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Predicting weather and climate: Why is it so hard?

www.gfdl.noaa.gov

The Earth System is complex, huge and chaotic and we do not have sufficient resolution
to resolve all important processes.
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Ensemble forecasts to prediction model uncertainty
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Ensemble forecasts to prediction model uncertainty
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The ensemble spread holds information about forecast uncertainty.
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Accuracy adjusted to predictability
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We can use the ensemble spread to adjust numerical precision.
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Less numerical precision → more computing power
Double precision (64 bits) is used almost exclusively in weather and climate modelling.

Reduce numerical precision

→ lower power, higher performance.

→ higher resolution or increased complexity.

→ more accurate predictions of future weather and climate.

Temperature in Paris:
double precision (64 bits): 14.561192512512207◦C
single precision (32 bits): 14.5611925◦C
half precision (16 bits): 14.5625◦C

But can we really do it? And how far can we go?
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ECMWF’s weather forecast model in single precision

I Forecast quality in double and single precision is almost identical.

I 40% reduction of run time.

I Benefit for global simulations at cloud-resolving resolution.
Düben and Palmer MWR 2014; Váňa, Düben et al. MWR 2017; Düben et al. ECMWF Newsletter 2018

Can we go lower than single precision?
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Machine learning hardware for fast simulations with low precision
Relative cost for model components for a non-hydrostatic model at 1.45 km resolution:

I The Legendre transform is the most expensive kernel. It consists of a large number
of standard matrix-matrix multiplications.

I If we can re-scale the input and output fields, we can use half precision arithmetic.

I Tensor Cores on NVIDIA Volta GPUs are optimised for half-precision matrix-matrix
calculations with single precision output. 7.8 TFlops for double precision vs. 125
TFlops for half precision on the Tensor Core.
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Half precision Legendre Transformations
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A scale-selective approach to adjust precision

I Spectral models allow to treat different scales at different precision.

I We can reduce precision when calculating the small scales.

I This is intuitive due to the high inherent uncertainty in small scale dynamics
(parametrisation, viscosity, data-assimilation,...).

I The smallest scales are most expensive.
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A scale-selective approach

A scale-dependent reduction in precision for the surface quasi-geostrophic equations.

Forecast simulations confirm that a scale-selective approach is much more efficient than
a uniform precision reduction.

Thornes, Düben and Palmer QJRMS 2017, Thornes, Düben and Palmer QJRMS 2018
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A scale-selective approach: Track of Hurricane Irma

I Simulations with OpenIFS at 40 km resolution.

I The scale-selective simulation is using scale-selective precision in spectral space. An
average of 8.6 bits is used for the significand.

Chantry, Thornes, Palmer, Dueben MWR 2019
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Rounding errors adjusted to model error

We want rounding errors to be approximately equal to model errors.

The uncertainty of initial conditions provides the level for precision at the beginning of the
forecast.

Error growth of errors in initial conditions is roughly exponential.

Rounding errors will decrease exponentially with the number of bits.

→ Precision should be reduced linearly with forecast lead time (proportional to the leading
Lyapunov exponent).

This would reduce cost by approximately a factor of two.

Limitations: Linear error growth of model error and seasonal predictions.
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Rounding errors adjusted to model error
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Left: Logarithm of the Mean Squared Error for simulations with Lorenz’95.

Right: Error for ECMWF data at different levels of precision.

Rounding errors can be linked to the level of model error.

Precision should be reduced with forecast lead time.

Düben et al. JAMES 2015, Cooper, Düben et al. submitted to MWR
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To use verificarlo to diagnose precision reduction

Left: Forecast error with reduced precision emulator (Dawson and Dueben GMD 2017).

Right: Error propagation diagnosed by Verificarlo.

Cooper, Düben et al. submitted to MWR
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Data assimilation with reduced precision
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Data assimilation in Lorenz’95 using an Ensemble Kalman filter. Hatfield, Dueben, Palmer JAMES 2018

A large ensemble at low precision is better than a small ensemble at high precision.

We gain almost one “day” in terms of predictability.

However, 4DVar data assimilation may be more difficult...
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Bitwise information content and predictability

Information content of bits for a Lorenz’63 model using a single long term integration and
Shannon information theory.

It is possible to identify information content of individual bits and their impact on
predictability into the future.

Jeffress, Düben and Palmer Proc. R. Soc. A 2017
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What number format to use?

16 bits is not much so you may need to show some flexibility and use Posits.

Left: Dynamic number ranges of 16 bit Posit formats and 16 bit half precision floats.
Right: Forecast error for a shallow water model if reduced precision is used.
Kloewer, Düben and Palmer CONGA 2019
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Reduce precision in weather and climate models

What we still need:

I Tools that allow an automated search for the optimal precision level when non-linear
feedbacks are present.

I A basic understanding how to formulate models to minimize numerical precision
(re-scaling of equations, perturbation approaches, multi-grid solvers...).

I Tools to predict a performance increase from a precision reduction for a given
hardware.

I Information how future hardware and hardware co-design will look like
(CPUs, GPUs, TPUs, FPGAs, ASICs...).
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Conclusions

I Reducing precision can free resources to increase resolution of weather and climate
models.

I Single precision is providing almost identical forecast skill when compared to double
precision simulations.

I For single precision, savings are mainly generated via a reduction of cash misses
and improved vectorization.

I A further reduction beyond single precision for expensive kernels is possible and
promising.

I Verificarlo can be used to test for the impact of a reduction in precision.

I We will need better performance models to drive precision reduction in the future.
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