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Outline

I Friedrichs’ systems (steady linear PDEs)
I design of dG methods
I convergence analysis for smooth solutions
I unified view on linear stabilization
I cf. [AE & Guermond, 06-..], [Di Pietro & AE, 12]

I dG in time (time-dependent linear PDEs)
I convergence analysis for smooth solutions
I cf. [AE & Schieweck, 15]

I Weighting linear stabilization (conservation laws)
I linear stabilization for rough solutions/nonlinear PDEs
I cf. [AE & Guermond, 13]
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Friedrichs’ systems

I Open, bounded, connected, strongly Lipschitz subset Ω ⊂ Rd

I Km-valued functions, m ≥ 1 and K = R or C

I (d + 1) functions K, {Ak}1≤k≤d : Ω→ Km×m

I K, {Ak}1≤k≤d and X :=
∑d

k=1 ∂kA
k are bounded

I Ak is symmetric (Hermitian)
I K+KH −X is uniformly positive (≥ 2µ0I)

I Given f : Ω→ Km, find u : Ω→ Km s.t. Au = f in Ω with

Au = Ku +
d∑

k=1

Ak∂ku

I cf. [Friedrichs, 58]
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Examples

I Advection-reaction m = 1, K = R
I µu + β·∇u = f
I µ ∈ L∞, β ∈ L∞, ∇·β ∈ L∞, µ− 1

2
∇·β ≥ µ0 > 0

I Darcy (grad-div) m = d + 1, K = R
I u = (σ, p), d−1σ +∇p = f1, µp +∇·σ = f2
I µ ∈ L∞ and uniformly positive, d bounded, symmetric, uniformly

positive definite

I Maxwell (eddy currents, curl-curl) m = 6, K = C
I u = (E,H), σE−∇×H = f1, iωµH +∇×E = 0
I σ, µ ∈ L∞, uniformly positive (for simplicity)
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Boundary conditions

I Symmetric boundary field N : ∂Ω→ Km (n unit outward normal)

s.t. N =
∑d

k=1 nkAk

I Assume there is an additional boundary field M : ∂Ω→ Km s.t.
I (real part of) M is non-negative
I ker(M−N ) + ker(M+N ) = Km

I The boundary condition is (M−N )u = 0 on ∂Ω

I Examples
I advection-reaction Nu = (β·n)u, Mu = |β·n|u
I Darcy N (σ, p) = (pn,σ·n), M(σ, p) = (±pn,∓σ·n)
I Maxwell N (E,H) = (H×n,E×n), M(E,H) = (±H×n,∓E×n)
I note that M is skew-symmetric for Darcy and Maxwell
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Mathematical theory

I L2-based theory: pivot space L = L2(Ω;Km)

I Graph space V = {v ∈ L | Av ∈ L}
I Friedrichs’ operator Av = Kv +

∑d
k=1A

k∂kv
I formal adjoint Ãv = (KH −X )v −

∑d
k=1A

k∂kv
I A, Ã ∈ L(V ; L)

I Boundary operators N,M ∈ L(V ;V ′)
I 〈Nv ,w〉V ′,V = (Av ,w)L − (v , Ãw)L
I 〈Mv , v〉V ′,V ≥ 0 and ker(M − N) + ker(M + N) = V
I L-dissipativity on ker(M − N): (Av , v)L ≥ µ0‖v‖2

L + 1
2
〈Mv , v〉V ′,V

I Given f ∈ L, there is a unique u ∈ V s.t.

Au = f (M − N)u = 0

(and there is a unique ũ ∈ V s.t. Ãũ = f and (M∗ + N)ũ = 0)
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dG setting
I Admissible mesh sequence {Th}h>0

I matching simplicial meshes: Ciarlet’s shape-regularity
I general meshes (non-matching, polyhedral) : shape- and

contact-regularity, essentially one length scale for mesh faces and
cells [Di Pietro & AE, 12]

I usual FE tools: inverse & discrete trace ineq., polynomial approx.

I Broken polynomial space (of order r ≥ 0)

Pr (Th;R) = {vh ∈ L1(Ω;R) | vh|T ∈ Pr (T ;R) ∀T ∈ Th}

I Jumps and averages at mesh interfaces

F = ∂Tl ∩ ∂Tr

nF points from Tl to Tr

{{v}} = 1
2

(v |Tl
+ v |Tr )

[v ] = v |Tl
− v |Tr Tl

Tr

nF

F
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dG approximation: centered fluxes
I Standard Galerkin setting with Vh = Pr (Th;Km)

Find uh ∈ Vh s.t. acfh (uh,wh) = (f ,wh)L for all wh ∈ Vh

with discrete bilinear form acfh satisfying two key properties
I exact consistency acfh (u,wh) = (f ,wh)L, ∀wh ∈ Vh

I L-dissipativity acfh (vh, vh) ≥ µ0‖vh‖2
L + 1

2
(Mvh, vh)2

L(∂Ω), ∀vh ∈ Vh

I Centered fluxes (interfaces F ∈ F i
h) and boundary penalty (F ∈ Fb

h )

acfh (vh,wh) =
∑
T∈Th

(vh, Ãwh)L(T )+
∑
F∈F i

h

(φiF (vh), [wh])L(F )+
∑

F∈Fb
h

(φbF (vh),wh)L(F )

I φi
F (vh) = NF{{vh}} (for AR, φi(vh) = (β·nF ){{vh}})

I φb
F (vh) = 1

2
(M+ −N )vh, M+ =M = |β·n| for AR, M+ adds

least-squares penalty on BC for Darcy and Maxwell

I For smooth solution u ∈ H r+1(Ω;Km), ‖u − uh‖L . hr
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Linear stabilization (upwinding)

I Upwinding amounts to adding a least-squares penalty on interface
jumps [Brezzi et al., 04]

ah(vh,wh) = acfh (vh,wh) +
∑
F∈F i

h

(SF [vh], [wh])L(F )

with SF ∼ |NF |, so that
I ah is still exactly consistent
I ah enjoys strengthened L-dissipativity

ah(vh, vh) ≥ |||vh|||2 = µ0‖vh‖2
L +

1

2
(Mvh, vh)2

L(∂Ω) +
∑
F∈F i

h

‖S1/2
F [vh]‖2

L(F )

I Incidence on the flux: φiF (vh) = NF{{vh}}+ SF [vh]

I for AR, SF = 1
2
|β·nF | leads to φi

F (vh) = (β·nF )u↑h
I for Darcy, jumps of both σh·nF and ph are penalized
I for Maxwell, jumps of both Hh×nF and Eh×nF are penalized
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Error analysis with upwinding

I Assume smooth solution u ∈ H r+1(Ω;Km)

I Strengthened L-dissipativity leads to |||u − uh||| . hr+1/2 →
quasi-optimal L-norm estimate

I Full stability norm and discrete inf-sup stability

|||vh|||] . sup
wh∈Vh

ah(vh,wh)

|||wh|||]
∀vh ∈ Vh

|||vh|||2] = |||vh|||2 +
∑
T∈Th

hT‖Avh‖2
L(T )

I We obtain |||u − uh|||] . hr+1/2 → optimal graph-norm estimate

I For mixed elliptic PDEs, it is possible to modify the penalty strategy
so as to eliminate locally the auxiliary variable
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Unified view on linear stabilization

I Many recent H1-conforming stabilized FEM are analyzed with the
same tools and lead to similar error estimates

I Example: Continuous interior penalty

aciph (vh,wh) = (vh, Ãwh)L +
∑
F∈F i

h

(SF [∇vh], [∇wh])L(F ) +
∑

F∈Fb
h

(φbF (vh),wh)L(F )

I penalizes gradient jumps with SF ∼ h2
F

I cf. [Burman & Hansbo, 04; Burman, 05; Burman & AE, 07]

I Other examples
I Subgrid Viscosity penalizes gradient of subscale fluctuation,

cf. [Guermond, 99]
I Local Projection Stabilization penalizes subscale fluctuation of

gradient, cf. [Braack & Burman, 06; Matthies et al., 07]

I Stabilization bilinear form is symmetric (contrast with GaLS/SUPG)
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Time-dependent linear PDEs

I Overview

I Main results

I Some analysis tools

I Error estimates for smooth solutions
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dG in time

I Time semi-discretization of evolution problem by dG method
I piecewise polynomials in time of order k ≥ 0
I time interval I = (0,T ] decomposed as I = ∪N

n=1In
I subintervals In = (tn−1, tn] (open at left, closed at right endpoint)
I discrete times 0 = t0 < t1 < · · · < tN = T , time steps τn = tn − tn−1

I For Banach space B (functions in space), let

Pk(In,B) = {w : In → B : w(t) =
k∑

j=0

W j t j , ∀t ∈ In, W
j ∈ B, ∀j}

X k
τ (B) = {wτ : Ī → B : wτ |In ∈ Pk(In,B) ∀n}

I a function wτ ∈ X k
τ (B) can be discontinuous at discrete times tn

and is continuous from the left at all tn
I jump of wτ at tn is [wτ ]n = wτ (t+

n )− wτ (tn)
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Evolution problems with coercivity

I Parabolic problems: dG in time (order k), dG in space (order r)
[Thomée, 07]

I `∞(L2) (at discrete time nodes) and L2(L2) error estimates of order
(τ 2k+1 + hr+1): super-convergence in time

I Nonlinear advection-diffusion, dG in space
I `∞(L2) and L2(L2) estimates of order (τ k+1 + hr ) on time-varying

meshes (under condition h2 . τ) [Feistauer et al., 11-..]

I Linear advection-diffusion, H1-conforming FEM with LPS
I `∞(L2) and L2(L2) estimates of order (τ k+1 + hr+1/2 + ε1/2hr ) on

static meshes [Ahmed, Matthies, Tobiska & Xie, 11]
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Evolution problems without coercivity

I Linear first-order operator Av = µv + β·∇v in space
I µ : Ω→ R is a bounded reaction function
I β : Ω→ Rd is a given Lipschitz advection field
I both are time-independent

I Mathematical setting of Friedrichs’ systems (spaces V and L)

I Linear evolution problem
I data f ∈ C 0([0,T ], L) and u0 ∈ V
I find u ∈ C 0([0,T ],V ) ∩ C 1([0,T ], L) s.t.

(∂tu(t), v)L + (Au(t), v)L = (f (t), v)L ∀v ∈ L ∀t ∈ (0,T )

and u(0) = u0

I well-posedness results from Hille–Yosida Theorem
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dG-in-time semi-discretization
I Time semi-discrete solution uτ belongs to X k

τ (V )

I For all n = 1 . . .N, uτ |In ∈ Pk(In,V ) s.t. for all vτ ∈ Pk(In, L),∫
In

(∂tuτ + Auτ , vτ )L dt +
(
[uτ ]n−1, vτ (t+

n−1)
)
L

=

∫
In

(f , vτ )L dt

(k + 1) coupled first-order PDEs in space within each time step

I RHS evaluated using the (k + 1)-point right-sided GR quadrature on
each subinterval In

Qn(g) =
τn
2

k+1∑
µ=1

ŵµg(tn,µ) ≈
∫
In

g(t)dt

I weights ŵµ > 0, tn,k+1 = tn, Qn(g) exact for all g ∈ P2k(In,R)

I Time semi-discrete problem with quadrature becomes∫
In

(∂tuτ + Auτ , vτ )L dt +
(
[uτ ]n−1, vτ (t+

n−1)
)
L

= Qn((f , vτ )L)
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Full space-time discretization

I Discrete space V n
h ⊂ L built from a mesh T n

h which can change from
one time interval to the next

I FEM with linear stabilization (dG, CIP, ...)
I An

h : V n
h → V n

h s.t. (An
hvh,wh)L = anh(vh,wh) (anh depends on T n

h ...)

I Fully discrete problem: uτh|In ∈ Pk(In,V
n
h ) s.t. for all

vτh ∈ Pk(In,V
n
h ) and all n = 1 . . .N,∫

In

(∂tuτh + An
huτh, vτh)L dt +

(
[uτh]n−1, vτh(t+

n−1)
)
L

= Qn((f , vτh)L)
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Example: dG(1) in time

I On each time interval In, we can solve for the two unknowns

U j
hn = uτh(tn,j) ∈ V n

h j = 1, 2

I The coupled (2×2)-block system reads

3
4U

1
hn + τn

2 A
n
hU

1
hn + 1

4U
2
hn = uτh(tn−1) + τn

2 P
n
h f (tn,1)

− 9
4U

1
hn + 5

4U
2
hn + τn

2 A
n
hU

2
hn = −uτh(tn−1) + τn

2 P
n
h f (tn,2)

where Pn
h is the L-orthogonal projector onto V n

h
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Main results

I Improved and new error estimates for smooth solutions
I polynomial order k ≥ 1 in time
I unified analysis for FEM with linear stabilization in space

I Two main analysis tools in time
I post-processed, time-continuous discrete solution Lτuτh
I special time-interoplate Rk+1

τ u of order (k + 1)

I `∞(L2) and L2(L2) estimates for (u − Lτuτh)
I super-convergent bound of order (τ k+2 + hr+1/2) on static meshes
I novel estimate on projection error for time-varying meshes

I Estimates on error derivatives (on static meshes)
I bound on (∂tu −Lτ∂tLτuτh) of order (τ k+1 + hr+1/2) in `∞(L2) and

in L2(L2)
I optimal bound on the discrete graph norm of (u − Lτuτh)
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Comparison with RK methods (1)

I Explicit RK methods in time combined with dG in space (and
suitable limiters) [Cockburn, Shu et al., 89-..]

I Explicit time-marching schemes are conditionally stable
I error bounds require Gronwall’s argument
I error constant blows up exponentially in T

I Analysis of explicit RK2 and RK3 schemes: `∞(L2) estimates
I nonlinear conservation laws and dG in space [Zhang & Shu, 04, 10]
I Friedrichs’ systems, stabilized FEM [Burman, AE & Fernández, 10]
I O(τ 2 + hr+1/2) for RK2 under tightened CFL condition τ = O(h4/3)
I for RK2 with r = 1, usual CFL suffices (τ = O(h))
I O(τ 3 + hr+1/2) for RK3 under usual CFL
I no unified analysis available for arbitrary order in time
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Comparison with RK methods (2)

I Advantages of time-dG schemes are
I unconditional stability
I super-convergent error estimates
I error constants behave as T 1/2

I unified analysis for all polynomial orders k ≥ 1 (implicit Euler
corresponding to k = 0 being slightly different)

I The prize to pay is increased computational cost
I can be tamed by efficient multigrid solvers
I heat, Stokes and NS equations [Hussain, Schieweck & Turek, 11, 12]

I Implicit RK schemes share various advantages with dG in time
I recent analysis for linear Maxwell equations [Hochbruck & Pažur, 15]
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Analysis tools

I Recall X k
τ (B) = {wτ : Ī → B : wτ

∣∣
In
∈ Pk(In,B), ∀n = 1 . . .N}

I Lifting operator

Lτ : X k
τ (B)→ X k+1

τ (B) ∩ C 0(Ī ,B)

such that Lτwτ (0) = wτ (0) and, for all n = 1 . . .N,

Lτwτ (t) = wτ (t)− [wτ ]n−1ϑn(t) ∀t ∈ In = (tn−1, tn]

where ϑn ∈ Pk+1(In,R), ϑn(tn−1) = 1 and vanishes at the (k + 1) RS
GR points, so that Lτwτ (tn,µ) = wτ (tn,µ) for all µ = 1 . . . (k + 1)

I The fully discrete problem can be rewritten as∫
In

(∂tLτuτh + An
huτh, vτh)L dt = Qn((f , vτh)L)
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DG for first-order PDEs



Friedrichs’ systems dG in time Weighting LS

A higher-order time interpolate (1)

I Let u ∈ C 1(Ī ,B)

I Step 1. Choose a Lagrange/Hermite interpolate I k+2
τ u ∈ C 1(Ī ,B)

such that, for all n = 1 . . .N, I k+2
τ u|In ∈ Pk+2(In,B) and

I k+2
τ u(tn) = u(tn) and ∂t I

k+2
τ u(tn) = ∂tu(tn)

I for k = 1, these conditions fully determine I k+2
τ u in In

I for k ≥ 2, values at additional Lagrange nodes in In are prescribed
I for k = 0, this construction is not possible

I Step 2. Define Rk+1
τ u|In ∈ Pk+1(In,B) by the (k + 2) conditions

∂tR
k+1
τ u(tn,µ) = ∂t I

k+2
τ u(tn,µ) ∀µ = 1 . . . (k + 1)

Rk+1
τ u(t+

n−1) = I k+2
τ u(tn−1)

and set Rk+1
τ u(0) = u(0)
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A higher-order time interpolate (2)

I Continuity: Rk+1
τ u ∈ C 0(Ī ,B) and Rk+1

τ u(tn) = u(tn) for all
n = 0 . . .N

I Approximation of smooth functions

‖u − Rk+1
τ u‖C 0(Īn,B) . τ k+2

n |u|C k+2(Īn,B)

‖∂tu − ∂tRk+1
τ u‖C 0(Īn,B) . τ k+1

n |u|C k+2(Īn,B)

I Stability: ‖Rk+1
τ u‖C 1(Īn,B) . ‖u‖C 1(Īn,B) for all u ∈ C 1(Īn,B)
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`∞(L2) and L2(L2) error estimates

I Static meshes

I Post-processed error ẽ = u − Lτuτh: For all m = 1 . . .N,

‖ẽ(tm)‖2
L . (E0)2 + tm max

1≤n≤m

{
CT
n (u)τ 2(k+2)

n + CS
n (u)h2r+1

}
+ hot

and under the mild assumption τn . τn−1,

‖ẽ‖2
L2(I ,L) . (E0)2 + T max

1≤n≤N

{
CT
n (u)τ 2(k+2)

n + CS
n (u)h2r+1

}
I For the error (u − uτh), same super-convergent bound in `∞(L2),

but only optimal (τ k+1 + hr+1/2) bound in L2(L2)

I Super-convergence does not hold for implicit Euler (k = 0)
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Time-varying meshes

I Time-varying meshes lead to an additional projection error

I Assume that T n
h is created from T n−1

h by local refinements and
coarsenings (using a common finest mesh)

I The local (in time) projection error is defined as

EP
n (u) = sup

vh∈V n
h

(
u(tn−1)− Pn−1

h u(tn−1), vh − Πn−1
h vh

)
L

‖vh − Πn−1
h vh‖L

I Πn−1
h : V n−1

h + V n
h → V n−1

h denotes an L2-stable, linear
quasi-interpolation operator

I Lagrange interpolate for H1-conf. FEM, L2-projection for dG
I local projection error vanishes if there is only mesh coarsening

I The global projection error entering the `∞(L2) and L2(L2) error
estimates is (EP,m(u))2 =

∑m
n=1(EP

n (u))2
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Bound on projection error

I Decompose mesh as T n
h = T n,ref

h ∪ T n,coa
h where T n,coa

h collects mesh
cells in T n

h that can be decomposed into one or more cells of T n−1
h

I Quasi-interpolation operator satisfies
(
vh − Πn−1

h vh
) ∣∣

K
= 0,

∀vh ∈ V n
h , ∀K ∈ T n,coa

h

I On dG spaces, the local projection error is bounded as

EP
n (u) . |Ωref

n |1/2(href
n )1/2

{
(href

n )r+1/2|u(tn−1)|W r+1,∞(Ωref
n )

}
and on H1-conforming spaces, it is bounded as

EP
n (u) . (href

n )1/2
{

(hn)r+1/2|u(tn−1)|H r+1(Ω)

}
I The bound on dG spaces can exploit that, often in practice,
|Ωref

n | . href
n (up to a slightly stronger regularity on u)
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Estimates on error derivatives

I Bounds on error derivatives are rarely explored in the literature

I Assume static meshes

I General methodology
I derive super-convergent (in time) `∞(L2) and L2(L2) error bounds on

time-derivative
I infer optimal (in time) discrete graph-norm error estimate using

discrete inf-sup stability
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Estimate on time derivative

I Key idea: error on time-derivative is defined as

ê = ∂tu − Lτ∂tLτuτh

I For all m = 1 . . .N,

‖ê(tm)‖2
L . (Ê0)2 + tm max

1≤n≤m

{
ĈT
n (u, f )τ 2(k+1)

n + CS
n (u)h2r+1

}
+ hot

and under the mild assumption τn . τn−1,

‖ê‖2
L2(I ,L) . (Ê0)2 + T max

1≤n≤N

{
ĈT
n (u, f )τ 2(k+1)

n + CS
n (u)h2r+1

}
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Discrete graph norm error estimate

I Recall discrete inf-sup stability with stability norm

|||vh|||2] = |||vh|||2 +
∑
T∈Th

hT‖β·∇vh‖2
L,T

I `2(V )-estimate on ẽ = u − Lτuτh: For all m = 1 . . .N,

m∑
n=1

Qn

(
|||ẽ|||2]

)
. (Ê0)2 + tm max

1≤n≤m

{
C̃T
n (u, f )τ 2(k+1)

n + CS
n (u)h2r+1

}

I This bound is optimal in time and exhibits the usual (quasi-)optimal
behavior in space for steady problems
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Weighting linear stabilization

I Motivations

I Weighting LS: theory

I Weighting LS: numerics

I We focus on Continuous Interior Penalty, but conjecture most
conclusions extend to other LS
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Motivations

I LS adds least-squares penalty to standard Galerkin FEM
I acts as a high-order dissipation (in contrast to first-order viscosity)
I LS is very effective for linear first-order PDEs with smooth data

I The situation is not so bright when it comes to solving
I linear problems with non-smooth data
I nonlinear problems with non-unique weak solutions

I LS promotes the Gibbs phenomenon, leading to
I spurious oscillations in the vicinity of shocks
I failure to satisfy a maximum principle
I convergence to non-entropic weak solutions
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Nonlinear viscosity

I LS is often supplemented by some nonlinear viscosity technique
I shock-capturing [Hughes & Mallet, 86; Johnson & Szepessy, 87]
I crosswind diffusion [Codina, 93; Burman & AE, 02; Burman, 07]
I entropy viscosity [Guermond, 08; G. & Pasquetti, 08; G., Pasquetti

& Popov, 11]

I It is not clear that LS and nonlinear viscosity work hand in hand

I Numerical tests indicate they can antagonize each other
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Some illustrations

I Nonlinear conservation law{
∂tu +∇·f(u) = 0 (x , t) ∈ Ω× (0,T )

u|t=0 = u0 x ∈ Ω
(1)

I Ω open polyhedral domain in Rd ; f ∈ C 1(R;Rd)
I no issues with BCs (either periodic or compactly supported u0)
I we assume that (1) admits a unique weak entropic solution
I we consider space semi-discretization

I Galerkin solution uh ∈ C 1([0,T ];Vh) s.t. uh|t=0 = u0,h and∫
Ω

wh∂tuh dΩ +

∫
Ω

wh∇·f(uh)dΩ = 0 ∀wh ∈ Vh ∀t ∈ (0,T )

with H1-conforming FE space Vh (of order r)
... globally polluted by spurious oscillations
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Viscous solution

I Viscous solution∫
Ω

wh∂tuh dΩ +

∫
Ω

wh∇·f(uh)dΩ + nvisc(uh;wh) = 0

with

nvisc(vh;wh) = cmax

∑
T∈Th

hT‖f ′(vh)‖L∞(T )

∫
T

∇vh·∇wh dT

I typically cmax = 1
2r

in 1D and cmax = 1
4r

in 2D
I for linear transport, f(vh) = βvh so that ‖f ′(vh)‖L∞(T ) = ‖β‖L∞(T )

... only first-order accurate
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CIP stabilized solution

I CIP stabilized solution∫
Ω

wh∂tuh dΩ +

∫
Ω

wh∇·f(uh)dΩ + nCIP(uh;wh) = 0

with

nCIP(vh;wh) = cCIP

∑
F∈F i

h

h2
F‖f
′(vh)‖L∞(F )

∫
F

[∇vh]·[∇wh] dF

I typically, cCIP = 0.05

... O(hr+1/2) L2-estimates for linear transport and smooth solutions
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Entropy-viscosity solution
I Entropy-viscosity solution (nonlinear stabilization)∫

Ω

wh∂tuh dΩ +

∫
Ω

wh∇·f(uh)dΩ + nentr(uh; uh,wh) = 0

with

nentr(zh; vh,wh) =
∑
T∈Th

νT (zh)

∫
T

∇vh·∇wh dT

and νT (zh) is designed s.t.

νT (zh) = min(cmaxβT (zh)hT , cevDT (zh)h2
T )

and βT (zh) = ‖f ′(zh)‖L∞(T ), DT (zh) is the local residual for a
chosen entropy (e.g., the quadratic one)

... weak maximum principle (proof in 1D)

‖uh(t)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) + chα
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Illustration of difficulties

I Numerical tests in 1D
I linear transport with non-smooth data
I nonlinear transport with composite wave (non-convex flux)
I CIP stabilization and first-order viscosity

I Time discretization is performed using SSP RK3
I (very) small time steps to avoid time discretization errors

I The mass matrix is never lumped
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Linear transport with non-smooth data I
I ∂tu + ∂xu = 0, u(x , 0) = 1(0.4,0.7), periodic BCs, and T = 1

Galerkin CIP zoom
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I Stabilizing capability of CIP stabilization, but inability to counter
Gibbs phenomenon

I Maximum principle indicators at final time

eMax = max
x∈Ω

uh(x ,T )− 1 eMin = −min
x∈Ω

uh(x ,T )

remain bounded away from zero for CIP
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Linear transport with non-smooth data II

h entropy entropy + CIP
eMax rate eMax rate

2.500E-03 6.715E-03 – 1.597E-02 –
1.250E-03 5.434E-03 0.305 1.600E-02 -0.003
6.250E-04 2.854E-03 0.929 1.633E-02 -0.030
3.125E-04 2.235E-03 0.353 1.626E-02 0.006
1.563E-04 1.785E-03 0.324 1.646E-02 -0.017

I Entropy-viscosity solution satisfies a weak maximum principle

I Adding CIP to entropy-viscosity, the WMP is lost!
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Nonlinear transport with composite wave I

I Riemann problem with non-convex flux (S-shaped)

f (u) =

{
1
4u(1− u) if u < 1

2
1
2u(u − 1) + 3

16 if 1
2 ≤ u

u0(x) =

{
0 x ∈ [0, 0.35]

1 x ∈ (0.35, 1]

I Entropy solution at T = 1 is composed of a shock wave followed
by a rarefaction wave

I Many second-order central schemes with limiters converge to a
non-entropic (weak) solution

I e.g., central upwind with second-order reconstruction and either
superbee or minmod2 limiters [Kurganov, Petrova & Popov, 07]
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Nonlinear transport with composite wave II

I Uniform mesh with 1000 cells, SSP RK3 with CFL = 0.01

Galerkin CIP
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I The CIP-stabilized solution converges to a non-entropic solution
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Nonlinear transport with composite wave III

entropy entropy + CIP zoom
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I Entropy-viscosity solution converges to (correct) entropic solution

I Adding CIP destroys this property!
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CIP stabilization and first-order viscosity
I CIP can have adverse effects even on first-order viscosity

I (Inviscid) Burgers equation with u(x , 0) = sin(2πx), 200 mesh
cells, r = 1, CFL = 0.025

I adding CIP to 1st-order visc. leads to over/under-shoots
I cmax = 2 makes 1st-order visc. overcome Gibbs phenomenon

triggered by CIP

I Riemann problem with non-convex flux, 4,000 and 10,000 cells
I viscous solution converges to entropic solution (as expected!)
I adding CIP stabilization destroys this property

Burgers non-convex flux
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Conclusions from numerical tests

I CIP does a great job at suppressing oscillations in smooth regions

I It promotes the Gibbs phenomenon
I failure to satisfy a (weak) maximum principle
I convergence to non-entropic weak solutions

I These effects can even overcome convergent viscosity methods (both
nonlinear and first-order)
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Key idea

I Temper the amount of LS in the vicinity of shocks
I nonlinear weights depending on the local gradient of discrete

solution
I may seem counter-intuitive at first glance since LS is often motivated

to counter spurious oscillations near large gradients ...

I We show that CIP stabilization can be tempered in such a way that
I O(hr+1/2) L2-error estimates are preserved for smooth solutions in

linear problems [proof]
I LS no longer antagonizes nonlinear viscosity methods [numerics]

I This is a win-win situation
I nonlinear viscosity alone does not deliver full-order accuracy in

smooth regions
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Theoretical insight

I Weighted CIP-stabilized solution∫
Ω

wh∂tuh dΩ +

∫
Ω

wh∇·f(uh)dΩ + nwei,ed(uh; uh,wh) = 0

with

nwei,ed(zh; vh,wh) = cCIP

∑
F∈F i

h

α(gF (zh))h2
F‖f
′(vh)‖L∞

∫
F

[∇vh]·[∇wh]dF

where gF (zh) = |〈∇zh〉∆F
|/`(u0) is a local measure of ∇zh around F

I The weighting function α is non-increasing and

∃λ > 0, (r ≥ r0)⇒ (α(r) ≥ r−λ)

α cannot decrease too fast (typically α(0) = 1 and α(∞) = 0)
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Convergence analysis

I Linear transport, smooth solutions

I For all t ∈ [0,T ], with e = u − uh,

‖e(t)‖2
L2(Ω) +

∫ t

0

nwei,ed(uh; e, e)dτ . h2r+1

with
I for all λ > 0, if d = 2 or if d = 3 and r ≥ 3
I for d = 3 and r ∈ {1, 2}, upper bound is hr+ελ with ελ ∈ (0, 1

2
) and

λ ∈ (0, 2) for r = 2 and λ ∈ (0, 2
3
) if r = 1

I Proof on quasi-uniform meshes
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Principle of proof I

I Classical techniques lead to

d

dt
‖e‖2

L2(Ω) + nwei,ed(uh; e, e) ≤ RHS(Ω) . hr‖e‖L2(Ω)

where control on nwei,ed(uh; e, e) is not yet used

I Let ε ≥ 0 and consider the sets collecting “bad” and “good” cells

Ω] = {gF (uh) ≥ h−ε}
Ω[ = Ω \ Ω]

Ω] collects mesh cells where the gradient of uh is locally high
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Principle of proof II
I On Ω[, owing to the behavior of weighting function α, there is

enough CIP stabilization to infer that

RHS(Ω[) . hr+ 1
2−

1
2λεnwei,ed(uh; e, e)

1
2

I On Ω], the following holds:

RHS(Ω]) . h2r |Ω]| 12 and |Ω]| . h2(r−1+ε)

since ‖∇u‖L2(Ω]) and ‖∇e‖L2(Ω]) are bounded

I This yields

d

dt
‖e‖2

L2(Ω) + nwei,ed(uh; e, e) . h3r−1+ε + h2r+1−λε

Choose ε to equilibrate both terms and derive an improved error
estimate O(hr+ρ), and then use a bootstrap argument
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Numerical examples

I We study the effectiveness of the weighted CIP-stabilization on
I linear transport with smooth data
I linear transport with non-smooth data
I nonlinear transport with composite wave

I 1D and 2D tests are considered
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1D tests I

I Ω = (0, 1) with periodic BCs, r = 1, SSP RK3 with CFL = 0.2
I stab. parameters cCIP = 0.05, cmax = 0.5, and cev = 0.5

I Linear transport with smooth data, CIP stabilization with and
without weighting

‖e‖L1(Ω) ∼ h2 ‖e‖L2(Ω) ∼ h2

I Linear transport with non-smooth data, entropy viscosity plus
CIP stabilization, uniform and non-uniform meshes

‖e‖L1(Ω) ∼ h0.75 ‖e‖L2(Ω) ∼ h0.37

and weak maximum principle is satisfied (with rate h0.5)
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1D tests II

I Riemann problem with non-convex flux
I five uniform meshes from 100 up to 1,600 cells
I entropy viscosity plus CIP stabilization

entropy + CIP zoom
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I Convergence to the (correct) entropic solution
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2D tests I

I Linear transport (rotating velocity field in unit disk)
I r ∈ {1, 2}, RK4, CFL = 0.25
I stab. parameters cCIP = 0.025, cmax = 1

4r
, and cev = 0.1

I CIP stabilization with and without weighting leads to optimal
convergence on smooth solutions

I Entropy viscosity plus weighted CIP stabilization
I r = 1: entropy viscosity alone and with CIP is second-order
I r = 2: entropy viscosity alone is h2+ε, while adding CIP improves CV

at least to h2.5 → win-win situation
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2D tests II

I Linear transport, non-smooth data, entropy visc. + CIP, r ∈ {1, 2}

I CV rates (in L1-norm, rates are h0.75 for r = 1 and h0.8 for r = 2)

h r = 1 r = 2
L2-norm rate L2-norm rate

5.00E-02 4.172E-01 – 2.794E-01 –
2.50E-02 3.158E-01 0.402 2.114E-01 0.402
1.25E-02 2.411E-01 0.389 1.601E-01 0.401
1.00E-02 2.214E-01 0.383 1.466E-01 0.394

I Weak maximum principle for eMax (similar results for eMin)

h r = 1 r = 2
eMax rate eMax rate

5.00E-02 3.546E-02 – 7.904E-03 –
2.50E-02 1.283E-02 1.467 6.943E-03 0.187
1.25E-02 7.776E-02 0.722 5.953E-03 0.222
1.00E-02 6.798E-02 0.603 5.211E-03 0.596
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2D tests III
I Cauchy problem in R2 with non-convex flux

f(u) = (sin u, cos u) u(x , y , 0) =

{
3.5π x2 + y2 < 1

0.25π otherwise

entr. visc entr. visc+CIP entr. visc+weighted CIP
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I entropy viscosity (cmax = 1
2
, cev = 1) predicts correct rotating

composite wave structure
I adding CIP (cCIP = 1) leads to non-physical layers
I weighting CIP pushes spurious layer back to the shock
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Conclusions

I In the literature, much efforts are devoted to constructing LS
techniques in various flavors

I It is often believed that LS is the workhorse, whereas
shock-capturing is only meant to remove remaining oscillations

I We believe that
I nonlinear viscosities should be the workhorses killing the Gibbs

phenomenon and ensuring convergence to the entropic solution
I LS plays the role of an auxiliary tool whose job is to improve

convergence in smooth regions
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