a

) , \u

/i
)

4
) |

Floating-point profiling of ACTS using Verrou

Hadrien Grasland David Chamont Francois Févotte Bruno Lathuiliere
CNRS - LAL EDF R&D - PERICLES
© AIDA % s

- This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.

Verrou: a floating-point error checker

Run any program in Valgrind

Verrou alters the rounding of
its floating-point operations

— Small effect on a stable
numerical computation

- Large impact if unstable
(— caught by test suite)

Also points out presence of NaNs
(— often symptom of silent failure)

1/3
0.333 l 0.334 0.335 R
— i } >
W ma L s 4 F

{4

\@ @
oo 0
@ 00 ©
o o o o
e e o000
© 000000
afl3lsl.

Underlying theory: asynchronous CESTAC method, Monte Carlo Arithmetic

Choices of rounding mode

« Stochastic modes:
- Random: 50/50 choice between upward/downward
- Average: upward/downward probability determined from exact result
- Few false positives (no change on average), but non-deterministic
- Best for initial exploration, can force an RNG seed to reproduce a run

 Deterministic modes:
- Upwards, downwards, towards 0, farthest

— Can be convenient for failure analysis, especially delta-debugging

Delta-debugging

* Locates the origin of a verrou-induced test failure

Combines an include/exclude mechanism with binary search
Can go down to the granularity of individual lines of code
Requires debug information (“-g” compiler flag, “-debuginfo” packages...)

* Very powerful, but takes a while to master

Prefer deterministic rounding modes if they reproduce your instability
Otherwise, must tune number of executions before declaring success

If your test uses random input, force a specific seed that reproduces failure
Even with binary search, can take a while to converge

The joy of verrou_dd

perturb nothing

perturb all functions

v

ddmaxr(global)f

SurfaceArrayCreatorTests.cpp:127 (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
SurfaceArrayCreatorTests. (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
SurfaceArrayCreatorTests. (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
SurfaceArrayCreatorTests. (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
SurfaceArrayCreatorTests. (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
SurfaceArrayCreatorTests. (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
SurfaceArrayCreatorTests. (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
SurfaceArrayCreatorTests. (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
SurfaceArrayCreatorTests.cpp:145 (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
SurfaceArrayCreatorTests.cpp:146 (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
/root/acts-core/build/dd.line/d75047bd521d366772ed3d4c7c568d2e --(run)-> FAIL(O)

dd (run #2): trying 5 + 5
/root/acts-core/build/dd.line/5e10220d10c2190cfch826fd41lee7bd --(run)-> PASS

dd: 5 deltas left:
SurfaceArrayCreatorTests.cpp:127 (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
SurfaceArrayCreatorTests. (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
SurfaceArrayCreatorTests. (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
SurfaceArrayCreatorTests. (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
SurfaceArrayCreatorTests.cpp:140 (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
/root/acts-core/build/dd.line/7a5322bddf57197c54eea333810abae5 --(run)-> FAIL(O)

dd (run #3): trying 2 + 3
/root/acts-core/build/dd.line/4422ef95b34880F35036ch8e3b472dfb --(run)-> FAIL(0)
/root/acts-core/build/dd.line/847c43ef521eba2787dce6641522b594 --(run)-> PASS

dd: 3 deltas left:
SurfaceArrayCreatorTests.cpp:138 (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
SurfaceArrayCreatorTests.cpp:139 (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
SurfaceArrayCreatorTests.cpp:140 (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
/root/acts-core/build/dd.line/f93d07fc8297ech70f789e3b6d61786d --(run)-> FAIL(0)

dd (run #4): trying 1 + 2
/root/acts-core/build/dd.line/db7db6ec4fc361c18e8d1561f65c164e --(run)-> PASS

dd: 1 deltas left:
SurfaceArrayCreatorTests.cpp:138 (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
/root/acts-core/build/dd.line/9f73270ae01c6d4b57fa6fab20904546 --(run)-> FAIL(O)
dd: done
ddmax (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd) :
SurfaceArrayCreatorTests.cpp:138 (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)
/root/acts-core/build/dd.line/9f73270ae01c6d4b57fa6fab20904546 --(cache)-> FAIL

SurfaceArrayCreatorTests.cpp:221 (_ZN4Acts4Test26SurfaceArrayCreatorFixturelTmakeBarrelStaggerEiidddd)
SurfaceArrayCreatorTests.cpp:103 (_ZN4Acts4Test26SurfaceArrayCreatorFixture2lfullPhiTestSurfacesECEmddddd)
SurfaceArrayCreatorTests.cpp:138 (_ZN4Acts4Test26SurfaceArrayCreatorFixture22fullPhiTestSurfacesBRLEmddddd)

0docdbadocod: ~/acts—core/build # |J

ACTS (A Common Tracking Software)

* Project goals:
— Major clean-up of ATLAS Run 2 tracking
- Usable by other experiments, R&D projects
— See presentations by A. Salzburger*

* My main areas of interest:

- Performance (algorithms, trigonometry,
vectorization, memory accesses...)

- Quality (thread-safety, maintainability,
numerical accuracy...)

* For example

https://indico.cern.ch/event/587955/contributions/3012710/

Stress-testing ACTS using Verrou

e Build recommendations:
- CMAKE_BUILD_TYPE=Debug
- ACTS_BUILD_TESTS=0ON
— ACTS_BUILD_INTEGRATION_TESTS=0ON
- As many plug-ins as your patience allows!

« Usage on unit tests:

— valgrind --tool=verrou \
-rounding-mode=random \
--trace-children=yes* ctest -j8

The following tests FAILED:

3_

5

6
15
24
26
27
33
34
35
41
48
49
51
52
59
61
63
64

* By default, Valgrind does not attach to the extra processes spawned by ctest

ParameterSetUnitTest (Failed)
CurvilinearParametersUnitTests (Failed)
BoundParametersUnitTests (Failed)
ProtoLayerUnitTest (Failed)
PropagatorUnitTests (Failed)
SeedingUnitTest (Failed)
SeedingToolsUnitTest (Failed)
CylinderSurfaceUnitTest (Failed)
ConeSurfacelUnitTest (Failed)
DiscSurfaceUnitTest (Failed)
ConeBoundsUnitTest (Failed)
DiscTrapezoidalBoundsUnitTest (Failed)
SurfaceArrayUnitTest (Failed)
GeometryIDUnitTest (Failed)
BinningDataUnitTest (Failed)
InterpolationUnitTest (Failed)
CylinderVolumeBoundsUnitTest (Failed)
SurfaceArrayCreatorUnitTest (Failed)
LayerCreatorUnitTest (Failed)

Issues in the original code

* In the tests:
- Fragile float comparisons (exact, relative near 0, uncontrolled text dump)
- Using floating-point pow() to compute powers of 2
— Some tests gratuitously injected NaNs in input, obscuring actual FP errors -/
- One test is extremely sensitive to rounding of (2n/N) — Not elucidated yet

* In ACTS itself:
— Divisions whose denominators can get arbitrarily close to zero
- Compute ¢ coordinate difference via two atan2 + subtract + wraparound

* False positives:
- libm's sin/cos/tan algorithms are rounding-sensitive: leave them alone

Step 2: Move to single precision

* The challenge:

HEP code tends to use double precision as a safe default
Single-precision compute is at least 2x as fast*, more on some hardware
Single-precision isn't always enough (gives ~10-6 precision, but m, >> 106 m....)

Choice of precision is undocumented, can't tell if double used on purpose

 [nitial plan:

Move all current hard-coded doubles to single-precision, see what breaks
Tune tolerance up a bit & use delta-debugging to locate where things break
Selectively bring back double precision (or compensated algorithms) as needed

* Uses 2x less cache space & memory bandwidth, enables 2x wider vectorization

First round of findings

e More test suite woes

Even more exact float equality / uncontrolled text dump comparisons

Some very low relative tolerances (10-17) — Arbitrary or intentional?

Edge effects (e.g. min <= value < max) — Probably a false positive in this case
Some tests help more than others (detailed comparisons >> success flag)

 But also...

Incorrect call to Eigen::Transform constructor which only worked by luck ()
ACTS inverts a matrix on every global—surface-local coordinate conversion
Footguns in boost::test’s handling of tolerances (percentages, float != double...)

10

Limits of initial approach

Single precision dev branch was unmaintainable
— Changing every “double” to “float” = merge conflicts with everything

Solved by “float” rounding mode in verrou 2.0
— Greatly reduced magnitude of single-precision patch
- Almost as good as real port (but doesn't like std::numeric_limits & such)

Led to more findings
- Uninitialized memory used in average with 0 weight (0 x NaN != 0)
- Broken covariance matrix comparison logic (single relative tolerance)

- Waiting for uNSzlvl-En u, where u,>u,
o0

11

Conclusions

Verrou is a nice validation tool for numerical code
— Easy to get started, catches many classic floating-point issues
- Helps finding some suspicious (e.g. unnecessarily complex) code
— No magic bullet: Depends heavily on the quality of your test suite

Using it was beneficial to ACTS code quality
— Comparison and tolerances in test were deeply re-thought
- Uncovered several classic numerical gotchas in core codebase

Single-precision port sadly remained a prototype
— Did not find answer to “How much precision do you really need ?”

12

Perspectives

* Found areas of future Verrou improvement

Better default configuration (e.g. automatically exclude libm false positives)
verrou_dd is slow and serial, needs parallelization + algorithm work
Narrowing down rare failures with verrou_dd can be difficult

verrou_dd could use backtrace sensitivity (for “dot product failures”)

* Verrou already improved much during this study

Support for longer symbol names (~mandatory for modern C++)
Python 3 compatibility in verrou_dd
verrou_dd restricted to symbols with FP ops

“Float” rounding mode, backtrace on NaN
13

Questions? Comments?

https://github.com/edf-hpc/verrou

IEEE-754 floating-point is hard

Internally uses base 2 — Most decimals numbers are not stored exactly
Not associative — [(1 + 1030) — 1030] # [1 + (1030 — 1030)]

Not totally ordered — Think before you sort a list of floats...
Javascript-style error handling — Trivial mistakes easily get ignored
List accumulation can saturate — Addition is dangerous

Catastrophic cancellation — Subtraction is dangerous

Limited exponent range — Multiplication and division are dangerous

Full of correctness edge cases — +/-0, multiple NaNs, denormals, +/-inf...
Full of performance pitfalls — Trigonometry, sqrt, div, NaNs, subnormals...

Not optimized by compilers — Byproduct of previous properties

15

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15

