Communication Avoiding and Hiding in preconditioned Krylov solvers

${ }^{1}$ Applied Mathematics, University of Antwerp, Belgium
${ }^{2}$ Future Technology Group, Berkeley Lab, USA
${ }^{3}$ Intel ExaScience Lab, Belgium ${ }^{4}$ USI, Lugano, CH
${ }^{5} \mathrm{KU}$ Leuven, Belgium
B. Reps ${ }^{1}$, P. Ghysels ${ }^{2}$, O. Schenk ${ }^{4}$, K. Meerbergen ${ }^{3,5}$,

IHP 2015, Paris FRx

Overview

- Arithmetic Intensity in Krylov
- Arithmetic Intensity in Multigrid
- Pipelining communication and computation in Krylov

GMRES, classical Gram-Schmidt

1: $r_{0} \leftarrow b-A x_{0}$
2: $v_{0} \leftarrow r_{0} /\left\|r_{0}\right\|_{2}$
3: for $i=0, \ldots, m-1$ do
4: $\quad w \leftarrow A v_{i}$
5: \quad for $j=0, \ldots, i$ do
6: $\quad h_{j, i} \leftarrow\left\langle w, v_{j}\right\rangle$
7: end for
8: $\quad \tilde{v}_{i+1} \leftarrow w-\sum_{j=1}^{i} h_{j, i} v_{j}$
9: $\quad h_{i+1, i} \leftarrow\left\|\tilde{v}_{i+1}\right\|_{2}$
10: $\quad v_{i+1} \leftarrow \tilde{v}_{i+1} / h_{i+1, i}$
11: $\quad\left\{\right.$ apply Givens rotations to $\left.h_{:, i}\right\}$
12: end for
13: $y_{m} \leftarrow$
$\operatorname{argmin}\left\|H_{m+1, m} y_{m}-\right\| r_{0}\left\|_{2} e_{1}\right\|_{2}$
14: $x \leftarrow x_{0}+V_{m} y_{m}$

Sparse Matrix-Vector product

- Only communication with neighbors
- Good scaling

Dot-product

- Global communication
- Scales as $\log (P)$

Scalar vector multiplication, vector-vector addition

- No communication

Part I

Arithmetic Intensity and Sparse Matrix vector product

Performance of Kernel of dependent SpMV

- SIMD: SSE \rightarrow AVX \rightarrow _mm512 on Xeon Phi.
- Similar with NEON on ARM.

Bandwidth is the bottleneck and will remain even with 3D stacked memory.

Arithmetic intensity (Flop/byte)
R S. Williams, A. Waterman and D. Patterson (2008)

Arithmetic intensity of k dependent SpMVs

	1 SpMV	k SpMVs	k SpMVs in place
flops	$2 n_{n z}$	$2 k \cdot n_{n z}$	$2 k \cdot n_{n z}$
words moved	$n_{n z}+2 n$	$k n_{n z}+2 k n$	$n_{n z}+2 n$
q	2	2	$\mathbf{2 k}$

目 J. Demmel, CS 294-76 on Communication-Avoiding algorithms
(M. Hoemmen, Communication-avoiding Krylov subspace methods. (2010).

Increasing the arithmetic intensity

- Divide the domain in tiles which fit in the cache
- Ground surface is loaded in cache and reused k times
- Redundant work at the tile edges

圊 P. Ghysels, P. Klosiewicz, and W. Vanroose. "Improving the arithmetic intensity of multigrid with the help of polynomial smoothers." Num. Lin. Alg. Appl. 19 (2012): 253-267.

Stencil Compilers. (polytope model)

Pluto

- Automatic loop parallelization,
- Locality optimizations based on the polyhedral model,
- add OpenMP pragma's around the outer loop,
- ivdep and vector always. compilers (guided) auto-vectorization.

围
U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan, Automatic Transformations for Communication-Minimized Parallelization and Locality Optimization in the Polyhedral Model, Int. Conf. Compiler Construction (ETAPS CC), Apr 2008, Budapest, Hungary.

Increasing the arithmetic intensity with a stencil compiler (Pluto)

Dual socket Intel Sandy Bridge, 16×2 threads

Intel Xeon Phi, 61×4 threads

Krylov methods

- Classical Krylov

$$
K_{k}(A, v)=\operatorname{span}\left\{v, A v, A^{2} v, \ldots, A^{k-1} v\right\}
$$

the residual and error can then be written as

$$
\begin{equation*}
r^{(k)}=P_{k}(A) r^{(0)} \tag{1}
\end{equation*}
$$

Krylov methods

- Classical Krylov

$$
K_{k}(A, v)=\operatorname{span}\left\{v, A v, A^{2} v, \ldots, A^{k-1} v\right\}
$$

the residual and error can then be written as

$$
\begin{equation*}
r^{(k)}=P_{k}(A) r^{(0)} \tag{1}
\end{equation*}
$$

- Polynomial Preconditioning

$$
P_{m}(A) x=q(A) A x=q(A) b
$$

$K_{k}\left(P_{m}(A), v\right)=\operatorname{span}\left\{v, P_{m}(A) v, P_{m}(A)^{2} v, \ldots, P_{m}(A)^{k-1} v\right\}$ where $P_{m}(A)=\left(A-\sigma_{1}\right)\left(A-\sigma_{2}\right) \cdot \ldots \cdot\left(A-\sigma_{m}\right)$ is a fixed low-order polynomial

$$
\begin{equation*}
r^{(k)}=Q_{k}\left(P_{m}(A)\right) r^{(0)} \tag{2}
\end{equation*}
$$

Incomplete list of the literature on polynomial preconditioning

目 Y．Saad，Iterative methods for sparse linear systems Chapter 12，SIAM（2003）．
D．O＇Leary，Yet another polynomials preconditioner for the Conjugate Gradient Algorithm，Lin．Alg．Appl．（1991）p377
A．van der Ploeg，Preconditioning for sparse matrices with applications，（1994）

击 M．Van Gijzen，A polynomial preconditioner for the GMRES algorithm J．Comp．Appl．Math 59 （1995）：91－107．

䍰 A．Basermann，B．Reichel，C．Schelthoff，Preconditioned CG methods for sparse matrices on massively parallel machines， 23 （1997）， 381398

Convergence of CG with different short Polynomials

Time to solution is reduced

Recursive calculation of $w_{k+1}=p_{k+1}(A) v$

$$
\begin{aligned}
& \text { 1: } \sigma_{1}=\theta / \delta \\
& \text { 2: } \rho_{0}=1 / \sigma_{1} \\
& \text { 3: } w_{0}=0, w_{1}=\frac{1}{\theta} A v \\
& \text { 4: } \Delta w_{1}=w_{1}-w_{0} \\
& \text { 5: for } \mathrm{k}=1, \ldots \text { do } \\
& \text { 6: } \quad \rho_{k}=1 /\left(2 \sigma_{1}-\rho_{k-1}\right) \\
& \text { 7: } \Delta w_{k+1}=\rho_{k}\left[\frac{2}{\delta} A\left(v-w_{k}\right)+\rho_{k-1} \Delta w_{k}\right] \\
& \text { 8: } \quad w_{k+1}=w_{k}+\Delta w_{k+1} \\
& \text { 9: end for }
\end{aligned}
$$

Mangled with Pluto to raise arithmetic intensity.

Average cost for each matvec

2D 2024×2048 finite difference poisson problem on i7-2860QM

围 S. Williams, A. Waterman and D. Patterson (2008)

Relying on compiler autovectorization

Intel i7-2860QM

Part II

Arithmetic Intensity in Multigrid

Arithmetic Intensity Multigrid

$$
\begin{equation*}
M G=\left(I-I_{2 h}^{h}(\ldots) I_{h}^{2 h} A\right) S^{\nu_{1}}, \tag{3}
\end{equation*}
$$

where

- S is the smoother, for example ω-Jacobi where $S=I-\omega D^{-1} A$,
- The interpolation $I_{2 h}^{h}$ and restriction $I_{h}^{2 h}$.

These are all low arithmetic intensity.

Multigrid Cost Model

Increasing the number of smoothing steps per level

MG iterations $=\log \left(10^{-8}\right) / \log (\rho(\mathrm{V}$-cycle $))$
where ρ (V-cycle) is the spectral radius of the V -cycle, can be rounded to higher integer

Work Unit Cost model

- Work Unit cost model ignores memory bandwidth

$$
1 \mathrm{WU}=\text { smoother cost }=\mathcal{O}(n)
$$

$$
(9 \nu+19)\left(1+\frac{1}{4}+\ldots\right) \frac{\log (\text { tol })}{\log (\rho)} \mathrm{WU} \leq(9 \nu+19) \frac{4}{3} \frac{\log (\text { tol })}{\log (\rho)} \mathrm{WU}
$$

Attainable GFlop/sec

Average cost in sec/GFlop

$$
\begin{equation*}
\left\langle\nu_{1} \times \omega-\mathrm{Jac}\right\rangle=\frac{\operatorname{flops}\left(\nu_{1} \times \omega-\mathrm{Jac}\right)}{\operatorname{roof}\left(q\left(\nu_{1} \times \omega-\mathrm{Jac}\right)\right)} \approx \frac{\nu_{1} \mathrm{flops}(\omega-\mathrm{Jac})}{\operatorname{roof}\left(\nu_{1} q_{1}(\omega-\mathrm{Jac})\right)} \tag{4}
\end{equation*}
$$

Roofline-based vs naive cost model

Timings for 2D 8190^{2} (Sandy Bridge)

P. Ghysels and W. Vanroose, Modelling the performance of geometric multigrid on many-core computer architectures, Exascience.com techreport 09.2013.1 Sept, 2013,

3d results 511^{3} (Sandy Bridge)

Current Krylov Solvers

- User provides a matvec routine and selects Krylov method at command line.
- No opportunities to increase arithmetic intensity.

Current Krylov Solvers

- User provides a matvec routine and selects Krylov method at command line.
- No opportunities to increase arithmetic intensity.

Future Krylov Solvers

- User provides a stencil routine.

- Stencil compiler increases arithmetic intensity.

R W. Vanroose, P. Ghysels, D. Roose and K. Meerbergen, Position paper at DOE Exascale Mathematics workshop 2013.

Part III

Pipelining communication and computations

GMRES, classical Gram-Schmidt

```
\(r_{0}:=b-A x_{0}\)
\(v_{0}:=r_{0} /\left\|r_{0}\right\|_{2}\)
for \(i=0, \ldots, m-1\) do
    \(w:=A v_{i}\)
        for \(j=0, \ldots, i\) do
        \(h_{j, i}:=\left\langle w, v_{j}\right\rangle\)
        end for
        \(\tilde{v}_{i+1}:=w-\sum_{j=1}^{i} h_{j, i} v_{j}\)
        \(h_{i+1, i}:=\left\|\tilde{v}_{i+1}\right\|_{2}\)
10: \(\quad v_{i+1}:=\tilde{v}_{i+1} / h_{i+1, i}\)
11: \(\quad\) \{apply Givens rotations to \(\left.h_{:, i}\right\}\)
12: end for
13: \(y_{m}:=\)
\(\operatorname{argmin}\left\|H_{m+1, m} y_{m}-\right\| r_{0}\left\|_{2} e_{1}\right\|_{2}\)
14: \(x:=x_{0}+V_{m} y_{m}\)
```

Sparse Matrix-Vector product

- Only communication with neighbors
- Good scaling but BW limited.
Dot-product
- Global communication
- Scales as $\log (P)$

Scalar vector multiplication, vector-vector addition

- No communication

GMRES vs Pipelined GMRES iteration on 4 nodes
 Classical GMRES

Pipelined GMRES

围 P. Ghysels, T. Ashby, K. Meerbergen and W. Vanroose Hiding global communication latency in the GMRES algorithm on massively parallel machines. SIAM J. Scientific Computing, 35(1):C48C71, (2013).

Better Scaling

Prediction of a strong scaling experiment for GMRES on XT4 part of Cray Jaguar.

Are there similar opportunities in preconditioned Conjugate Gradients?

Preconditioned Conjugate Gradient

$$
\begin{aligned}
\text { 1: } & r_{0}:=b-A x_{0} ; u_{0}:=M^{-1} r_{0} ; p_{0}:=u_{0} \\
\text { 2: } & \text { for } i=0, \ldots, m-1 \text { do } \\
\text { 3: } & s:=A p_{i} \\
\text { 4: } & \alpha:=\left\langle r_{i}, u_{i}\right\rangle /\left\langle s, p_{i}\right\rangle \\
\text { 5: } & x_{i+1}:=x_{i}+\alpha p_{i} \\
\text { 6: } & r_{i+1}:=r_{i}-\alpha s \\
\text { 7: } & u_{i+1}:=M^{-1} r_{i+1} \\
\text { 8: } & \beta:=\left\langle r_{i+1}, u_{i+1}\right\rangle /\left\langle r_{i}, u_{i}\right\rangle \\
\text { 9: } & p_{i+1}:=u_{i+1}+\beta p_{i} \\
\text { 10: } & \text { end for }
\end{aligned}
$$

Chronopoulos/Gear CG

Only one global reduction each iteration.

$$
\begin{aligned}
\text { 1: } & r_{0}:=b-A x_{0} ; u_{0}:=M^{-1} r_{0} ; w_{0}:=A u_{0} \\
\text { 2: } & \alpha_{0}:=\left\langle r_{0}, u_{0}\right\rangle /\left\langle w_{0}, u_{0}\right\rangle ; \beta:=0 ; \gamma_{0}:=\left\langle r_{0}, u_{0}\right\rangle \\
\text { 3: } & \text { for } i=0, \ldots, m-1 \text { do } \\
\text { 4: } & p_{i}:=u_{i}+\beta_{i} p_{i-1} \\
\text { 5: } & s_{i}:=w_{i}+\beta_{i} s_{i-1} \\
\text { 6: } & x_{i+1}:=x_{i}+\alpha p_{i} \\
\text { 7: } & r_{i+1}:=r_{i}-\alpha s_{i} \\
\text { 8: } & u_{i+1}:=M^{-1} r_{i+1} \\
\text { 9: } & w_{i+1}:=A u_{i+1} \\
\text { 10: } & \gamma_{i+1}:=\left\langle r_{i+1}, u_{i+1}\right\rangle \\
\text { 11: } & \delta:=\left\langle w_{i+1}, u_{i+1}\right\rangle \\
\text { 12: } & \beta_{i+1}:=\gamma_{i+1} / \gamma_{i} \\
\text { 13: } & \alpha_{i+1}:=\gamma_{i+1} /\left(\delta-\beta_{i+1} \gamma_{i+1} / \alpha_{i}\right)
\end{aligned}
$$

14: end for

pipelined Chronopoulos/Gear CG

Global reduction overlaps with matrix vector product.
1: $r_{0}:=b-A x_{0} ; w_{0}:=A u_{0}$
2: for $i=0, \ldots, m-1$ do
3: $\quad \gamma_{i}:=\left\langle r_{i}, r_{i}\right\rangle$
4: $\quad \delta:=\left\langle w_{i}, r_{i}\right\rangle$
5: $\quad q_{i}:=A w_{i}$
6: if $i>0$ then
7: $\quad \beta_{i}:=\gamma_{i} / \gamma_{i-1} ; \alpha_{i}:=\gamma_{i} /\left(\delta-\beta_{i} \gamma_{i} / \alpha_{i-1}\right)$
8: else
9: $\quad \beta_{i}:=0 ; \alpha_{i}:=\gamma_{i} / \delta$
10: end if
11: $\quad z_{i}:=q_{i}+\beta_{i} z_{i-1}$
12: $\quad s_{i}:=w_{i}+\beta_{i} s_{i-1}$
13: $\quad p_{i}:=r_{i}+\beta_{i} p_{i-1}$
14: $\quad x_{i+1}:=x_{i}+\alpha_{i} p_{i}$
15: $\quad r_{i+1}:=r_{i}-\alpha_{i} s_{i}$
16: $\quad w_{i+1}:=w_{i}-\alpha_{i} z_{i}$
17: end for

Preconditioned pipelined CG

1: $r_{0}:=b-A x_{0} ; u_{0}:=M^{-1} r_{0} ; w_{0}:=A u_{0}$
2: for $i=0, \ldots$ do
3: $\quad \gamma_{i}:=\left\langle r_{i}, u_{i}\right\rangle$
4: $\quad \delta:=\left\langle w_{i}, u_{i}\right\rangle$
5: $\quad m_{i}:=M^{-1} w_{i}$
6: $\quad n_{i}:=A m_{i}$
7: \quad if $i>0$ then
8: $\quad \beta_{i}:=\gamma_{i} / \gamma_{i-1} ; \alpha_{i}:=\gamma_{i} /\left(\delta-\beta_{i} \gamma_{i} / \alpha_{i-1}\right)$
9: else
10: $\quad \beta_{i}:=0 ; \alpha_{i}:=\gamma_{i} / \delta$
11: end if
12: $\quad z_{i}:=n_{i}+\beta_{i} z_{i-1}$
13: $\quad q_{i}:=m_{i}+\beta_{i} q_{i-1}$
14: $\quad s_{i}:=w_{i}+\beta_{i} s_{i-1}$
15: $\quad p_{i}:=u_{i}+\beta_{i} p_{i-1}$
16: $\quad x_{i+1}:=x_{i}+\alpha_{i} p_{i}$
17: $\quad r_{i+1}:=r_{i}-\alpha_{i} s_{i}$
18: $\quad u_{i+1}:=u_{i}-\alpha_{i} q_{i}$
19: $\quad w_{i+1}:=w_{i}-\alpha_{i} z_{i}$
20: end for

Preconditioned pipelined CR

1: $r_{0}:=b-A x_{0} ; u_{0}:=M^{-1} r_{0} ; w_{0}:=A u_{0}$
2: for $i=0, \ldots$ do
3: $\quad m_{i}:=M^{-1} w_{i}$
4: $\quad \gamma_{i}:=\left\langle w_{i}, u_{i}\right\rangle$
5: $\quad \delta:=\left\langle m_{i}, w_{i}\right\rangle$
6: $\quad n_{i}:=A m_{i}$
7: if $i>0$ then
8: $\quad \beta_{i}:=\gamma_{i} / \gamma_{i-1} ; \alpha_{i}:=\gamma_{i} /\left(\delta-\beta_{i} \gamma_{i} / \alpha_{i-1}\right)$
9: else
10: $\quad \beta_{i}:=0 ; \alpha_{i}:=\gamma_{i} / \delta$
11: end if
12: $\quad z_{i}:=n_{i}+\beta_{i} z_{i-1}$
13: $\quad q_{i}:=m_{i}+\beta_{i} q_{i-1}$
14: $\quad p_{i}:=u_{i}+\beta_{i} p_{i-1}$
15: $\quad x_{i+1}:=x_{i}+\alpha_{i} p_{i}$
16: $\quad u_{i+1}:=u_{i}-\alpha_{i} q_{i}$
17: $\quad w_{i+1}:=w_{i}-\alpha_{i} z_{i}$
18: end for

Cost Model

- G := time for a global reduction
- SpMV := time for a sparse-matrix vector product
- PC $:=$ time for preconditioner application
- local work such as AXPY is neglected

	flops	time (excl, AXPYs, DOTs)	\#glob syncs	memory
CG	10	$2 \mathrm{G}+\mathrm{SpMV}+\mathrm{PC}$	2	4
Chro/Gea	12	$\mathrm{G}+\mathrm{SpMV}+\mathrm{PC}$	1	5
CR	12	$2 \mathrm{G}+\mathrm{SpMV}+\mathrm{PC}$	2	5
pipe-CG	20	$\max (\mathrm{G}, \mathrm{SpMV}+\mathrm{PC})$	1	9
pipe-CR	16	$\max (\mathrm{G}, \mathrm{SpMV})+\mathrm{PC}$	1	7
Gropp-CG	14	$\max (\mathrm{G}, \mathrm{SpMV})+\max (\mathrm{G}, \mathrm{PC})$	2	6

P. Ghysels and W. Vanroose, Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm, Parallel Computing, 40, (2014), Pages 224238

Better Scaling

- Hydrostatic ice sheet flow, $100 \times 100 \times 50$ Q1 finite elements
- line search Newton method (rtol $=10^{-8}$, atol $=10^{-15}$)
- CG with block Jacobi ICC (0) precond (rtol $=10^{-5}$, atol $=10^{-50}$)

Measured speedup over standard CG for different variations of pipelined CG.

MPI trace

Conjugate Gradients for 2D 5-point stencil

message
MPI_Allreduce
MPI_Isend
MPI_Irecv
MPI Waitall

Pipelined Conjugate Gradients

Pipelined methods in PETSc (from 3.4.2)

- Krylov methods: KSPPIPECR, KSPPIPECG, KSPGROPPCG, KSPPGMRES
- Uses MPI-3 non-blocking collectives
- export MPICH_ASYNC_PROGRES=1

1: ...
2: KSP_PCApply(ksp,W,M); /* m $\leftarrow \mathrm{Bw} * /$
3: if ($\mathrm{i}>0$ \&\& ksp \rightarrow normtype $==$ KSP_NORM_PRECONDITIONED)
4: VecNormBegin(U,NORM_2,\&dp);
5: VecDotBegin(W,U,\&gamma);
6: VecDotBegin(M,W,\&delta);
7: PetscCommSplitReductionBegin(PetscObjectComm((PetscObject)U));
8: KSP_MatMult(ksp,Amat,M,N); /* $\mathrm{n} \leftarrow \mathrm{Am} * /$
9: if ($\mathrm{i}>0$ \&\& ksp \rightarrow normtype $==$ KSP_NORM_PRECONDITIONED)
10: VecNormEnd(U,NORM_2,\&dp);
11: VecDotEnd(W,U,\&gamma);
12: VecDotEnd(M,W,\&delta);
13:

Krylov subspace methods with additional global reductions

- Deflation: Remove a few known annoying eigenvectors.
- Helmholtz.
- FETI methods.
-...
- Augmenting: adds a subspace to the Krylov subspace, e.g. recycling.
- Newton-Krylov methods.
- Numerical Continuation.
- Coarse Solver in multigrid.
- ...

$$
\begin{gather*}
\mathcal{S}_{n}:=\mathcal{K}_{n}(A, v)+\mathcal{U} \tag{5}\\
x_{n}=x_{0}+V_{n} y_{n}+U u_{n}
\end{gather*}
$$

where U forms a basis for \mathcal{U}.

Deflation with eigenvectors with smallest eigenvalues

Smallest eigenvalues and vectors:

$$
A\left[w_{1}, w_{2}, \ldots, w_{m}\right]=\left[\lambda_{1} w_{1}, \lambda_{2} w_{2}, \ldots, \lambda_{m} w_{m}\right]+\epsilon[\Theta]
$$

where $\lambda_{1}<\lambda_{2}<\lambda_{3}<\ldots<\lambda_{m}<\ldots$ and $\|\Theta\| \approx 1$.

$$
W:=\left[w_{1}, w_{2}, \ldots, w_{m}\right]
$$

Correction step

$$
e=W\left(W^{\top} A W\right)^{-1} W^{\top} r
$$

Deflated CG

$$
\begin{aligned}
& \text { 1: } r_{-1}:=b-A x_{-1} \\
& \text { 2: } x_{0}:=x_{-1}+W\left(W^{T} A W\right)^{-1} W^{T} r_{-1} \\
& \text { 3: } r_{0}:=b-A x_{0} \\
& \text { 4: } p_{0}:=r_{0}-W\left(W^{T} A W\right)^{-1} W^{T} A r_{0} \\
& \text { 5: for } i=0, \ldots \text { do } \\
& \text { 6: } s:=A p_{i} \\
& \text { 7: } \alpha_{i}:=\left\langle r_{i}, r_{i}\right\rangle /\left\langle s, p_{i}\right\rangle \\
& \text { 8: } x_{i+1}:=x_{i}+\alpha_{i} p_{i} \\
& \text { 9: } r_{i+1}:=r_{i}-\alpha_{i} s \\
& 10: \beta_{i}:=\left\langle r_{i+1}, r_{i+1}\right\rangle /\left\langle r_{i}, r_{i}\right\rangle \\
& \text { 11: } W:=A r_{i+1} \\
& \text { 12: } \sigma:=\langle W, w\rangle \\
& \text { 13: } p_{i+1}:=r_{i+1}+\beta_{i} p_{i}-W\left(W^{T} A W\right)^{-1} \sigma
\end{aligned}
$$

14: end for

- x_{0} such that $W^{T} r_{0}=0$ with $r_{0}=b-A x_{0}(c f r$ init-CG)
- $\sigma=\langle W, w\rangle=\left\langle W, A r_{i+1}\right\rangle=\left\langle A W, r_{i+1}\right\rangle$: store $A W$?
- CG on $H^{T} A H \tilde{x}=H^{T} b$ with $H=I-W\left(W^{T} A W\right)^{-1}(A W)^{T}$

Pipelined Deflation CG

Pipe-Def-CG $\left(A, M^{-1}, b, x_{-1}, W\right)$

$$
\begin{aligned}
& r_{0}=b-A x_{0} \\
& x_{0}=x_{0}+W\left(W^{T} A W\right)^{-1} W^{T} r_{0} \\
& r_{0}=b-A x_{0} \\
& p_{0}=r_{0}-W\left(W^{T} A W\right)^{-1} W^{T} A r_{0} \\
& w_{0}=A r_{0} \\
& \text { for } i=0, \ldots \text { do } \\
& \quad \gamma_{i}=\left(r_{i}, r_{i}\right), \quad \delta=\left(w_{i}, r_{i}\right) \\
& \quad \sigma=\left(W, w_{i}\right) \\
& \quad q_{i}=A w_{i} \\
& \quad \text { if } i>0 \text { then } \\
& \quad \beta_{i}=\gamma_{i} / \gamma_{i-1}, \quad \alpha \alpha_{i}=\gamma_{i} /\left(\delta-\beta_{i} \gamma_{i} / \alpha_{i-1}\right) \\
& \quad \text { else } \\
& \quad \beta_{i}=0, \quad \alpha_{i}=\gamma_{i} / \delta \\
& \quad \text { end if } \\
& z_{i}=q_{i}+\beta_{i} z_{i-1}-A^{2} W\left(W^{T} A W\right)^{-1} \sigma \\
& s_{i}=w_{i}+\beta_{i} s_{i-1}-A W\left(W^{\top} A W\right)^{-1} \sigma \\
& p_{i}=r_{i}+\beta_{i} p_{i-1}-W\left(W^{T} A W\right)^{-1} \sigma \\
& x_{i+1}=x_{i}+\alpha_{i} p_{i} \\
& r_{i+1}=r_{i}-\alpha_{i} s_{i} \\
& w_{i+1}=w_{i}-\alpha_{i} z_{i} \\
& \text { end for }
\end{aligned}
$$

- True vs update residual

Selective Deflation

- $2 D 100^{2}$ Poisson equation
- $d=20$

ϵ	10^{-12}	10^{-8}	10^{-4}
cg	431	431	431
init-cg	330	387	423
dcg	243	243	243
sdcg	$242 / 16$	$242 / 22$	$242 / 42$
sdcg1	$244 / 16$	$244 / 23$	$244 / 41$

$$
\epsilon=10^{-12}
$$

$$
\epsilon=10^{-12}
$$


```
\(\operatorname{Sel-DCG1}\left(A, M^{-1}, b, x_{-1}, W, \lambda_{1}, \epsilon\right)\)
    \(x_{0}=x_{-1}+W\left(W^{\top} A W\right)^{-1} W^{\top}\left(b-A x_{-1}\right)\)
    \(r_{0}=b-A x_{0}\)
    \(p_{0}=r_{0}-W\left(W^{\top} A W\right)^{-1} W^{\top} A r_{0}\)
    \(\phi_{0}=0, \psi_{0}=0\)
    for \(i=0, \ldots\) do
    \(w=A r_{i}\)
    \(\gamma_{i}=\left(r_{i}, r_{i}\right), \quad \delta=\left(w, r_{i}\right)\)
    if \(\psi_{i} /\left\|r_{i}\right\|>\tau\) then
            \(\zeta=\left(W, r_{i}\right), \quad \eta=(W, w)\)
    end if
    if \(i>0\) then
        \(\beta_{i}=\gamma_{i} / \gamma_{i-1}, \quad \alpha_{i+1}=\gamma_{i} /\left(\delta-\beta_{i} \gamma_{i} / \alpha_{i}\right)\)
    else
        \(\beta_{i}=0, \quad \alpha_{i+1}=\gamma_{i} / \delta\)
    end if
    if \(\psi_{i} /\left\|r_{i}\right\|>\tau\) then
        \(r_{i}=r_{i}-W\left(W^{\top} W\right)^{-1} \zeta\)
        \(p_{i}=r_{i}+\beta_{i} p_{i-1}-W\left(W^{\top} A W\right)^{-1} \eta\)
        \(s_{i}=w_{i}+\beta_{i} \boldsymbol{s}_{i-1}-A W\left(W^{\top} A W\right)^{-1} \eta\)
        \(\phi_{i+1}=0, \quad \psi_{i+1}=0\)
    else
        \(p_{i}=r_{i}+\beta_{i} p_{i-1}\)
    end if
    \(x_{i+1}=x_{i}+\alpha_{i+1} p_{i}\)
    \(r_{i+1}=r_{i}-\alpha_{i+1} s\)
        \(\psi_{i+1}=\psi_{i}+\phi_{i}\left|\alpha_{i}\right|| | M^{-1} A \|\)
        \(\phi_{i+1}=\psi_{i+1}+\phi_{i}\left|\beta_{i}\right|+\epsilon \lambda_{1}^{-1}\left\|r_{i}\right\|\|W\|\)
    end for
```

Hopper - Cray XE6 at NERSC

- Gemini 3D-torus network

	time (s)				
	$P=24$	$P=1536$	it	\#def	
总					
cg	17.4	1.791	2275	-	
dcg	49.7	0.808	1084	1084	
dcg 1	49.4	0.662	1084	1084	
pdcg	44.0	0.530	1084	1084	
sdcg	11.8	0.665	1076	100	
sdcg 1	12.4	0.381	1084	100	

- Def-CG needs more flops but less iterations (less communication)
- improved scalability
- DCG1 and pipe-DCG improve scalability further

Hopper - Cray XE6 at NERSC

- Gemini 3D-torus network

	time (s)				
	$P=24$	$P=1536$	it	\#def $\overline{\text { E }}$	
cg	17.4	1.791	2275	-	
dcg	49.7	0.808	1084	1084	
dcg 1	49.4	0.662	1084	1084	
pdcg	44.0	0.530	1084	1084	
sdcg	11.8	0.665	1076	100	
sdcg1	12.4	0.381	1084	100	

- Def-CG needs more flops but less iterations (less communication)
- improved scalability
- DCG1 and pipe-DCG improve scalability further
- Selective deflation reduces number of flops

Conclusions

- Two communication bottlenecks:
- limited BW in Av. No benefit from SIMD.
- Latencies in (u, v). Poor strong scaling.

Conclusions

- Two communication bottlenecks:
- limited BW in Av. No benefit from SIMD.
- Latencies in (u, v). Poor strong scaling.
- Replace $A v$ with a $P_{m}(A) v$ with a fixed coefficients.
- Execute with a stencil compiler.
- Combine with Multigrid.
- Many open question for unstructured matrices.

Conclusions

- Two communication bottlenecks:
- limited BW in Av. No benefit from SIMD.
- Latencies in (u, v). Poor strong scaling.
- Replace $A v$ with a $P_{m}(A) v$ with a fixed coefficients.
- Execute with a stencil compiler.
- Combine with Multigrid.
- Many open question for unstructured matrices.
- Pipelining of Krylov algorithms reduce the number of global reductions and hide their latencies.
- They can scale as the Sparse Matrix-Vector product.
- The pipelined GMRES and CG code is in PETSc-current.
- Extension to Deflated and Augmented Krylov methods. Algorithms with additional global reductions.

Conclusions

- Two communication bottlenecks:
- limited BW in Av. No benefit from SIMD.
- Latencies in (u, v). Poor strong scaling.
- Replace $A v$ with a $P_{m}(A) v$ with a fixed coefficients.
- Execute with a stencil compiler.
- Combine with Multigrid.
- Many open question for unstructured matrices.
- Pipelining of Krylov algorithms reduce the number of global reductions and hide their latencies.
- They can scale as the Sparse Matrix-Vector product.
- The pipelined GMRES and CG code is in PETSc-current.
- Extension to Deflated and Augmented Krylov methods. Algorithms with additional global reductions.

Acknowledgements:

- EU's Seventh Framework Programme (FP7/2007-2013) under grant agreement n 610741.
- Intel and the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT).

