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I) Machine Learning and 
rare event algorithms



Commitors are often optimal score 
functions for rare event algorithms

• A good choice of a selection rule (the score function) 
is crucial for the effectiveness of rare event 
algorithms. 

• The commitor q(x), for two sets A and B, is the 
probability that a trajectory starting at the point x  
reaches the set B before the set A:

q(x) = ℙ(tB(x) < tA(x))
where tC(x) = inf{t : X(t) ∈ C |X(0) = x}

• The commitor is the optimal score function.



Machine learning of commitor functions 
and feedback loop control for rare event 

algorithms
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Bouchet, Jack, Lecomte, Nemoto, PRE, 2016  



II) Machine learning and 
dynamical model reduction 



The jet stream



Markov model reduction

•    is the state variable of the initial Markov 
process, MD=P* its temporal evolution. 

•               is the reduced variable. P its 
dynamics (a linear operator).  

•                                      a decoder. 
• We want to learn  

xt

yt = E(xt)

D/G(x, yt) = ℙ(xt = x |yt)
E, P, and possibly D/G



Machine learning for model 
reduction

What criteria? Which loss function? 

Mardt, Pasquali, Wu and Noé, Nature Communication, 2018



Generator of a Markov process 
and singular value decomposition

• Singular value decomposition of the 
transfer operator

P* (xt+τ |xt) =
∞

∑
n=1

σ*n ψ*n (xt+τ) ϕ*n (xt)
• We l o o k f o r a fi n i t e d i m e n s i o n a l 

approximation of the transfer operator (or of 
the infinitesimal generator)

P* (xt+τ |xt) =
N

∑
n=1

σ*n ψ*n (xt+τ) ϕ*n (xt)



Finite dimensional approximation 
of the Markov chain

• We consider approximation of the right 
singular-vectors             in the span of 

P* (xt+τ |xt) =
∞

∑
n=1

σ*n ψ*n (xt+τ) ϕ*n (xt)

• The approximated evolution is computed 
from the data. 

• The projected transfer operator is 

P (yt+τ |yt) =
N

∑
n=1

σnunvT
n ,

{ϕn}1≤n≤N
y = E(x) .

where                and         are computed such 
that this is the SDV of the projected operator. 

              

{un},{vn}, σn



Optimal truncation
For any             we have:

For 1 ≤ n ≤ N : 0 ≤ σn < σ*n
And

For 1 ≤ n ≤ N : σn = σ*n ⟺ En = ϕ*n

• This is the optimal truncation in the sense 
that i t is a per fect N dimensional 
approximation of the SVD of the Markov 
chain.

y = E(x),



Optimal truncation and loss 
function

We have:
For 1 ≤ n ≤ N : 0 ≤ σn < σ*n

And
For 1 ≤ n ≤ N : σn = σ*n ⟺ En = ϕ*n

• Then a good loss function could be any of 
the functions

Lk = −
N

∑
n=1

(σn)k



Conclusion
• For complex dynamical systems and 

Markov processes, several fundamental 
problems should be approached from a 
machine learning perspective (model 
reduction, parameterisation, prediction 
problems, commitor function sampling, etc) 

• Machine learning should help us tackle 
many fundamental problems in climate 
dynamics or astronomy (extreme event 
probability, effective dynamics, turbulence 
parameterisation, etc)


