Robust solution of Poisson-like problems with aggregation-based AMG

Yvan Notay*

Université Libre de Bruxelles
Service de Métrologie Nucléaire

Paris, January 26, 2015

* Supported by the Belgian FNRS
http://homepages.ulb.ac.be/~ynotay

ULB

1. Introduction
2. Why multigrid
3. AMG \& Aggregation
4. AGMG

- Robustness study
- Comparative study

5. Parallelization of AGMG
6. Conclusions

In many cases, the design of an appropriate iterative linear solver is much easier if one has at hand a library able to efficiently solve linear (sub)systems

$$
A \mathbf{u}=\mathbf{b}
$$

where A corresponds to the discretization of

$$
-\operatorname{div}(D \operatorname{grad}(u))+\mathbf{v} \operatorname{grad}(u)+c u=f \quad(+B . C .)
$$

(or closely related).
Thus we need a good solver for
discrete Poisson-like problems

In many cases, the design of an appropriate iterative linear solver is much easier if one has at hand a library able to efficiently solve linear (sub)systems

$$
A \mathbf{u}=\mathbf{b}
$$

where A corresponds to the discretization of

$$
-\operatorname{div}(D \operatorname{grad}(u))+\mathbf{v} \operatorname{grad}(u)+c u=f \quad(+B . C .)
$$

(or closely related).
Thus we need a good solver for
discrete Poisson-like problems
Efficiently:
robustly (stable performances)
in linear time: $\frac{\text { elapsed }}{n \times \# \text { proc }}$ roughly constant

Discrete Poisson-like problems

- For not too large 2D problems, direct methods OK (solve the system in linear time) \rightarrow de facto standard for a long time

Discrete Poisson-like problems

- For not too large 2D problems, direct methods OK (solve the system in linear time) \rightarrow de facto standard for a long time
- Large 3D problems: untractable for direct methods (In addition, scale poorly in parallel) \rightarrow Iterative solvers needed

Discrete Poisson-like problems

- For not too large 2D problems, direct methods OK (solve the system in linear time)
\rightarrow de facto standard for a long time
- Large 3D problems: untractable for direct methods (In addition, scale poorly in parallel) \rightarrow Iterative solvers needed
- Multigrid method are good candidates (see below) But to substitute a direct solver we need
- a black box solver
(You provide the matrix \& rhs, I return the solution)
- that is robust
(convergence not affected by changes in the BC, PDE coeff., geometry \& discretization grid)

2. Why multigrid (1)

Standard iterative methods typically very slow
Consider the error from different scales:
small scale \rightarrow strong local variations large scale \rightarrow smooth variations
Iterative methods mainly act locally, i.e. damp error modes seen from small scale, but not much smooth modes More steps needed to propagate information about smooth modes as the grid is refined
(linear time out of reach)

2. Why multigrid (1)

Standard iterative methods typically very slow

Consider the error from different scales:
small scale \rightarrow strong local variations large scale \rightarrow smooth variations
Iterative methods mainly act locally, i.e. damp error modes seen from small scale, but not much smooth modes More steps needed to propagate information about smooth modes as the grid is refined
(linear time out of reach)
Multigrid: solving the problem on a coarser grid (less unknowns \rightarrow easier) yields an approximate solution which is essentially correct from the large scale viewpoint

2. Why multigrid (2)

A multigrid method alternates:

- smoothing iterations: improve current solution \mathbf{u}_{k} using a basic iterative method $\rightarrow \widetilde{\mathbf{u}}_{k}$
- coarse grid correction:
- project the residual equation
$A\left(\mathbf{u}-\widetilde{\mathbf{u}}_{k}\right)=\mathbf{b}-A \widetilde{\mathbf{u}}_{k} \equiv \mathbf{r}$
on the coarse grid: $\mathbf{r}_{c}=R \mathbf{r} \quad\left(R: n_{c} \times n\right)$
- solve the coarse problem: $\mathbf{v}_{c}=A_{c}^{-1} \mathbf{r}_{c}$
- prolongate (interpolate) coarse correction on the fine grid: $\mathbf{u}_{k+1}=\widetilde{\mathbf{u}}_{k}+P \mathbf{v}_{c} \quad\left(P: n \times n_{c}\right)$

2. Why multigrid (3)

Example

$$
\begin{aligned}
-\Delta u & =20 e^{-10\left((x-0.5)^{2}+(y-0.5)^{2}\right)} \text { in } \Omega=(0,1) \times(0,1) \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

Uniform grid with mesh size h, five-point finite difference.

Solution with $h^{-1}=50$

Solution with $h^{-1}=25$

2. Why multigrid (4)

Simple iterative methods are not efficient

Example: symmetric Gauss-Seidel iterations (1 forward Gauss-Seidel sweep + 1 backward Gauss-Seidel sweep)

2. Why multigrid (5)

Initial residual (r.h.s.) Residual after solve on the coarse grid

2. Why multigrid (5)

Initial residual (r.h.s.) Residual after solve on the coarse grid

+ 1 sym. Gauss-Seidel step
+ 8 sym. Gauss-Seidel steps

2. Why multigrid (6)

Initial residual

$2 \times($ SGS - coarse solve - SGS)
$4 \times($ SGS - coarse solve - SGS)

3. AMG \& Aggregation (1)

- Geometric Multigrid is not black box Often also not robust (e.g., influenced by BC)
- Geometric Multigrid is not black box Often also not robust (e.g., influenced by BC)
- Classical Algebraic Multigrid (AMG)
- Attempt to imitate geometric MG in black box mode
- With robustness enhancements
- Issues still open after 30 years of research
- New issues came with massive parallelism

3. AMG \& Aggregation (1)

- Geometric Multigrid is not black box Often also not robust (e.g., influenced by BC)
- Classical Algebraic Multigrid (AMG)
- Attempt to imitate geometric MG in black box mode
- With robustness enhancements
- Issues still open after 30 years of research
- New issues came with massive parallelism
- Aggregation-based AMG
- Overlooked for a long time, revival since 2007
- Solves issues of classical AMG in a natural way
- Faster and more robust (controversial)

3. AMG \& Aggregation (2)

Aggregation-based AMG

Coarse unknowns: obtained by mere aggregation Coarse grid matrix: obtained by a simple summation

$$
\left(A_{c}\right)_{i j}=\sum_{k \in G_{i}} \sum_{i \in G_{j}} a_{k \ell}
$$

3. AMG \& Aggregation (2)

Aggregation-based AMG

Coarse unknowns: obtained by mere aggregation Coarse grid matrix: obtained by a simple summation

$$
\left(A_{c}\right)_{i j}=\sum_{k \in G_{i}} \sum_{i \in G_{j}} a_{k \ell}
$$

In parallel: Aggregates formed with unknowns assigned to a same process \rightarrow natural parallelization

3. AMG \& Aggregation (3)

How to solve the coarse problem?
By recursivity:

- apply the same two-grid scheme at the coarse level
- do only a few iteration (cost)
- \rightarrow go to a further coarse level: recursivity again

■ \rightarrow and so on, until problem size is small enough

3. AMG \& Aggregation (3)

How to solve the coarse problem?
By recursivity:

- apply the same two-grid scheme at the coarse level
- do only a few iteration (cost)
- \rightarrow go to a further coarse level: recursivity again
- \rightarrow and so on, until problem size is small enough

Geometric MG \& Classical AMG:
use the V -cycle -1 iteration at each level

3. AMG \& Aggregation (3)

How to solve the coarse problem?
By recursivity:

- apply the same two-grid scheme at the coarse level
- do only a few iteration (cost)
- \rightarrow go to a further coarse level: recursivity again
- \rightarrow and so on, until problem size is small enough

Geometric MG \& Classical AMG: use the V -cycle - 1 iteration at each level
Aggregation-based AMG:
use the K-cycle - 2 iterations at each level with Krylov (CG) acceleration
Downside of the simplicity, but not an issue

3. AMG \& Aggregation (4)

Example: recursive Quality Aware Aggregation

 for the discrete Poisson linear finite element matrix associated with the mesh:

Zoom:

Aggregation works also for higher order FE matrices

 Example: 3rd order (P3) $n n z(A) \approx 16 n$

Level 1

Level 3

3. AMG \& Aggregation (7)

Solve phase: Workflow for 1 iteration using the K-cycle (4 levels)

Level 4 ($B_{L S}$: bottom level solver)

Iterative solution with

AGgregation-based algebraic MultiGrid
Linear system solver software package
■ Black box

- FORTRAN 90 (easy interface with C \& C++)
- Matlab interface
>> $x=\operatorname{agmg}(A, y)$;
>> $x=\operatorname{agmg}(A, y, 1) ; \%$ SPD case
\square Free academic license

4. AGMG: Test suite (1)

ModeL2D : 5-point \& 9 point discretizations of

$$
\left\{\begin{aligned}
-\Delta u=1 & \text { on } \Omega=[0,1] \times[0,1] \\
u=0 & \text { on } \partial \Omega
\end{aligned}\right.
$$

with $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$

ANI2D : 5-point discretization of

$$
\begin{aligned}
& \left\{\begin{aligned}
-\nabla \cdot D \nabla u & =1 \text { on } \Omega=[0,1] \times[0,1]
\end{aligned}\right. \\
& u=0 \text { for } x=1,0 \leq y \leq 1 \\
& \frac{\partial u}{\partial n}=0 \text { elsewhere on } \partial \Omega \\
& \text { with } \nabla=\mathbf{1}_{x} \frac{\partial}{\partial x}+\mathbf{1}_{y} \frac{\partial}{\partial y}, D=\operatorname{diag}(\varepsilon, 1)
\end{aligned}
$$

4. AGMG: Test suite (2)

Non M-matrices

AnI2DBIFE:
bilinear FE element discretization of

$$
\left\{\begin{aligned}
-\nabla \cdot D \nabla u & =1 \quad \text { on } \Omega=[0,1] \times[0,1] \\
u & =0 \text { for } x=1,0 \leq y \leq 1 \\
\frac{\partial u}{\partial n}=0 & \text { elsewhere on } \partial \Omega
\end{aligned}\right.
$$

$$
\text { with } \nabla=\mathbf{1}_{x} \frac{\partial}{\partial x}+\mathbf{1}_{y} \frac{\partial}{\partial y}, D=\operatorname{diag}(\varepsilon, 1)
$$

$\Sigma=2(1+\varepsilon)$

Tested: $\varepsilon=10^{-2}, 10^{-2}, 10^{-3}$
(i.e. some strong positive offdiagonal elements)

4. AGMG: Test suite (3)

MODEL3D : 7-point discretization of

$$
\begin{aligned}
&-\Delta u=1 \quad \text { on } \Omega=[0,1] \times[0,1] \times[0,1] \\
& u=0 \\
& \text { on } \partial \Omega
\end{aligned}
$$

with $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$

ANI3D: 7-point discretization of

$$
\left\{\begin{aligned}
-\nabla \cdot D \nabla u & =1 \quad \text { on } \Omega=[0,1] \times[0,1] \times[0,1] \\
u & =0 \text { for } x=1,0 \leq y, z \leq 1 \\
\frac{\partial u}{\partial n} & =0 \quad \text { elsewhere on } \partial \Omega
\end{aligned}\right.
$$

with $\nabla=\mathbf{1}_{x} \frac{\partial}{\partial x}+\mathbf{1}_{y} \frac{\partial}{\partial y}+\mathbf{1}_{z} \frac{\partial}{\partial z}, D=\operatorname{diag}\left(\varepsilon_{x}, \varepsilon_{y}, 1\right)$
Tested: $(0.07,1,1),(0.07,0.25,1),(0.07,0.07,1),(0.005,1,1)$, $(0.005,0.07,1),(0.005,0.005,1)$

4. AGMG: Test suite (4)

Problems with Jumps (FD)

Jump2D : 5-point discretization of
$\int-\nabla \cdot D \nabla u=f$ on $\Omega=[0,1] \times[0,1]$
$u=0$ for $x=1,0 \leq y \leq 1$
$\frac{\partial u}{\partial n}=0$ elsewhere on $\partial \Omega$
with $\nabla=\mathbf{1}_{x} \frac{\partial}{\partial x}+\mathbf{1}_{y} \frac{\partial}{\partial y}, D=\operatorname{diag}\left(D_{x}, D_{y}\right)$

JUMP3D : 7-point discretization of

$$
\begin{aligned}
-\nabla \cdot D \nabla u & =f & & \text { on } \Omega=[0,1] \times[0,1] \times[0,1] \\
u & =0 & & \text { for } x=1,0 \leq y, z \leq 1 \\
\frac{\partial u}{\partial n} & =0 & & \text { elsewhere on } \partial \Omega
\end{aligned}
$$

with $\nabla=\mathbf{1}_{x} \frac{\partial}{\partial x}+\mathbf{1}_{y} \frac{\partial}{\partial y}+\mathbf{1}_{z} \frac{\partial}{\partial z}$

4. AGMG: Test suite (5)

Sphere in a cube, Unstructured 3D meshes

Finite element discretization of

$$
\begin{aligned}
-\nabla \cdot D \nabla u=0 & \text { on } \Omega=[0,1] \times[0,1] \times[0,1] \\
u=0 & \text { for } x=0,1,0 \leq y, z \leq 1 \\
u=1 & \text { elsewhere on } \partial \Omega
\end{aligned}
$$

with $\nabla=\mathbf{1}_{x} \frac{\partial}{\partial x}+\mathbf{1}_{y} \frac{\partial}{\partial y}+\mathbf{1}_{z} \frac{\partial}{\partial z}$

SphUnf:
quasi uniform mesh

SphRf: mesh $10 \times$ finer on the sphere

4. AGMG: Test suite (6)

Reentering corner, local refinement Finite element discretization of

$$
\left\{\begin{array}{l}
\quad-\Delta u=0 \quad \text { on } \Omega=[0,1] \times[0,1] \\
u=r^{\frac{2}{3}} \sin \left(\frac{2 \theta}{3}\right) \quad \text { on } \partial \Omega
\end{array}\right.
$$

$$
\text { with } \Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

LUNFST:
uniform structured grid

LRFUST: unstructured grid with mesh $10^{r} \times$ finer near reentering corner
$r=0 \rightarrow 5$

4. AGMG: Test suite (7)

Challenging convection-diffusion problems Upwind FD approximation of

$$
\begin{cases}-\nu \Delta u+\bar{v} \cdot \operatorname{grad}(u)=f & \text { in } \Omega \\ u=g & \text { on } \partial \Omega\end{cases}
$$

In all cases: tests for $\nu=1,10^{-2}, 10^{-4}, 10^{-6}$ $\nu \ll 1 \rightarrow$ highly nonsymmetric matrices
Example of flow

Magnitude:

4. AGMG: Robustness study (1)

- Iterations stopped when $\frac{\left\|\mathbf{r}_{k}\right\|}{\left\|\mathbf{r}_{0}\right\|}<10^{-6}$
- Times reported are total elapsed times in seconds (including set up) per 10^{6} unknowns
- FD on regular grids; 3 sizes:

$$
\begin{aligned}
& \text { 2D: } h^{-1}=600,1600,5000 \\
& \text { 3D: } h^{-1}=80,160,320
\end{aligned}
$$

- FE on (un)structured meshes (with different levels of local refinement);
2 sizes per problem: $n=0.15 e 6 \rightarrow n=7.1 e 6$

2D symmetric problems

3D symmetric problems

4. AGMG: Robustness study (4)

2D nonsymmetric problems

4. AGMG: Robustness study (5)

3D nonsymmetric problems

4. AGMG: comparative study (1)

Comparison with some other software

- AMG(Hyp): a classical AMG method as implemented in the Hypre library (Boomer AMG)
- AMG(HSL): a classical AMG method as implemented in the HSL library
- ILUPACK: efficient threshold-based ILU preconditioner
- Matlab \: Matlab sparse direct solver (UMFPACK)

All methods but the last with Krylov subspace acceleration (Iterations stopped when $\frac{\left\|\mathbf{r}_{k}\right\|}{\left\|r_{r}\right\|}<10^{-6}$)
Quantity reported:
Total elapsed times in seconds (including set up) per 10^{6} unknowns as a function of the number of unknowns (more unknowns yielded by grid refinement)

4. AGMG: comparative study (2)

PoIsson 2D, FD

LAPLACE 2D, FE(P3)

4. AGMG: comparative study (3)

Poisson 2D, L-shaped, FE

Unstructured, Local refin.

Convection-Diffusion 2D, FD

$$
\nu=10^{-6}
$$

4. AGMG: comparative study (4)

PoIsson 3D, FD

LAPLACE 3D, FE(P3)

51% of nonzero offdiag >0

4. AGMG: comparative study (5)

Poisson 3D, FE
Unstructured, Local refin.

Convection-Diffusion 3D, FD

$$
\nu=10^{-6}
$$

5. Parallelization of AGMG (1)

Perspectives

- Good to start from the best sequential method

Any scalability curve should be put in perspective: how much do we loose with respect the best state-of-the-art method on 1 core?

5. Parallelization of AGMG (1)

Perspectives

- Good to start from the best sequential method

Any scalability curve should be put in perspective: how much do we loose with respect the best state-of-the-art method on 1 core?

- The faster the method, the more challenging its parallelization

Less computation means less opportunity to overlap communications with computation

5. Parallelization of AGMG (2)

General parallelization strategy

- Partitioning of the unknowns
\rightarrow partitioning of matrix rows

5. Parallelization of AGMG (2)

General parallelization strategy

- Partitioning of the unknowns
\rightarrow partitioning of matrix rows
- Aggregation algorithm

Unchanged, except that aggregates are only formed with unknowns in a same partition.
\rightarrow inherently parallel

5. Parallelization of AGMG (2)

General parallelization strategy

- Partitioning of the unknowns
\rightarrow partitioning of matrix rows
- Aggregation algorithm

Unchanged, except that aggregates are only formed with unknowns in a same partition.
\rightarrow inherently parallel
■ Solve phase
The parallelization raises no particular difficulties, except regarding the bottom level solver
In sequential: sparse direct solver
Parallel direct solver \rightarrow bottleneck for many proc.

5. Parallelization of AGMG (2)

Algorithm redesign

■ Only four levels, whatever problem size

5. Parallelization of AGMG (2)

Algorithm redesign

- Only four levels, whatever problem size
- Then the bottom level system has about 500 times less unknowns than the initial fine grid system \rightarrow still very large

5. Parallelization of AGMG (2)

Algorithm redesign

- Only four levels, whatever problem size
- Then the bottom level system has about 500 times less unknowns than the initial fine grid system \rightarrow still very large
■ Thus: Iterative bottom level solver

5. Parallelization of AGMG (2)

Algorithm redesign

- Only four levels, whatever problem size
- Then the bottom level system has about 500 times less unknowns than the initial fine grid system \rightarrow still very large
■ Thus: Iterative bottom level solver
■ 500 times less
\rightarrow Need not be as fast per unknown as AGMG

5. Parallelization of AGMG (2)

Algorithm redesign

- Only four levels, whatever problem size
- Then the bottom level system has about 500 times less unknowns than the initial fine grid system \rightarrow still very large
■ Thus: Iterative bottom level solver
■ 500 times less
\rightarrow Need not be as fast per unknown as AGMG
- But has to scale very well in parallel (despite smaller problem size)

5. Parallelization of AGMG (3)

Iterative bottom level solver

- Aggregation-based two-grid method (one further level: very coarse grid)
- All unknowns on a same process form 1 aggregate (very coarse grid: size = number of processes (cores))
- Better smoother: apply sequential AGMG to the local part of the matrix
- Very coarse grid system
- if still too large, solved in parallel within subgroups of processes
- the solver is AGMG again
(either sequential or parallel)

5. Parallelization of AGMG (4)

S_{b} : sequential AGMG applied to "local" part of the matrix
B_{b} : sequential AGMG (512 cores or less) or parallel AGMG in subgroups (more than 512 cores)

5. Parallelization of AGMG (5)

Results: the magic works
Weak scalability on CURIE (Intel Farm) for 3D Poisson
Elapsed time (seconds) - vs - number of unknowns
Finite Difference
P3 Finite Elements

5. Parallelization of AGMG (6)

3D Poisson (Finite Difference) on HERMIT (Cray XE6)

Weak scalability
Time - vs - \# unknowns

Strong scalability
Time - vs - number of cores

5. Parallelization of AGMG (7)

Weak scalability on JUQUEEN (IBM BG/Q) for 3D Poisson (Finite Difference)

Elapsed time - vs - number of unknowns

■ Robust method for discrete Poisson-like problems

■ Robust method for discrete Poisson-like problems

- Can be used (and is used!) black box (does not require tuning or adaptation)
- Robust method for discrete Poisson-like problems
- Can be used (and is used!) black box (does not require tuning or adaptation)
- Faster than other state-of-the-art solvers

■ Robust method for discrete Poisson-like problems

- Can be used (and is used!) black box (does not require tuning or adaptation)
- Faster than other state-of-the-art solvers
- Fairly small setup time: especially well suited when only a modest accuracy is needed

■ Robust method for discrete Poisson-like problems

- Can be used (and is used!) black box (does not require tuning or adaptation)
- Faster than other state-of-the-art solvers
- Fairly small setup time: especially well suited when only a modest accuracy is needed
- Efficient parallelization:

Linear system with $>10^{12}$ unknowns solved in less than 2 minutes using 373,248 cores on IBM BG/Q; that is: in about 0.1 nanoseconds per unknown

■ Robust method for discrete Poisson-like problems

- Can be used (and is used!) black box (does not require tuning or adaptation)
- Faster than other state-of-the-art solvers
- Fairly small setup time: especially well suited when only a modest accuracy is needed
- Efficient parallelization:

Linear system with $>10^{12}$ unknowns
solved in less than 2 minutes using 373,248 cores on IBM BG/Q; that is: in about 0.1 nanoseconds per unknown
■ Professional code available, free academic license

Some references

Two-grid convergence theory

- Algebraic analysis of two-grid methods: the nonsymmetric case, NLAA (2010)
- Algebraic theory of two-grid methods (NTMA, to appear - review paper)

The K-cycle

- Recursive Krylov-based multigrid cycles (with P. S. Vassilevski), NLAA (2008) Two-grid analysis of aggregation methods
- Analysis of aggregation-based multigrid (with A. C. Muresan), SISC (2008)
- Algebraic analysis of aggregation-based multigrid, (with A. Napov) NLAA (2011) AGMG and quality aware aggregation
- An aggregation-based algebraic multigrid method, ETNA (2010).
- An algebraic multigrid method with guaranteed convergence rate (with A. Napov), SISC (2012)
- Aggregation-based algebraic multigrid for convection-diffusion equations,

SISC (2012)

- Algebraic multigrid for moderate order finite elements (with A. Napov), SISC (2014) Parallelization
- A massively parallel solver for discrete Poisson-like problems, Tech. Rep. (2014)

Some references

Two-grid convergence theory

- Algebraic analysis of two-grid methods: the nonsymmetric case, NLAA (2010)
- Algebraic theory of two-grid methods (NTMA, to appear - review paper)

The K-cycle

- Recursive Krylov-based multigrid cycles (with P. S. Vassilevski), NLAA (2008) Two-grid analysis of aggregation methods
- Analysis of aggregation-based multigrid (with A. C. Muresan), SISC (2008)
- Algebraic analysis of aggregation-based multigrid, (with A. Napov) NLAA (2011) AGMG and quality aware aggregation
- An aggregation-based algebraic multigrid method, ETNA (2010).
- An algebraic multigrid method with guaranteed convergence rate (with A. Napov), SISC (2012)
- Aggregation-based algebraic multigrid for convection-diffusion equations,

SISC (2012)

- Algebraic multigrid for moderate order finite elements (with A. Napov), SISC (2014) Parallelization
- A massively parallel solver for discrete Poisson-like problems, Tech. Rep. (2014)

