{v}_{\mathbf{1}}^{H}+\sigma_{2} \boldsymbol{u}_{\mathbf{2}} \boldsymbol{v}_{\mathbf{2}}^{H}+\cdots+\sigma_{r} \boldsymbol{u}_{\boldsymbol{r}} \boldsymbol{v}_{\boldsymbol{r}}^{H}
$$

\star If we truncate to $k<r$ terms, then

$$
S_{k}=\sigma_{1} \boldsymbol{u}_{\mathbf{1}} \boldsymbol{v}_{\mathbf{1}}^{H}+\sigma_{2} \boldsymbol{u}_{\mathbf{2}} \boldsymbol{v}_{\mathbf{2}}^{H}+\cdots+\sigma_{k} \boldsymbol{u}_{\boldsymbol{k}} \boldsymbol{v}_{\boldsymbol{k}}^{H}
$$

S_{k} is an approximation of the matrix S. How good is it?
\triangleright Norms
$\star 2$-induced norm: $\|S\|_{2}=\max _{\|x\|_{2}=1}\|S x\|_{2}=\sigma_{1}$.

* Frobenius norm: $\|S\|_{F}=\sqrt{\sum_{i=1}^{N_{x}} \sum_{j=1}^{N_{t}} s_{i j}^{2}}=\sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}}$.

Low rank approximation of S

$\forall S \in \mathbb{R}^{N_{x} \times N_{t}}$, determine $S_{k} \in \mathbb{R}^{N_{x} \times N_{t}}$ such that $\operatorname{rank}\left(S_{k}\right)=k<\operatorname{rank}(S)$.

Criterion:

minimization of the norm (2-norm or Frobenius norm) of the error $E=S-S_{k}$.

Theorem: Eckart-Young

$$
\min _{\operatorname{rank}(X) \leq k}\|S-X\|_{2}=\left\|S-S_{k}\right\|_{2}=\sigma_{k+1}(S)
$$

$$
\min _{\operatorname{rank}(X) \leq k}\|S-X\|_{F}=\left\|S-S_{k}\right\|_{F}=\sqrt{\sum_{i=k+1}^{r} \sigma_{i}^{2}(S)}
$$

with $\quad S_{k}=U\left(\begin{array}{cc}\Sigma_{k} & 0 \\ 0 & 0\end{array}\right) V^{H}=\sigma_{1} \boldsymbol{u}_{\mathbf{1}} \boldsymbol{v}_{\mathbf{1}}^{H}+\sigma_{2} \boldsymbol{u}_{\mathbf{2}} \boldsymbol{v}_{\mathbf{2}}^{H}+\cdots+\sigma_{k} \boldsymbol{u}_{\boldsymbol{k}} \boldsymbol{v}_{\boldsymbol{k}}^{H}$
Remark: This theorem establishes a relationship between the rank k of the approximation, and the singular values of S.

Image compression by truncated SVD

e Consider an image with $n_{i} \times n_{j}$ pixels. This image can be stored as a matrix $S \in \mathbb{R}^{n_{i} \times n_{j}}$ where $s_{i j}$ contains the grey level of pixel (i, j).
e Memory: 4 bytes per pixel $\Longrightarrow 4 \times n_{i} \times n_{j}$ bytes
e Eckart-Young th.: an approximation of S with k singular modes writes

$$
S_{k}=\sigma_{1} \boldsymbol{u}_{\mathbf{1}} \boldsymbol{v}_{\mathbf{1}}^{H}+\sigma_{2} \boldsymbol{u}_{\mathbf{2}} \boldsymbol{v}_{\mathbf{2}}^{H}+\cdots+\sigma_{k} \boldsymbol{u}_{\boldsymbol{k}} \boldsymbol{v}_{\boldsymbol{k}}^{H}, \quad \text { with } \quad\left\|S-S_{k}\right\|_{2}=\sigma_{k+1}(S)
$$

e Size reduction
e Store $\sigma_{1}, \cdots, \sigma_{k}, \boldsymbol{u}_{\mathbf{1}}, \cdots, \boldsymbol{u}_{\boldsymbol{k}}$ and $\boldsymbol{v}_{\mathbf{1}}^{H}, \cdots, \boldsymbol{v}_{\boldsymbol{k}}^{H}$ in place of S
e Memory $4 \times k \times\left(1+n_{i}+n_{j}\right)$ bytes
e Indicators of savings
\star Compression factor: $\quad C_{k}=\frac{n_{i} n_{j}}{k\left(1+n_{i}+n_{j}\right)}$
夫 Data storage: $\quad D_{k}=\frac{1}{C_{k}}$
\star Retained "energy": $E_{\mathrm{SvD}}(k)=\frac{\sum_{i=1}^{k} \sigma_{i}^{2}(S)}{\sum_{i=1}^{r} \sigma_{i}^{2}(S)}$

(a) Clown: matrix 200×330, rank: (b) Trees: matrix 128×128, rank: 200, size: 258 kb

128, size: 64 kb

Image compression by truncated SVD

○: "Trees" image ; +: "Clown" image
Faster decrease of σ_{i} for the "Trees" than for the "Clown".

Image compression by truncated SVD

For an approximation of level k : $E_{\mathrm{SVD}}(k)=\frac{\sum_{i=1}^{k} \sigma_{i}^{2}(S)}{\sum_{i=1}^{r} \sigma_{i}^{2}(S)}$

○: "Trees" image ; +: "Clown" image
"Trees" image easier to represent with a low-rank approximation than the "Clown" image.

(c) Original image

(e) $k=12 ; D_{k}=9.6 \%$

(d) $k=6 ; D_{k}=4.8 \%$

(f) $k=20 ; D_{k}=16 \%$

(g) Original image

(h) $k=6 ; D_{k}=9.4 \%$

Application to the 1D Burgers equation

Solve equation

$$
\left.\frac{\partial u}{\partial t}=\frac{1}{\operatorname{Re}} \frac{\partial^{2} u}{\partial x^{2}}-u \frac{\partial u}{\partial x} \quad \forall x \in\right] 0 ; 1[\text { and } \quad t \in] 0 ; T[
$$

with

$$
\begin{array}{ll}
u(x, 0)=\sin (\pi x) & \forall x \in] 0 ; 1[\quad(I C) \\
u(0, t)=u(1, t)=0 & \forall t \in] 0 ; T] \quad(B C)
\end{array}
$$

Analytical solution

$$
u_{a}(x, t)=\frac{2 \pi}{\operatorname{Re}} \frac{\sum_{n=1}^{\infty} a_{n} n \sin (n \pi x) \exp \left(-n^{2} \pi^{2} t / \mathrm{Re}\right)}{a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x) \exp \left(-n^{2} \pi^{2} t / \mathrm{Re}\right)}
$$

where a_{n} are Fourier coefficients.

Q Numerical parameters for the POD analysis
e $\operatorname{Re}=10$,
e $T=0.1$ and $\Delta t=10^{-4}$ i.e. $N_{t}=1000$ snapshots in the data base,
e $x \in[0 ; 1]$ and $\Delta x=\frac{1-0}{N_{x}-1}$ with $N_{x}=100$.

Matlab

Reduced-Order Modelling

a Full-order model (FOM)

$$
\mathcal{S}:\left\{\begin{array}{lll}
\dot{\mathcal{X}}(t)=\boldsymbol{f}(\boldsymbol{\mathcal { X }}(t), \boldsymbol{c}(t)), & \text { where } \quad \mathcal{X} \in \mathbb{R}^{n_{\mathcal{X}}} \\
\mathcal{Y}(t)=\boldsymbol{g}(\boldsymbol{\mathcal { X }}(t), \boldsymbol{c}(t)), & \text { where } \quad \mathcal{Y} \in \mathbb{R}^{n_{\mathcal{Y}}}
\end{array}\right.
$$

a Reduced-order model (ROM)

$$
\widehat{\mathcal{S}}:\left\{\begin{array}{l}
\dot{\hat{\mathcal{X}}}(t)=\widehat{\boldsymbol{f}}(\hat{\mathcal{X}}(t), \boldsymbol{c}(t)), \text { where } \hat{\mathcal{X}} \in \mathbb{R}^{n_{k}} \text { with } n_{k}<n_{\mathcal{X}} \\
\hat{\boldsymbol{\mathcal { V }}}(t)=\widehat{\boldsymbol{g}}(\hat{\mathcal{X}}(t), \boldsymbol{c}(t)), \text { where } \hat{\mathcal{Y}} \in \mathbb{R}^{n_{\mathcal{y}}} .
\end{array}\right.
$$

- Requirements for deriving $\widehat{\mathcal{S}}$

1. Iow approximation error $\forall \boldsymbol{c}$ i.e.

$$
\|\mathcal{Y}-\widehat{\mathcal{Y}}\|<\epsilon \times\|\boldsymbol{c}\| \quad \text { with } \epsilon \text { a tolerance }
$$

\Longrightarrow Need computable error bound estimates!!
2. stability and passivity (no generation of energy) preserved ;
3. procedure of model reduction numerically stable and efficient;
4. if possible, automatic generation of models.

Reduced-Order Modelling

e We introduce W_{1} and W_{2}, two biorthogonal matrices of size $\mathbb{R}^{n_{\mathcal{X}} \times n_{k}}$, such that $W_{2}^{H} Q W_{1}=I_{n_{k}}$ where $Q \in \mathbb{R}^{n_{\mathcal{X}} \times n_{\mathcal{X}}}$ is the weight matrix.
e We consider: i) the projection $\mathcal{X}=W_{1} \widehat{\mathcal{X}}$ and ii) $\widehat{\mathcal{Y}} \simeq \mathcal{Y}$.
e Algorithm:

1. $\mathcal{X} \simeq W_{1} \widehat{\mathcal{X}}$

$$
\begin{aligned}
\mathcal{R} & =W_{1} \dot{\widehat{\mathcal{X}}}(t)-\boldsymbol{f}\left(W_{1} \widehat{\mathcal{X}}(t), \boldsymbol{c}(t)\right), \\
\widehat{\mathcal{Y}}(t) & =\boldsymbol{g}\left(W_{1} \widehat{\mathcal{X}}(t), \boldsymbol{c}(t)\right)
\end{aligned}
$$

2. Petrov-Galerkin projection: $W_{2}^{H} Q \mathcal{R}=\mathbf{0}_{n_{k}}$ i.e.

$$
\widehat{\mathcal{S}}:\left\{\begin{array}{l}
\dot{\boldsymbol{\mathcal { X }}}(t)=\widehat{\boldsymbol{f}}(\widehat{\mathcal{X}}(t), \boldsymbol{c}(t))=W_{2}^{H} Q \boldsymbol{f}\left(W_{1} \widehat{\boldsymbol{\mathcal { X }}}(t), \boldsymbol{c}(t)\right) \\
\widehat{\mathcal{Y}}(t)=\widehat{\boldsymbol{g}}(\widehat{\boldsymbol{\mathcal { X }}}(t), \boldsymbol{c}(t))=\boldsymbol{g}(V \widehat{\boldsymbol{\mathcal { X }}}(t), \boldsymbol{c}(t))
\end{array}\right.
$$

For $W_{1} \neq W_{2}$: oblique projection.
For $W_{1} \equiv W_{2}$: Galerkin projection (orthogonal projection).

Reduced-Order Modelling

\triangleright For linear systems, various projection methods exist:

1. Krylov methods (Gugercin et Antoulas, 2006)
proj. on the Krylov subspace of the controllability gramian: identification of the moments of the transfer function.
2. Balanced realizations
proj. on dominant modes of the controllability and observability gramians
e Balanced Truncation (Moore, 1981) ; Balanced POD (Rowley, 2005)
3. Instability methods
proj. on global modes and adjoint global modes (Sipp, 2008)
\triangleright For non-linear systems: a posteriori methods
4. Proper Orthogonal Decomposition or POD (Lumley 1967 ; Sirovich 1987)
proj. on the subspace determined with snapshots of the system.
5. Dynamic Mode Decomposition (Schmid, 2010)

Solve equation

$$
\left.\frac{\partial u}{\partial t}=\frac{1}{\operatorname{Re}} \frac{\partial^{2} u}{\partial x^{2}}-u \frac{\partial u}{\partial x} \quad \forall x \in\right] 0 ; 1[\text { and } \quad t \in] 0 ; T[
$$

with

$$
\begin{array}{ll}
u(x, 0)=\sin (\pi x) & \forall x \in] 0 ; 1[\quad(I C) \\
u(0, t)=u(1, t)=0 & \forall t \in] 0 ; T] \quad(B C)
\end{array}
$$

Analytical solution

$$
u_{a}(x, t)=\frac{2 \pi}{\operatorname{Re}} \frac{\sum_{n=1}^{\infty} a_{n} n \sin (n \pi x) \exp \left(-n^{2} \pi^{2} t / \mathrm{Re}\right)}{a_{0}+\sum_{n=1}^{\infty} a_{n} \cos (n \pi x) \exp \left(-n^{2} \pi^{2} t / \mathrm{Re}\right)}
$$

Matlab

Proper Orthogonal Decomposition (POD)

\triangleright Introduced in turbulence by Lumley (1967).
\triangleright Method of information compression
\triangleright Look for a realization $\boldsymbol{\Phi}(\boldsymbol{X})$ which is closer, in an average sense, to realizations $\boldsymbol{u}(\boldsymbol{X})$ with $\boldsymbol{X}=(\boldsymbol{x}, t) \in \mathcal{D}=\Omega \times \mathbb{R}^{+}$
$\triangleright \boldsymbol{\Phi}(\boldsymbol{X})$ solution of the problem:

$$
\left.\left.\max _{\boldsymbol{\Phi}}\langle |(\boldsymbol{u}, \boldsymbol{\Phi})\right|^{2}\right\rangle \quad \text { s.t. } \quad\|\boldsymbol{\Phi}\|^{2}=1
$$

This is a constrained optimization problem!
\triangleright Optimal convergence in a given norm of $\boldsymbol{\Phi}(\boldsymbol{X})$
\Rightarrow Dynamical order reduction of the ensemble data is guaranteed (Eckart-Young theorem).

No results for the POD-based ROM!

POD approaches depend on:
e the inner product (\cdot, \cdot)
e L^{2}
e H^{1}
a ...
e the variable X used
a spatial $\boldsymbol{x}=(x, y, z)$
a temporal t
e control parameters \boldsymbol{c}, for instance Reynolds number ...
a the averaging operation \langle.
e spatial
a temporal
Q the input collection
Not discussed here
\Longrightarrow interest of using sampling methods in the control parameter space:
e Latin Hypercube Sampling
e Centroidal Voronoi Tessellation
Q...

e $\boldsymbol{X}=\boldsymbol{x}=(x, y, z)$
e $\langle\rangle=.\frac{1}{T} \int_{T} \cdot \mathrm{~d} t$
i.e. temporal average (evaluated as ensemble average).

Fredholm equation:

$$
\sum_{j=1}^{n_{c}} \int_{\Omega} R_{i j}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right) \Phi_{j}^{(n)}\left(\boldsymbol{x}^{\prime}\right) \mathrm{d} \boldsymbol{x}^{\prime}=\lambda^{(n)} \Phi_{i}^{(n)}(\boldsymbol{x})
$$

where $R_{i j}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ is the two-point spatial correlation tensor defined as:

$$
R_{i j}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\frac{1}{T} \int_{T} u_{i}(\boldsymbol{x}, t) u_{j}\left(\boldsymbol{x}^{\prime}, t\right) \mathrm{d} t=\sum_{n=1}^{N_{\mathrm{POD}}} \lambda^{(n)} \Phi_{i}^{(n)}(\boldsymbol{x}) \Phi_{j}^{(n) *}\left(\boldsymbol{x}^{\prime}\right)
$$

Q Eigenvectors are space dependent.
e Size: $N_{\text {POD }}=N_{x} \times n_{c}$

Time

Average over space
e $\boldsymbol{X}=(t)$
e $\langle\rangle=.\int_{\Omega} \cdot \mathrm{d} \boldsymbol{x}$
i.e. spatial average.

Fredholm equation:

$$
\int_{T} C\left(t, t^{\prime}\right) a^{(n)}\left(t^{\prime}\right) \mathrm{d} t^{\prime}=\lambda^{(n)} a^{(n)}(t)
$$

where $C\left(t, t^{\prime}\right)$ is the two-point temporal correlation tensor defined as:

$$
C\left(t, t^{\prime}\right)=\frac{1}{T} \int_{\Omega} u_{i}(\boldsymbol{x}, t) u_{i}\left(\boldsymbol{x}, t^{\prime}\right) \mathrm{d} \boldsymbol{x}=\frac{1}{T} \sum_{n=1}^{N_{\mathrm{POD}}} a^{(n)}(t) a^{(n) *}\left(t^{\prime}\right)
$$

- Eigenvectors are time dependent.
e No cross correlations.
e Linear independence of the snapshots assumed.
e Size: $N_{\mathrm{POD}}=N_{t}$.

Recall: For the classical POD, $N_{\text {POD }}=N_{x} \times n_{c}$
\Longrightarrow Snapshot POD reduces drastically computational effort when $N_{x} \gg N_{t}$.

What is the typical situation?
e For experimental data:
long time history with moderate spatial resolution
\Longrightarrow Two-point spatial correlation tensor $R_{i j}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ well converged
Exception: data sets obtained from Particle Image Velocimetry
e For numerical simulation data:
much higher spatial resolution but a moderate time history
\Longrightarrow Two-point temporal correlation tensor $C\left(t, t^{\prime}\right)$ well converged
e Consequences:
e Classical POD generally used with experimental data,
e Snapshot POD generally used with numerical data.

1. Each space-time realization $u_{i}(\boldsymbol{x}, t)$ can be expanded into orthogonal eigenfunctions $\Phi_{i}^{(n)}(\boldsymbol{x})$ with uncorrelated coefficients $a^{(n)}(t)$:

$$
u_{i}(\boldsymbol{x}, t)=\sum_{n=1}^{N_{\text {POD }}} a^{(n)}(t) \Phi_{i}^{(n)}(\boldsymbol{x})
$$

2. Spatial modes $\Phi^{(n)}(\boldsymbol{x})$ are orthonormal:

$$
\left(\boldsymbol{\Phi}^{(n)}, \boldsymbol{\Phi}^{(\boldsymbol{m})}\right)_{\Omega}=\int_{\Omega} \boldsymbol{\Phi}^{(n)}(\boldsymbol{x}) \cdot \boldsymbol{\Phi}^{(\boldsymbol{m})}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\delta_{n m}
$$

3. Temporal modes $a^{(n)}(t)$ are orthogonal:

$$
\frac{1}{T} \int_{T} a^{(n)}(t) a^{(m) *}(t) \mathrm{d} t=\lambda^{(n)} \delta_{n m}
$$

e Spatial basis functions $\Phi_{i}^{(n)}(\boldsymbol{x})$ can be estimated as:

$$
\Phi_{i}^{(n)}(\boldsymbol{x})=\frac{1}{T \lambda^{(n)}} \int_{T} u_{i}(\boldsymbol{x}, t) a^{(n) *}(t) \mathrm{d} t
$$

i.e. as a linear combination of instantaneous velocity fields.
$\Longrightarrow \Phi_{i}^{(n)}(\boldsymbol{x})$ possess all the properties of $u_{i}(\boldsymbol{x}, t)$ that can be written as linear and homogeneous equations.

Q Ex: for an incompressible flow

$$
\boldsymbol{\nabla} \cdot \boldsymbol{u}=0 \Longrightarrow \boldsymbol{\nabla} \cdot \boldsymbol{\Phi}^{(\boldsymbol{n})}=0 \quad \forall n=1, \cdots, N_{\mathrm{POD}}
$$

e Ex: boundary conditions
If they are homogeneous, then they are satisfied by each of the eigenfunctions individually, else use of specific methods.
\triangleright Navier-Stokes equations written symbolically as: $\quad \boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x}, t)$ with $\boldsymbol{x} \in \Omega$ and $t \geq 0$

$$
\begin{aligned}
& \frac{\partial \boldsymbol{u}}{\partial t}=\boldsymbol{f}(\boldsymbol{u}, P) \\
& \boldsymbol{u}(\boldsymbol{x}, t=0)=\boldsymbol{u}_{0}(\boldsymbol{x}) \quad(I . C .) \\
& \boldsymbol{u}(\boldsymbol{x}, t)=\gamma(t) \boldsymbol{b}(\boldsymbol{x}) \quad \text { for } \boldsymbol{x} \in \Gamma_{c}, \quad(B . C .) \\
& \boldsymbol{u}(\boldsymbol{x}, t)=\boldsymbol{h}(\boldsymbol{x}) \quad \text { for } \boldsymbol{x} \in \Gamma \backslash \Gamma_{c} \quad(\text { B.C. }) .
\end{aligned}
$$

B.C. independent of time, i.e. $\boldsymbol{u}(\boldsymbol{x}, t)=\boldsymbol{u}_{\mathrm{BC}}(\boldsymbol{x})$ on Γ
e $\mathcal{U}=\left\{\boldsymbol{u}\left(\boldsymbol{x}, t_{1}\right), \cdots, \boldsymbol{u}\left(\boldsymbol{x}, t_{N_{t}}\right)\right\}$
e $\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x})$: ensemble average of \mathcal{U} (time average)

$$
\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x})=\frac{1}{N_{t}} \sum_{k=1}^{N_{t}} \boldsymbol{u}\left(\boldsymbol{x}, t_{k}\right)
$$

e $\mathcal{U}^{\prime}=\left\{\boldsymbol{u}\left(\boldsymbol{x}, t_{1}\right)-\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x}), \cdots, \boldsymbol{u}\left(\boldsymbol{x}, t_{N_{t}}\right)-\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x})\right\}$
e $\boldsymbol{u}(\boldsymbol{x}, t)-\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x})$ is solenoidal
e $\boldsymbol{u}_{\text {POD }}(\boldsymbol{x}, t)=\boldsymbol{u}(\boldsymbol{x}, t)-\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x})$ verify homogeneous B.C. i.e.

$$
\left.\boldsymbol{\Phi}_{i}(\boldsymbol{x})\right|_{\boldsymbol{x} \in \Gamma}=\mathbf{0}
$$

e $\boldsymbol{u}(\boldsymbol{x}, t)=\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x})+\sum_{i=1}^{N_{\text {POD }}} a_{i}(t) \boldsymbol{\Phi}_{i}(\boldsymbol{x})$.
B.C. dependent of time, i.e. $\boldsymbol{u}(\boldsymbol{x}, t)=\boldsymbol{u}_{\mathrm{BC}}(\boldsymbol{x}, t)$ on Γ
e $\mathcal{U}=\left\{\boldsymbol{u}\left(\boldsymbol{x}, t_{1}\right), \cdots, \boldsymbol{u}\left(\boldsymbol{x}, t_{N_{t}}\right)\right\}$
e $\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x})$: ensemble average of \mathcal{U} (time average)
e $\mathcal{U}^{\prime}=$
$\left\{\boldsymbol{u}\left(\boldsymbol{x}, t_{1}\right)-\gamma\left(t_{1}\right) \boldsymbol{u}_{\boldsymbol{c}}(\boldsymbol{x})-\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x}), \cdots, \boldsymbol{u}\left(\boldsymbol{x}, t_{N_{t}}\right)-\gamma\left(t_{N_{t}}\right) \boldsymbol{u}_{\boldsymbol{c}}(\boldsymbol{x})-\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x})\right\}$
e $\boldsymbol{u}(\boldsymbol{x}, t)=\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x})+\gamma(t) \boldsymbol{u}_{\boldsymbol{c}}(\boldsymbol{x})+\sum_{i=1}^{N_{\mathrm{POD}}} a_{i}(t) \boldsymbol{\Phi}_{i}(\boldsymbol{x})$ where

$$
\begin{array}{ll}
\boldsymbol{u}_{\boldsymbol{c}}(\boldsymbol{x})=\boldsymbol{b}(\boldsymbol{x}) & \text { on } \Gamma_{c} \text { and } \\
\boldsymbol{u}_{\boldsymbol{c}}(\boldsymbol{x})=\mathbf{0} & \text { on } \Gamma \backslash \Gamma_{c} .
\end{array}
$$

e $\boldsymbol{u}_{\mathrm{POD}}(\boldsymbol{x}, t)=\boldsymbol{u}(\boldsymbol{x}, t)-\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x})-\gamma(t) \boldsymbol{u}_{\boldsymbol{c}}(\boldsymbol{x})$ verify homogeneous B.C. i.e.

$$
\left.\boldsymbol{\Phi}_{i}(\boldsymbol{x})\right|_{\boldsymbol{x} \in \Gamma}=\mathbf{0} .
$$

Q Galerkin Projection of the Navier-Stokes equations onto the POD basis:

$$
\left(\mathbf{\Phi}_{i}, \frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u}\right)_{\Omega}=\left(\mathbf{\Phi}_{i},-\nabla p+\frac{1}{\operatorname{Re}} \Delta \boldsymbol{u}\right)_{\Omega} .
$$

Q Integration by parts (Green formula):

$$
\begin{aligned}
\left(\boldsymbol{\Phi}_{i}, \frac{\partial \boldsymbol{u}}{\partial t}+(\boldsymbol{u} \cdot \boldsymbol{\nabla}) \boldsymbol{u}\right)_{\Omega}= & \left(p, \boldsymbol{\nabla} \cdot \boldsymbol{\Phi}_{i}\right)_{\Omega}-\frac{1}{\operatorname{Re}}\left(\left(\boldsymbol{\nabla} \otimes \mathbf{\Phi}_{i}\right)^{T}, \boldsymbol{\nabla} \otimes \boldsymbol{u}\right)_{\Omega} \\
& -\left[p \boldsymbol{\Phi}_{i}\right]_{\Gamma}+\frac{1}{\operatorname{Re}}\left[(\boldsymbol{\nabla} \otimes \boldsymbol{u}) \boldsymbol{\Phi}_{i}\right]_{\Gamma}
\end{aligned}
$$

with

$$
\begin{gathered}
{[\boldsymbol{a}]_{\Gamma}=\int_{\Gamma} \boldsymbol{a} \cdot \boldsymbol{n} \mathrm{d} \boldsymbol{x} \quad \text { and }} \\
(\overline{\bar{A}}, \overline{\bar{B}})_{\Omega}=\int_{\Omega} \overline{\bar{A}}: \overline{\bar{B}} d \Omega=\sum_{i, j} \int_{\Omega} A_{i j} B_{j i} \mathrm{~d} \boldsymbol{x}
\end{gathered}
$$

e We decompose the velocity fields on $N_{\text {POD }}$ modes:

$$
\boldsymbol{u}(\boldsymbol{x}, t)=\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x})+\gamma(t) \boldsymbol{u}_{\boldsymbol{c}}(\boldsymbol{x})+\sum_{k=1}^{N_{\mathrm{POD}}} a_{k}(t) \boldsymbol{\Phi}_{k}(\boldsymbol{x})
$$

e Dynamical system with $N_{\text {gal }}\left(\ll N_{\text {POD }}\right)$ modes kept:

$$
\begin{aligned}
& \frac{d a_{i}(t)}{d t}=\mathcal{A}_{i}+\sum_{j=1}^{N_{\text {gal }}} \mathcal{B}_{i j} a_{j}(t)+\sum_{j=1}^{N_{\text {gal }}} \sum_{k=1}^{N_{\text {gal }}} \mathcal{C}_{i j k} a_{j}(t) a_{k}(t) \\
& +\mathcal{D}_{i} \frac{d \gamma}{d t}+\left(\mathcal{E}_{i}+\sum_{j=1}^{N_{\text {gal }}} \mathcal{F}_{i j} a_{j}(t)\right) \gamma+\mathcal{G}_{i} \gamma^{2} \\
& a_{i}(0)=\left(\boldsymbol{u}(\boldsymbol{x}, 0)-\boldsymbol{u}_{\boldsymbol{m}}(\boldsymbol{x})-\gamma(0) \boldsymbol{u}_{\boldsymbol{c}}(\boldsymbol{x}), \boldsymbol{\Phi}_{i}(\boldsymbol{x})\right)_{\Omega} . \\
& \mathcal{A}_{i}, \mathcal{B}_{i j}, \mathcal{C}_{i j k}, \mathcal{D}_{i}, \mathcal{E}_{i}, \mathcal{F}_{i j} \text { et } \mathcal{G}_{i} \text { depend only on } \boldsymbol{\Phi}, \boldsymbol{u}_{\boldsymbol{m}}, \boldsymbol{u}_{\boldsymbol{c}} \text { and } \mathrm{Re} \text {. }
\end{aligned}
$$

- Dynamics predicted by the POD ROM may be not sufficiently accurate

$$
\begin{gathered}
\mathcal{A}_{i}=-\left(\boldsymbol{\Phi}^{(i)},\left(\boldsymbol{u}_{m} \cdot \boldsymbol{\nabla}\right) \boldsymbol{u}_{m}\right)_{\Omega}-\frac{1}{\operatorname{Re}}\left(\nabla \boldsymbol{\Phi}^{(i)}, \boldsymbol{\nabla} \boldsymbol{u}_{m}\right)_{\Omega}+\frac{1}{\operatorname{Re}}\left[\Phi^{(i)} \nabla \boldsymbol{u}_{m}\right]_{\Gamma} \\
\mathcal{B}_{i j}=-\left(\boldsymbol{\Phi}^{(i)},\left(\boldsymbol{u}_{m} \cdot \boldsymbol{\nabla}\right) \Phi^{(j)}\right)_{\Omega}-\left(\Phi^{(i)},\left(\Phi^{(j)} \cdot \boldsymbol{\nabla}\right) \boldsymbol{u}_{m}\right)_{\Omega} \\
-\frac{1}{\operatorname{Re}}\left(\nabla \boldsymbol{\Phi}^{(i)}, \boldsymbol{\nabla} \boldsymbol{\Phi}^{(j)}\right)_{\Omega}+\frac{1}{\operatorname{Re}}\left[\boldsymbol{\Phi}^{(i)} \nabla \boldsymbol{\Phi}^{(j)}\right]_{\Gamma} \\
\mathcal{C}_{i j k}=-\left(\boldsymbol{\Phi}^{(i)},\left(\Phi^{(j)} \cdot \boldsymbol{\nabla}\right) \boldsymbol{\Phi}^{(k)}\right)_{\Omega}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{D}_{i}=-\left(\Phi^{(i)}, u_{c}\right)_{\Omega} \\
\mathcal{E}_{i}=-\left(\Phi^{(i)},\left(\boldsymbol{u}_{\boldsymbol{m}} \cdot \nabla\right) \boldsymbol{u}_{\boldsymbol{c}}\right)_{\Omega}-\left(\Phi^{(i)},\left(\boldsymbol{u}_{\boldsymbol{c}} \cdot \nabla\right) \boldsymbol{u}_{\boldsymbol{m}}\right)_{\Omega} \\
-\frac{1}{\operatorname{Re}}\left(\boldsymbol{\nabla} \boldsymbol{\Phi}^{(i)}, \nabla \boldsymbol{u}_{\boldsymbol{c}}\right)_{\Omega}+\frac{1}{\operatorname{Re}}\left[\boldsymbol{\Phi}^{(i)} \nabla \boldsymbol{u}_{\boldsymbol{c}}\right]_{\Gamma} \\
\mathcal{F}_{i j}=-\left(\Phi^{(i)},\left(\Phi^{(j)} \cdot \boldsymbol{\nabla}\right) \boldsymbol{u}_{\boldsymbol{c}}\right)_{\Omega}-\left(\Phi^{(i)},\left(\boldsymbol{u}_{\boldsymbol{c}} \cdot \nabla\right) \Phi^{(j)}\right)_{\Omega} \\
\mathcal{G}_{i}=-\left(\Phi^{(i)},\left(\boldsymbol{u}_{\boldsymbol{c}} \cdot \nabla\right) \boldsymbol{u}_{\boldsymbol{c}}\right)_{\Omega}
\end{gathered}
$$

Cylinder wake flow

e Two dimensional flow around a circular cylinder at $\mathrm{Re}=200$
e Viscous, incompressible and Newtonian fluid
e Cylinder oscillation with a tangential velocity $\gamma(t)$
$\gamma(t)=\frac{V_{T}}{u_{\infty}}=A \sin \left(2 \pi S t_{f} t\right)$

e 361 snapshots taken uniformly over $T=18$
e Energetic Content: $E_{k}=\sum_{i=1}^{k} \lambda_{i} / \sum_{i=1}^{N_{\text {POD }}} \lambda_{i}$
Objective: Determine POD truncation with 99% of relative energy

Fig. : Iso-values of the first 6 POD modes

$$
\gamma(t)=A \sin \left(2 \pi S t_{f} t\right) \text { with } A=2 \text { and } S t_{f}=0,5
$$

POD of the controlled wake flow $(\gamma \neq 0) \quad$ Integration and calibration

Reconstruction errors of POD ROM \Rightarrow time amplification of the modes

\triangleright Reasons:
e Extraction of large scale structures carrying energy

- Main of the dissipation contained in the small structures
\triangleright Solutions:
- Identification method, Data Assimilation for instance
Fig. : Time evolution of the first 6 POD modes $(A=2$ and

$$
\left.S t_{f}=0,5\right)
$$

___ projection (Navier-Stokes) : $a^{P}(t)$
— prediction before identification (POD ROM)

