Communication Avoiding and Hiding in preconditioned Krylov solvers ¹Applied Mathematics, University of Antwerp, Belgium ² Future Technology Group, Berkeley Lab, USA ³Intel ExaScience Lab, Belgium ⁴USI, Lugano, CH ⁵KU Leuven, Belgium

B. Reps¹, P. Ghysels², O. Schenk⁴, K. Meerbergen^{3,5}, W. Vanroose^{1,3}

IHP 2015, Paris FRx

Overview

- Arithmetic Intensity in Krylov
- Arithmetic Intensity in Multigrid
- Pipelining communication and computation in Krylov

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

GMRES, classical Gram-Schmidt

1:
$$r_0 \leftarrow b - Ax_0$$

2: $v_0 \leftarrow r_0/||r_0||_2$
3: for $i = 0, ..., m - 1$ do
4: $w \leftarrow Av_i$
5: for $j = 0, ..., i$ do
6: $h_{j,i} \leftarrow \langle w, v_j \rangle$
7: end for
8: $\tilde{v}_{i+1} \leftarrow w - \sum_{j=1}^{i} h_{j,i}v_j$
9: $h_{i+1,i} \leftarrow ||\tilde{v}_{i+1}||_2$
10: $v_{i+1} \leftarrow \tilde{v}_{i+1}/h_{i+1,i}$
11: {apply Givens rotations to $h_{:,i}$ }
12: end for
13: $y_m \leftarrow argmin||H_{m+1,m}y_m - ||r_0||_2e_1||_2$
14: $x \leftarrow x_0 + V_my_m$

Sparse Matrix-Vector product

- Only communication with neighbors
- Good scaling

Dot-product

- Global communication
- ► Scales as log(P)
- Scalar vector multiplication, vector-vector addition
 - No communication

Part I

Arithmetic Intensity and Sparse Matrix vector product

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Performance of Kernel of dependent SpMV

- ▶ SIMD: SSE \rightarrow AVX \rightarrow _mm512 on Xeon Phi.
- Similar with NEON on ARM.

Bandwidth is the bottleneck and will remain even with 3D stacked memory.

Arithmetic intensity of k dependent SpMVs

	1 SpMV	k SpMVs	k SpMVs in place
flops	2 <i>n_{nz}</i>	$2k \cdot n_{nz}$	2k · n _{nz}
words moved	$n_{nz} + 2n$	$kn_{nz} + 2kn$	$n_{nz} + 2n$
q	2	2	2k

J. Demmel, CS 294-76 on Communication-Avoiding algorithms

M. Hoemmen, Communication-avoiding Krylov subspace methods. (2010).

Increasing the arithmetic intensity

- Divide the domain in tiles which fit in the cache
- Ground surface is loaded in cache and reused k times
- Redundant work at the tile edges

P. Ghysels, P. Klosiewicz, and W. Vanroose. "Improving the arithmetic intensity of multigrid with the help of polynomial smoothers." Num. Lin. Alg. Appl. **19** (2012): 253-267.

Stencil Compilers. (polytope model)

Pluto

- Automatic loop parallelization,
- Locality optimizations based on the polyhedral model,
- add OpenMP pragma's around the outer loop,
- ivdep and vector always. compilers (guided) auto-vectorization.

U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan, *Automatic Transformations for Communication-Minimized Parallelization and Locality Optimization in the Polyhedral Model*, Int. Conf. Compiler Construction (ETAPS CC), Apr 2008, Budapest, Hungary.

Increasing the arithmetic intensity with a stencil compiler (Pluto)

Dual socket Intel Sandy Bridge, 16×2 threads

Intel Xeon Phi, 61×4 threads

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

-

Krylov methods

Classical Krylov

$$K_k(A, v) = \operatorname{span}\{v, Av, A^2v, \dots, A^{k-1}v\}$$

the residual and error can then be written as

$$r^{(k)} = P_k(A)r^{(0)}$$
 (1)

Krylov methods

Classical Krylov

$$K_k(A, v) = \operatorname{span}\{v, Av, A^2v, \dots, A^{k-1}v\}$$

the residual and error can then be written as

$$r^{(k)} = P_k(A)r^{(0)}$$
 (1)

Polynomial Preconditioning

$$P_m(A)x = q(A)Ax = q(A)b$$

$$K_k(P_m(A), v) = \operatorname{span}\{v, P_m(A)v, P_m(A)^2v, \dots, P_m(A)^{k-1}v\}$$
where $P_m(A) = (A - \sigma_1)(A - \sigma_2) \cdot \dots \cdot (A - \sigma_m)$ is a fixed low-order polynomial

$$r^{(k)} = Q_k(P_m(A))r^{(0)} \tag{2}$$

Incomplete list of the literature on polynomial preconditioning

- Y. Saad, *Iterative methods for sparse linear systems* Chapter 12, SIAM (2003).
- D. O'Leary, Yet another polynomials preconditioner for the Conjugate Gradient Algorithm, Lin. Alg. Appl. (1991) p377
- A. van der Ploeg, *Preconditioning for sparse matrices with applications*, (1994)
- M. Van Gijzen, *A polynomial preconditioner for the GMRES algorithm* J. Comp. Appl. Math **59** (1995): 91-107.
- A. Basermann, B. Reichel, C. Schelthoff, *Preconditioned CG methods for sparse matrices on massively parallel machines*, **23** (1997), 381398

i ..

Convergence of CG with different short Polynomials

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ④ ● ●

Time to solution is reduced

▲ロト ▲圖ト ▲画ト ▲画ト 三直 …のへ(で)

Recursive calculation of $w_{k+1} = p_{k+1}(A)v$

1:
$$\sigma_1 = \theta/\delta$$

2: $\rho_0 = 1/\sigma_1$
3: $w_0 = 0, w_1 = \frac{1}{\theta}Av$
4: $\Delta w_1 = w_1 - w_0$
5: **for** k=1,... **do**
6: $\rho_k = 1/(2\sigma_1 - \rho_{k-1})$
7: $\Delta w_{k+1} = \rho_k \left[\frac{2}{\delta}A(v - w_k) + \rho_{k-1}\Delta w_k\right]$
8: $w_{k+1} = w_k + \Delta w_{k+1}$
9: **end for**

Mangled with Pluto to raise arithmetic intensity.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Average cost for each matvec

2D 2024×2048 finite difference poisson problem on i7-2860QM

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

🔋 S. Williams, A. Waterman and D. Patterson (2008)

Relying on compiler autovectorization

Intel i7-2860QM

Part II

Arithmetic Intensity in Multigrid

Arithmetic Intensity Multigrid

$$MG = (I - I_{2h}^{h}(\ldots)I_{h}^{2h}A)S^{\nu_{1}},$$
(3)

where

- S is the smoother, for example ω -Jacobi where $S = I \omega D^{-1}A$,
- The interpolation I_{2h}^h and restriction I_{h}^{2h} .

These are all low arithmetic intensity.

Multigrid Cost Model

Increasing the number of smoothing steps per level

MG iterations = $\log(10^{-8})/\log(\rho(V-cycle))$

(日)、

-

where ρ (V-cycle) is the spectral radius of the V-cycle, can be rounded to higher integer

Work Unit Cost model

Work Unit cost model ignores memory bandwidth

 $1 \text{WU} = \text{smoother cost} = \mathcal{O}(n)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Attainable GFlop/sec

Average cost in sec/GFlop

・ロト ・ 雪 ト ・ ヨ ト

э

$$\langle \nu_{1} \times \omega \text{-}\mathsf{Jac} \rangle = \frac{\mathsf{flops}\left(\nu_{1} \times \omega \text{-}\mathsf{Jac}\right)}{\mathsf{roof}\left(q(\nu_{1} \times \omega \text{-}\mathsf{Jac})\right)} \approx \frac{\nu_{1}\mathsf{flops}\left(\omega \text{-}\mathsf{Jac}\right)}{\mathsf{roof}\left(\nu_{1}q_{1}(\omega \text{-}\mathsf{Jac})\right)} \quad (4)$$

Roofline-based vs naive cost model

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Timings for 2D 8190² (Sandy Bridge)

P. Ghysels and W. Vanroose, Modelling the performance of geometric multigrid on many-core computer architectures, Exascience.com techreport 09.2013.1 Sept, 2013,

3d results 511³ (Sandy Bridge)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

Current Krylov Solvers

- User provides a matvec routine and selects Krylov method at command line.
- No opportunities to increase arithmetic intensity.

Current Krylov Solvers

Future Krylov Solvers

- User provides a stencil routine.
- Stencil compiler increases arithmetic intensity.

method at command line.No opportunities to increase arithmetic intensity.

 User provides a matvec routine and selects Krylov

W.Vanroose, P. Ghysels, D. Roose and K. Meerbergen, Position paper at DOE Exascale Mathematics workshop 2013.

Part III

Pipelining communication and computations

GMRES, classical Gram-Schmidt

1:
$$r_0 := b - Ax_0$$

2: $v_0 := r_0/||r_0||_2$
3: for $i = 0, ..., m - 1$ do
4: $w := Av_i$
5: for $j = 0, ..., i$ do
6: $h_{j,i} := \langle w, v_j \rangle$
7: end for
8: $\tilde{v}_{i+1} := w - \sum_{j=1}^{i} h_{j,i}v_j$
9: $h_{i+1,i} := ||\tilde{v}_{i+1}||_2$
10: $v_{i+1} := \tilde{v}_{i+1}/h_{i+1,i}$
11: {apply Givens rotations to $h_{:,i}$ }
12: end for
13: $y_m := argmin||H_{m+1,m}y_m - ||r_0||_2e_1||_2$
14: $x := x_0 + V_m v_m$

Sparse Matrix-Vector product

- Only communication with neighbors
- Good scaling but BW limited.

Dot-product

- Global communication
- ► Scales as log(P)

Scalar vector multiplication, vector-vector addition

No communication

GMRES vs Pipelined GMRES iteration on 4 nodes Classical GMRES

Pipelined GMRES

P. Ghysels, T. Ashby, K. Meerbergen and W. Vanroose *Hiding* global communication latency in the GMRES algorithm on massively parallel machines. SIAM J. Scientific Computing, 35(1):C48C71, (2013).

Better Scaling

Prediction of a strong scaling experiment for GMRES on XT4 part of Cray Jaguar.

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

Are there similar opportunities in preconditioned Conjugate Gradients?

Preconditioned Conjugate Gradient

1:
$$r_0 := b - Ax_0; u_0 := M^{-1}r_0; p_0 := u_0$$

2: for $i = 0, ..., m - 1$ do
3: $s := Ap_i$
4: $\alpha := \langle r_i, u_i \rangle / \langle s, p_i \rangle$
5: $x_{i+1} := x_i + \alpha p_i$
6: $r_{i+1} := r_i - \alpha s$
7: $u_{i+1} := M^{-1}r_{i+1}$
8: $\beta := \langle r_{i+1}, u_{i+1} \rangle / \langle r_i, u_i \rangle$
9: $p_{i+1} := u_{i+1} + \beta p_i$
10: end for

Chronopoulos/Gear CG

Only one global reduction each iteration.

1:
$$r_0 := b - Ax_0$$
; $u_0 := M^{-1}r_0$; $w_0 := Au_0$
2: $\alpha_0 := \langle r_0, u_0 \rangle / \langle w_0, u_0 \rangle$; $\beta := 0$; $\gamma_0 := \langle r_0, u_0 \rangle$
3: for $i = 0, ..., m - 1$ do
4: $p_i := u_i + \beta_i p_{i-1}$
5: $s_i := w_i + \beta_i s_{i-1}$
6: $x_{i+1} := x_i + \alpha p_i$
7: $r_{i+1} := r_i - \alpha s_i$
8: $u_{i+1} := M^{-1}r_{i+1}$
9: $w_{i+1} := Au_{i+1}$
10: $\gamma_{i+1} := \langle r_{i+1}, u_{i+1} \rangle$
11: $\delta := \langle w_{i+1}, u_{i+1} \rangle$
12: $\beta_{i+1} := \gamma_{i+1} / \gamma_i$
13: $\alpha_{i+1} := \gamma_{i+1} / (\delta - \beta_{i+1} \gamma_{i+1} / \alpha_i)$
14: end for

(ロ)、(型)、(E)、(E)、 E) の(の)

pipelined Chronopoulos/Gear CG

Global reduction overlaps with matrix vector product.

1:
$$r_0 := b - Ax_0$$
; $w_0 := Au_0$
2: for $i = 0, ..., m - 1$ do
3: $\gamma_i := \langle r_i, r_i \rangle$
4: $\delta := \langle w_i, r_i \rangle$
5: $q_i := Aw_i$
6: if $i > 0$ then
7: $\beta_i := \gamma_i / \gamma_{i-1}$; $\alpha_i := \gamma_i / (\delta - \beta_i \gamma_i / \alpha_{i-1})$
8: else
9: $\beta_i := 0$; $\alpha_i := \gamma_i / \delta$
10: end if
11: $z_i := q_i + \beta_i z_{i-1}$
12: $s_i := w_i + \beta_i s_{i-1}$
13: $p_i := r_i + \beta_i p_{i-1}$
14: $x_{i+1} := x_i + \alpha_i p_i$
15: $r_{i+1} := r_i - \alpha_i z_i$
16: $w_{i+1} := w_i - \alpha_i z_i$
17: end for

(ロ)、(型)、(E)、(E)、 E) の(の)

Preconditioned pipelined CG

1: $r_0 := b - Ax_0$: $u_0 := M^{-1}r_0$: $w_0 := Au_0$ 2: for i = 0, ... do 3: $\gamma_i := \langle r_i, u_i \rangle$ 4: $\delta := \langle w_i, u_i \rangle$ 5: $m_i := M^{-1} w_i$ 6: $n_i := Am_i$ 7: if i > 0 then $\beta_i := \gamma_i / \gamma_{i-1}; \ \alpha_i := \gamma_i / (\delta - \beta_i \gamma_i / \alpha_{i-1})$ 8: 9: else 10: $\beta_i := 0; \alpha_i := \gamma_i / \delta$ end if 11: 12: $z_i := n_i + \beta_i z_{i-1}$ 13: $q_i := m_i + \beta_i q_{i-1}$ 14: $s_i := w_i + \beta_i s_{i-1}$ 15: $p_i := u_i + \beta_i p_{i-1}$ 16: $x_{i+1} := x_i + \alpha_i p_i$ 17: $r_{i+1} := r_i - \alpha_i s_i$ 18: $u_{i+1} := u_i - \alpha_i q_i$ 19: $W_{i+1} := W_i - \alpha_i Z_i$ 20: end for

Preconditioned pipelined CR

1:
$$r_0 := b - Ax_0$$
; $u_0 := M^{-1}r_0$; $w_0 := Au_0$
2: for $i = 0, ...$ do
3: $m_i := M^{-1}w_i$
4: $\gamma_i := \langle w_i, u_i \rangle$
5: $\delta := \langle m_i, w_i \rangle$
6: $n_i := Am_i$
7: if $i > 0$ then
8: $\beta_i := \gamma_i / \gamma_{i-1}$; $\alpha_i := \gamma_i / (\delta - \beta_i \gamma_i / \alpha_{i-1})$
9: else
10: $\beta_i := 0$; $\alpha_i := \gamma_i / \delta$
11: end if
12: $z_i := n_i + \beta_i z_{i-1}$
13: $q_i := m_i + \beta_i q_{i-1}$
14: $p_i := u_i + \beta_i p_{i-1}$
15: $x_{i+1} := x_i + \alpha_i p_i$
16: $u_{i+1} := u_i - \alpha_i q_i$
17: $w_{i+1} := w_i - \alpha_i z_i$
18: end for

Cost Model

- G := time for a global reduction
- SpMV := time for a sparse-matrix vector product
- ► PC := time for preconditioner application
- Iocal work such as AXPY is neglected

	flops	time (excl, AXPYs, DOTs)	#glob syncs	memory
CG	10	2G + SpMV + PC	2	4
Chro/Gea	12	G + SpMV + PC	1	5
CR	12	2G + SpMV + PC	2	5
pipe-CG	20	max(G, SpMV + PC)	1	9
pipe-CR	16	max(G, SpMV) + PC	1	7
Gropp-CG	14	$\max(G,SpMV) + \max(G,PC)$	2	6

P. Ghysels and W. Vanroose, *Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm*, Parallel Computing, **40**, (2014), Pages 224238

Better Scaling

- \blacktriangleright Hydrostatic ice sheet flow, 100 \times 100 \times 50 Q1 finite elements
- ▶ line search Newton method (rtol = 10^{-8} , atol = 10^{-15})
- CG with block Jacobi ICC(0) precond (rtol = 10^{-5} , atol = 10^{-50})

Measured speedup over standard CG for different variations of pipelined CG.

-

MPI trace

Conjugate Gradients for 2D 5-point stencil

Pipelined Conjugate Gradients

Pipelined methods in PETSc (from 3.4.2)

- Krylov methods: KSPPIPECR, KSPPIPECG, KSPGROPPCG, KSPPGMRES
- Uses MPI-3 non-blocking collectives
- export MPICH_ASYNC_PROGRES=1

```
1: ...
```

- 2: KSP_PCApply(ksp,W,M); /* m \leftarrow Bw */
- 3: if (i > 0 && ksp \rightarrow normtype == KSP_NORM_PRECONDITIONED)
- VecNormBegin(U,NORM_2,&dp);
- 5: VecDotBegin(W,U,&gamma);
- 6: VecDotBegin(M,W,&delta);
- 7: PetscCommSplitReductionBegin(PetscObjectComm((PetscObject)U));
- 8: KSP_MatMult(ksp,Amat,M,N); /* n \leftarrow Am */
- 9: if (i > 0 && ksp \rightarrow normtype == KSP_NORM_PRECONDITIONED)
- 10: VecNormEnd(U,NORM_2,&dp);
- 11: VecDotEnd(W,U,&gamma);
- 12: VecDotEnd(M,W,&delta);
- 13: ...

Krylov subspace methods with additional global reductions

- ► Deflation: Remove a few known *annoying* eigenvectors.
 - Helmholtz.
 - FETI methods.

▶ ...

- Augmenting: adds a subspace to the Krylov subspace, e.g. recycling.
 - Newton-Krylov methods.
 - Numerical Continuation.
 - Coarse Solver in multigrid.

▶ ...

$$S_n := \mathcal{K}_n(A, v) + \mathcal{U}$$

$$x_n = x_0 + V_n y_n + U u_n$$
(5)

where U forms a basis for U.

Deflation with eigenvectors with smallest eigenvalues

Smallest eigenvalues and vectors:

$$A[w_1, w_2, \dots, w_m] = [\lambda_1 w_1, \lambda_2 w_2, \dots, \lambda_m w_m] + \epsilon[\Theta]$$

where $\lambda_1 < \lambda_2 < \lambda_3 < \dots < \lambda_m < \dots$ and $\|\Theta\| \approx 1$.

$$W:=[w_1,w_2,\ldots,w_m]$$

Correction step

$$e = W(W^T A W)^{-1} W^T r$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Deflated CG

1:
$$r_{-1} := b - Ax_{-1}$$

2: $x_0 := x_{-1} + W(W^T A W)^{-1} W^T r_{-1}$
3: $r_0 := b - Ax_0$
4: $p_0 := r_0 - W(W^T A W)^{-1} W^T A r_0$
5: for $i = 0, ...$ do
6: $s := Ap_i$
7: $\alpha_i := \langle r_i, r_i \rangle / \langle s, p_i \rangle$
8: $x_{i+1} := x_i + \alpha_i p_i$
9: $r_{i+1} := r_i - \alpha_i s$
10: $\beta_i := \langle r_{i+1}, r_{i+1} \rangle / \langle r_i, r_i \rangle$
11: $w := A r_{i+1}$
12: $\sigma := \langle W, w \rangle$
13: $p_{i+1} := r_{i+1} + \beta_i p_i - W(W^T A W)^{-1} \sigma$
14: end for

► x_0 such that $W^T r_0 = 0$ with $r_0 = b - Ax_0$ (cfr init-CG) ► $\sigma = \langle W, w \rangle = \langle W, Ar_{i+1} \rangle = \langle AW, r_{i+1} \rangle$: store AW? ► CG on $H^T A H \tilde{x} = H^T b$ with $H = I - W (W^T A W)^{-1} (A W)^T$

Pipelined Deflation CG

Pipe-Def-CG(A, M^{-1} , b, x_{-1} , W) $r_0 = b - Ax_0$ $x_0 = x_0 + W(W^T A W)^{-1} W^T r_0$ $r_0 = b - Ax_0$ $p_0 = r_0 - W(W^T A W)^{-1} W^T A r_0$ $w_0 = Ar_0$ for i = 0, ... do $\gamma_i = (r_i, r_i), \quad \delta = (w_i, r_i)$ $\sigma = (W, w_i)$ $q_i = Aw_i$ if i > 0 then $\beta_i = \gamma_i / \gamma_{i-1}, \quad \alpha_i = \gamma_i / (\delta - \beta_i \gamma_i / \alpha_{i-1})$ else $\beta_i = 0, \quad \alpha_i = \gamma_i / \delta$ end if $z_i = q_i + \beta_i z_{i-1} - A^2 W (W^T A W)^{-1} \sigma$ $s_i = w_i + \beta_i s_{i-1} - AW(W^T AW)^{-1} \sigma$ $p_i = r_i + \beta_i p_{i-1} - W(W^T A W)^{-1} \sigma$ $x_{i+1} = x_i + \alpha_i p_i$ $r_{i+1} = r_i - \alpha_i s_i$ $w_{i\perp 1} = w_i - \alpha_i z_i$ end for

• 2D 100² Poisson, *d* = 20

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

True vs update residual

Selective Deflation

• $2D \ 100^2$ Poisson equation

o d	= 20
-----	------

ϵ	10^{-12}	10^{-8}	10^{-4}
cg	431	431	431
init-cg	330	387	423
dcg	243	243	243
sdcg	242/16	242/ <mark>22</mark>	242/ <mark>42</mark>
sdcg1	244/ <mark>16</mark>	244/ <mark>23</mark>	244/ <mark>41</mark>

 $\epsilon = 10^{-12}$

Sel-DCG1(A, M^{-1} , b, x_{-1} , W, λ_1 , ϵ)

1:
$$x_0 = x_{-1} + W(W^T AW)^{-1}W^T (b - Ax_{-1})$$

2: $r_0 = b - Ax_0$
3: $p_0 = r_0 - W(W^T AW)^{-1}W^T Ar_0$
4: $\phi_0 = 0, \ \psi_0 = 0$
5: for $i = 0, ...$ do
6: $w = Ar_i$
7: $\gamma_i = (r, r_i), \ \delta = (w, r_i)$
8: if $\psi_i/||r_i|| > \tau$ then
9: $\zeta = (W, r_i), \ \eta = (W, w)$
10: end if
11: if $i > 0$ then
12: $\beta_i = \gamma_i / \gamma_{i-1}, \ \alpha_{i+1} = \gamma_i / (\delta - \beta_i \gamma_i / \alpha_i)$
13: else
14: $\beta_i = 0, \ \alpha_{i+1} = \gamma_i / \delta$
15: end if
16: if $\psi_i/||r_i|| > \tau$ then
17: $r_i = r_i - W (W^T W)^{-1} \zeta$
18: $p_i = r_i + \beta_i p_{i-1} - W (W^T AW)^{-1} \eta$
19: $s_i = w_i + \beta_i s_{i-1} - AW (W^T AW)^{-1} \eta$
20: $\phi_{i+1} = 0, \ \psi_{i+1} = 0$
21: else
22: $p_i = r_i + \beta_i p_{i-1}$
23: end if
24: $x_{i+1} = x_i + \alpha_{i+1} p_i$
25: $r_{i+1} = r_i - \alpha_{i+1} s$
26: $\psi_{i+1} = \psi_i + \phi_i |\alpha_i| ||M^{-1} A||$
27: $\phi_{i+1} = \psi_i + \phi_i |\beta_i| + \epsilon \lambda_1^{-1} ||r_i|| ||W||$
28: end for

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Def-CG needs more flops but less iterations (less communication)
 - improved scalability
- DCG1 and pipe-DCG improve scalability further

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Def-CG needs more flops but less iterations (less communication)
 - improved scalability
- DCG1 and pipe-DCG improve scalability further
- Selective deflation reduces number of flops

- Two communication bottlenecks:
 - ▶ limited BW in Av. No benefit from SIMD.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Latencies in (u, v). Poor strong scaling.

- Two communication bottlenecks:
 - ▶ limited BW in Av. No benefit from SIMD.
 - Latencies in (u, v). Poor strong scaling.
- Replace Av with a $P_m(A)v$ with a fixed coefficients.
 - Execute with a stencil compiler.
 - Combine with Multigrid.
 - Many open question for unstructured matrices.

- Two communication bottlenecks:
 - ▶ limited BW in Av. No benefit from SIMD.
 - Latencies in (u, v). Poor strong scaling.
- Replace Av with a $P_m(A)v$ with a fixed coefficients.
 - Execute with a stencil compiler.
 - Combine with Multigrid.
 - Many open question for unstructured matrices.
- Pipelining of Krylov algorithms reduce the number of global reductions and hide their latencies.
 - They can scale as the Sparse Matrix-Vector product.
 - ► The pipelined GMRES and CG code is in PETSc-current.

 Extension to Deflated and Augmented Krylov methods. Algorithms with additional global reductions.

- Two communication bottlenecks:
 - ▶ limited BW in Av. No benefit from SIMD.
 - Latencies in (u, v). Poor strong scaling.
- Replace Av with a $P_m(A)v$ with a fixed coefficients.
 - Execute with a stencil compiler.
 - Combine with Multigrid.
 - Many open question for unstructured matrices.
- Pipelining of Krylov algorithms reduce the number of global reductions and hide their latencies.
 - They can scale as the Sparse Matrix-Vector product.
 - ► The pipelined GMRES and CG code is in PETSc-current.
 - Extension to Deflated and Augmented Krylov methods. Algorithms with additional global reductions.

Acknowledgements:

- EU's Seventh Framework Programme (FP7/2007-2013) under grant agreement n 610741.
- Intel and the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT).