
Romain VELTZ

A tour of BifurcationKit.jl

Journée Julia 2022

1 / 57

Why Julia?

🤔

Outline

1. Introduction to Bifurcation Theory

2. Introduction to BifurcationKit.jl

3. Focus on equilibria

4. Focus on Periodic orbits

5. what about the docs?

6. The future of BifurcationKit.jl

1 / 57

1. Bifurcation Theory

1 / 57

Introduction to Bifurcation theory

Goal: predict new (time dependent) solutions to

as function of a scalar parameter .

= F(x, p)
dx

dt

p ∈ ℝ

2 / 57

Introduction to Bifurcation theory

Goal: predict new (time dependent) solutions to

as function of a scalar parameter .

(Equilibrium/Stationary point) Encompasses finding roots

= F(x, p)
dx

dt

p ∈ ℝ

F(, p) = 0xeq

3 / 57

Introduction to Bifurcation theory

Goal: predict new (time dependent) solutions to

as function of a scalar parameter .

(Equilibrium/Stationary point) Encompasses finding roots

indeed in this case is a solution: .

= F(x, p)
dx

dt

p ∈ ℝ

F(, p) = 0xeq

x(t) ≡ xeq x(t) = 0 = F(x(t), p)d

dt

4 / 57

Example with Fold map

= p − ∈ ℝ
dx

dt
x2

5 / 57

Example with Fold map

= p −
dx

dt
x2

6 / 57

Example with Fold map

= −
dx

dt
x2

7 / 57

Example with Fold map (creation/annihilation of equilibria)

= p −
dx

dt
x2

8 / 57

Example with Stuart-Landau oscillator

= (p + iω − |z)z ∈ ℂ, z = x + iy, p ∈ ℝ
dz

dt
|2

9 / 57

Example with Stuart-Landau oscillator (Hopf bifurcation)

= (p + iω − |z)z ∈ ℂ, z = x + iy, p ∈ ℝ
dz

dt
|2

10 / 57

Bifurcation theory amounts to

11 / 57

Bifurcation theory amounts to

1. continue (all) equilibria (zeroes) of as function of scalar parameter F(x, p) p

12 / 57

Bifurcation theory amounts to

1. continue (all) equilibria (zeroes) of as function of scalar parameter

2. compute stability of the equilibria (given by number of eigenvalues with
)

F(x, p) p

λ(p)

ℜλ(p) > 0

13 / 57

Bifurcation theory amounts to

1. continue (all) equilibria (zeroes) of as function of scalar parameter

2. compute stability of the equilibria (given by number of eigenvalues with
)

3. detect a bifurcation point precisely, i.e. when

Case : new equilibria (maybe)
Case : nearby oscillations with frequency (maybe Hopf
Bifurcation)

F(x, p) p

λ(p)

ℜλ(p) > 0

p0 ℜλ() = 0p0

λ() = 0p0

λ() = ±iωp0 ω

14 / 57

Bifurcation theory amounts to

1. continue (all) equilibria (zeroes) of as function of scalar parameter

2. compute stability of the equilibria (given by number of eigenvalues with
)

3. detect a bifurcation point precisely, i.e. when

Case : new equilibria (maybe)
Case : nearby oscillations with frequency (maybe Hopf
Bifurcation)

4. switch to new branch of solutions and go to 1. (Branch switching)

F(x, p) p

λ(p)

ℜλ(p) > 0

p0 ℜλ() = 0p0

λ() = 0p0

λ() = ±iωp0 ω

15 / 57

Bifurcation theory amounts to

1. continue (all) equilibria (zeroes) of as function of scalar parameter

2. compute stability of the equilibria (given by number of eigenvalues with
)

3. detect a bifurcation point precisely, i.e. when

Case : new equilibria (maybe)
Case : nearby oscillations with frequency (maybe Hopf
Bifurcation)

4. switch to new branch of solutions and go to 1. (Branch switching)

What is needed:

F(x, p) p

λ(p)

ℜλ(p) > 0

p0 ℜλ() = 0p0

λ() = 0p0

λ() = ±iωp0 ω

16 / 57

Bifurcation theory amounts to

1. continue (all) equilibria (zeroes) of as function of scalar parameter

2. compute stability of the equilibria (given by number of eigenvalues with
)

3. detect a bifurcation point precisely, i.e. when

Case : new equilibria (maybe)
Case : nearby oscillations with frequency (maybe Hopf
Bifurcation)

4. switch to new branch of solutions and go to 1. (Branch switching)

What is needed:

1. Compute jacobian (ForwardDiff.jl,...), solve (large) linear systems
(IterativeSolvers.jl, Krylov.jl, KrylovKit.jl,...)

F(x, p) p

λ(p)

ℜλ(p) > 0

p0 ℜλ() = 0p0

λ() = 0p0

λ() = ±iωp0 ω

17 / 57

Bifurcation theory amounts to

1. continue (all) equilibria (zeroes) of as function of scalar parameter

2. compute stability of the equilibria (given by number of eigenvalues with
)

3. detect a bifurcation point precisely, i.e. when

Case : new equilibria (maybe)
Case : nearby oscillations with frequency (maybe Hopf
Bifurcation)

4. switch to new branch of solutions and go to 1. (Branch switching)

What is needed:

1. Compute jacobian (ForwardDiff.jl,...), solve (large) linear systems
(IterativeSolvers.jl, Krylov.jl, KrylovKit.jl,...)

2. Compute eigenvalues of large systems Arpack.jl, ArnoldiMethod.jl,
KrylovKit.jl,...

F(x, p) p

λ(p)

ℜλ(p) > 0

p0 ℜλ() = 0p0

λ() = 0p0

λ() = ±iωp0 ω

18 / 57

Bifurcation theory amounts to

1. continue (all) equilibria (zeroes) of as function of scalar parameter

2. compute stability of the equilibria (given by number of eigenvalues with
)

3. detect a bifurcation point precisely, i.e. when

Case : new equilibria (maybe)
Case : nearby oscillations with frequency (maybe Hopf
Bifurcation)

4. switch to new branch of solutions and go to 1. (Branch switching)

What is needed:

1. Compute jacobian (ForwardDiff.jl,...), solve (large) linear systems
(IterativeSolvers.jl, Krylov.jl, KrylovKit.jl,...)

2. Compute eigenvalues of large systems Arpack.jl, ArnoldiMethod.jl,
KrylovKit.jl,...

3. Bisection / Newton
4. See next

F(x, p) p

λ(p)

ℜλ(p) > 0

p0 ℜλ() = 0p0

λ() = 0p0

λ() = ±iωp0 ω

19 / 57

2. Introduction to BifurcationKit.jl

19 / 57

using BifurcationKit, Plots, Setfield

F = (x, par) -> @. par.p + x - x^3/3

opts = ContinuationPar(pMin = -3.,
 pMax = 1., detectBifurcation = 3)

params = (p = -3., q = 1.)

br, = continuation(F, [-2.], params,
 (@lens _.p), opts;
 recordFromSolution = (x,p)->x[1])

plot(br) #plot recipe

What is it?

Library for numerical bifurcation analysis of large dimensional equations

https://github.com/rveltz/BifurcationKit.jl (docs, tutorials, tests,...): see example later

Installation

] add BifurcationKit

Quick example

F(x, p) = 0

20 / 57

https://github.com/rveltz/BifurcationKit.jl
https://rveltz.github.io/BifurcationKit.jl/dev/

Why another library?

There are many good softwares already available.

For continuation in small dimension, see DSWeb. One can mention the venerable
AUTO-07p, or also, XPPAUT, MATCONT, PyDSTool, COCO and Bifurcations.jl.

For large scale problems, there is the versatile pde2path but also COCO, Trilinos,
CL_MATCONTL and the python libraries pyNCT and pacopy.

For deflated continuation, there is defcont.

21 / 57

https://dsweb.siam.org/Software
file:///Users/rveltz/Resilio%20Sync/presentations/2022%20journeesJulia/Veltz.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.matcont.ugent.be/
https://github.com/robclewley/pydstool
https://sourceforge.net/projects/cocotools/
https://github.com/tkf/Bifurcations.jl
http://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/
https://sourceforge.net/projects/cocotools/
https://trilinos.org/
https://github.com/careljonkhout/cl_matcontL
https://pypi.org/project/PyNCT/
https://github.com/nschloe/pacopy
https://bitbucket.org/pefarrell/defcon/src/master/

Why another library?

There are many good softwares already available.

For continuation in small dimension, see DSWeb. One can mention the venerable
AUTO-07p, or also, XPPAUT, MATCONT, PyDSTool, COCO and Bifurcations.jl.

For large scale problems, there is the versatile pde2path but also COCO, Trilinos,
CL_MATCONTL and the python libraries pyNCT and pacopy.

For deflated continuation, there is defcont.

Reasons

22 / 57

https://dsweb.siam.org/Software
file:///Users/rveltz/Resilio%20Sync/presentations/2022%20journeesJulia/Veltz.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.matcont.ugent.be/
https://github.com/robclewley/pydstool
https://sourceforge.net/projects/cocotools/
https://github.com/tkf/Bifurcations.jl
http://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/
https://sourceforge.net/projects/cocotools/
https://trilinos.org/
https://github.com/careljonkhout/cl_matcontL
https://pypi.org/project/PyNCT/
https://github.com/nschloe/pacopy
https://bitbucket.org/pefarrell/defcon/src/master/

Why another library?

There are many good softwares already available.

For continuation in small dimension, see DSWeb. One can mention the venerable
AUTO-07p, or also, XPPAUT, MATCONT, PyDSTool, COCO and Bifurcations.jl.

For large scale problems, there is the versatile pde2path but also COCO, Trilinos,
CL_MATCONTL and the python libraries pyNCT and pacopy.

For deflated continuation, there is defcont.

Reasons

1. implement new algorithms for large scale problems

23 / 57

https://dsweb.siam.org/Software
file:///Users/rveltz/Resilio%20Sync/presentations/2022%20journeesJulia/Veltz.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.matcont.ugent.be/
https://github.com/robclewley/pydstool
https://sourceforge.net/projects/cocotools/
https://github.com/tkf/Bifurcations.jl
http://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/
https://sourceforge.net/projects/cocotools/
https://trilinos.org/
https://github.com/careljonkhout/cl_matcontL
https://pypi.org/project/PyNCT/
https://github.com/nschloe/pacopy
https://bitbucket.org/pefarrell/defcon/src/master/

Why another library?

There are many good softwares already available.

For continuation in small dimension, see DSWeb. One can mention the venerable
AUTO-07p, or also, XPPAUT, MATCONT, PyDSTool, COCO and Bifurcations.jl.

For large scale problems, there is the versatile pde2path but also COCO, Trilinos,
CL_MATCONTL and the python libraries pyNCT and pacopy.

For deflated continuation, there is defcont.

Reasons

1. implement new algorithms for large scale problems
2. take advantage of unique Julia ecosystem (DiffEq, AD, GPU, cluster...)

24 / 57

https://dsweb.siam.org/Software
file:///Users/rveltz/Resilio%20Sync/presentations/2022%20journeesJulia/Veltz.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.matcont.ugent.be/
https://github.com/robclewley/pydstool
https://sourceforge.net/projects/cocotools/
https://github.com/tkf/Bifurcations.jl
http://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/
https://sourceforge.net/projects/cocotools/
https://trilinos.org/
https://github.com/careljonkhout/cl_matcontL
https://pypi.org/project/PyNCT/
https://github.com/nschloe/pacopy
https://bitbucket.org/pefarrell/defcon/src/master/

Why another library?

There are many good softwares already available.

For continuation in small dimension, see DSWeb. One can mention the venerable
AUTO-07p, or also, XPPAUT, MATCONT, PyDSTool, COCO and Bifurcations.jl.

For large scale problems, there is the versatile pde2path but also COCO, Trilinos,
CL_MATCONTL and the python libraries pyNCT and pacopy.

For deflated continuation, there is defcont.

Reasons

1. implement new algorithms for large scale problems
2. take advantage of unique Julia ecosystem (DiffEq, AD, GPU, cluster...)
3. write generic code for CPU/GPU(/Cluster)

25 / 57

https://dsweb.siam.org/Software
file:///Users/rveltz/Resilio%20Sync/presentations/2022%20journeesJulia/Veltz.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.matcont.ugent.be/
https://github.com/robclewley/pydstool
https://sourceforge.net/projects/cocotools/
https://github.com/tkf/Bifurcations.jl
http://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/
https://sourceforge.net/projects/cocotools/
https://trilinos.org/
https://github.com/careljonkhout/cl_matcontL
https://pypi.org/project/PyNCT/
https://github.com/nschloe/pacopy
https://bitbucket.org/pefarrell/defcon/src/master/

Why another library?

There are many good softwares already available.

For continuation in small dimension, see DSWeb. One can mention the venerable
AUTO-07p, or also, XPPAUT, MATCONT, PyDSTool, COCO and Bifurcations.jl.

For large scale problems, there is the versatile pde2path but also COCO, Trilinos,
CL_MATCONTL and the python libraries pyNCT and pacopy.

For deflated continuation, there is defcont.

Reasons

1. implement new algorithms for large scale problems
2. take advantage of unique Julia ecosystem (DiffEq, AD, GPU, cluster...)
3. write generic code for CPU/GPU(/Cluster)
4. Specify the linear solver (dense, sparse, Matrix-Free), idem for eigensolver

26 / 57

https://dsweb.siam.org/Software
file:///Users/rveltz/Resilio%20Sync/presentations/2022%20journeesJulia/Veltz.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.matcont.ugent.be/
https://github.com/robclewley/pydstool
https://sourceforge.net/projects/cocotools/
https://github.com/tkf/Bifurcations.jl
http://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/
https://sourceforge.net/projects/cocotools/
https://trilinos.org/
https://github.com/careljonkhout/cl_matcontL
https://pypi.org/project/PyNCT/
https://github.com/nschloe/pacopy
https://bitbucket.org/pefarrell/defcon/src/master/

Why another library?

There are many good softwares already available.

For continuation in small dimension, see DSWeb. One can mention the venerable
AUTO-07p, or also, XPPAUT, MATCONT, PyDSTool, COCO and Bifurcations.jl.

For large scale problems, there is the versatile pde2path but also COCO, Trilinos,
CL_MATCONTL and the python libraries pyNCT and pacopy.

For deflated continuation, there is defcont.

Reasons

1. implement new algorithms for large scale problems
2. take advantage of unique Julia ecosystem (DiffEq, AD, GPU, cluster...)
3. write generic code for CPU/GPU(/Cluster)
4. Specify the linear solver (dense, sparse, Matrix-Free), idem for eigensolver
5. Should work on custom type (collocation, FEM, ...), not just AbstractArray

27 / 57

https://dsweb.siam.org/Software
file:///Users/rveltz/Resilio%20Sync/presentations/2022%20journeesJulia/Veltz.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.matcont.ugent.be/
https://github.com/robclewley/pydstool
https://sourceforge.net/projects/cocotools/
https://github.com/tkf/Bifurcations.jl
http://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/
https://sourceforge.net/projects/cocotools/
https://trilinos.org/
https://github.com/careljonkhout/cl_matcontL
https://pypi.org/project/PyNCT/
https://github.com/nschloe/pacopy
https://bitbucket.org/pefarrell/defcon/src/master/

Why another library?

There are many good softwares already available.

For continuation in small dimension, see DSWeb. One can mention the venerable
AUTO-07p, or also, XPPAUT, MATCONT, PyDSTool, COCO and Bifurcations.jl.

For large scale problems, there is the versatile pde2path but also COCO, Trilinos,
CL_MATCONTL and the python libraries pyNCT and pacopy.

For deflated continuation, there is defcont.

Reasons

1. implement new algorithms for large scale problems
2. take advantage of unique Julia ecosystem (DiffEq, AD, GPU, cluster...)
3. write generic code for CPU/GPU(/Cluster)
4. Specify the linear solver (dense, sparse, Matrix-Free), idem for eigensolver
5. Should work on custom type (collocation, FEM, ...), not just AbstractArray

 develop fully automatic algorithms (for memory limited devices (GPU))⇒

28 / 57

https://dsweb.siam.org/Software
file:///Users/rveltz/Resilio%20Sync/presentations/2022%20journeesJulia/Veltz.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.matcont.ugent.be/
https://github.com/robclewley/pydstool
https://sourceforge.net/projects/cocotools/
https://github.com/tkf/Bifurcations.jl
http://www.staff.uni-oldenburg.de/hannes.uecker/pde2path/
https://sourceforge.net/projects/cocotools/
https://trilinos.org/
https://github.com/careljonkhout/cl_matcontL
https://pypi.org/project/PyNCT/
https://github.com/nschloe/pacopy
https://bitbucket.org/pefarrell/defcon/src/master/

"Early" design decision

Use of Setfield.jl to specify the parameter axis.

Before

pars = (a=1., b=2., c=3.)
continuation w.r.t. c
br = continuation((x, p::Real) - > F(x, (pars..., c = p), x0, opts)

With Setfield:

continuation w.r.t. c
br = continuation(F, x0, pars, (@lens _.c) , opts)

Fundamental to deal with codim 2 continuation where you need to specify 2
parameter axis
very useful for plot recipes

Other example

pars = [1., 2.]
(@lens _[1])

Can be used to modify immutable variables, structs...
29 / 57

Customizable: use of iterators

functional we want to study
F = (x, par) -> @. par.p + x - x^3/3
params = (p = -3., q = 1.)

parameters for the continuation
opts = ContinuationPar(pMin = -3., pMax = 1.)

we define an iterator to hold the continuation routine
iter = ContIterable(F, [-2.], params, (@lens _.p), opts)

variables to hold the results
resp = Float64[]; resx = Float64[]

this is the PALC algorithm
for state in iter
 # we save the current solution on the branch
 push!(resx, getx(state)[1])
 push!(resp, getp(state))
end

plot the result
plot(resp, resx; label = "", xlabel = "p")

Bonus: you can copy(iter) to perform additional steps (bisection) and come back to
the parent continuation

30 / 57

Focus on stationary solutions

30 / 57

Two different numerical continuation algorithms

Goal find continuous curves of solutions to

using a Newton-Krylov solver from a known solution .

γ = (x(s), p(s))s∈I

F(x, p) = 0 ∈ , x ∈ , p ∈ ℝℝ
n

ℝ
n (E)

:= (,)X0 x0 p0

31 / 57

Deflated continuation

Find "all" solutions to (E)

Smart brute force by P. Farrell

Based on deflated Newton

1. Find all solutions for
2. Use them as guesses for

 (Newton)
3. Find all solutions for

(deflated Newton)

Two different numerical continuation algorithms

Goal find continuous curves of solutions to

using a Newton-Krylov solver from a known solution .

γ = (x(s), p(s))s∈I

F(x, p) = 0 ∈ , x ∈ , p ∈ ℝℝ
n

ℝ
n (E)

:= (,)X0 x0 p0

(X) =Gd
G(X)

(||X− | +α)Π
n
1

Xi |p

p = p0

p = = + dsp1 p0

p = p1

32 / 57

Deflated continuation

Find "all" solutions to (E)

Smart brute force by P. Farrell

Based on deflated Newton

1. Find all solutions for
2. Use them as guesses for

 (Newton)
3. Find all solutions for

(deflated Newton)

Callable struct

struct DeflationOperator{Tp <: Real, T
 "power"
 power::Tp
 "dot function"
 dot::Tdot
 "shift"
 α::T
 "roots"
 roots::Vector{vectype}
end

Two different numerical continuation algorithms

Goal find continuous curves of solutions to

using a Newton-Krylov solver from a known solution .

γ = (x(s), p(s))s∈I

F(x, p) = 0 ∈ , x ∈ , p ∈ ℝℝ
n

ℝ
n (E)

:= (,)X0 x0 p0

(X) =Gd
G(X)

(||X− | +α)Π
n
1

Xi |p

p = p0

p = = + dsp1 p0

p = p1

33 / 57

Pseudo arc-length continuation

Connected component of

Solves (E) with constraint

1. tangent: at
2. predictor:

3. correction: Newton to

Two different numerical continuation algorithms

Goal find continuous curves of solutions to

using a Newton-Krylov solver from a known solution .

γ = (x(s), p(s))s∈I

F(x, p) = 0 ∈ , x ∈ , p ∈ ℝℝ
n

ℝ
n (E)

:= (,)X0 x0 p0

(,)x0 p0

N(x, p) = ⟨x − , d ⟩θ

length(x)
x0 x0

+(1 − θ) ⋅ (p −) ⋅ d − ds = 0p0 p0

(d , d)x0 p0 X0

(,) =x1 p1

(,) + ds ⋅ (d , d)x0 p0 x0 p0

[F, N]

34 / 57

Bordered linear system (BLS)

Inefficient linear solver example:

struct MatrixBLS <: AbstractBLS; end

function (lbs::MatrixBLS)(dxF, dpF,
 dxN, dpN,
 R, n)
 A = hcat(dxF, dpF)
 A = vcat(A, vcat(dxN, dpN))
 return A \ vcat(R, n), true, 1
end

Better ones available 😉

Pseudo arc-length continuation

Connected component of

Solves (E) with constraint

1. tangent: at
2. predictor:

3. correction: Newton to

Two different numerical continuation algorithms

Goal find continuous curves of solutions to

using a Newton-Krylov solver from a known solution .

γ = (x(s), p(s))s∈I

F(x, p) = 0 ∈ , x ∈ , p ∈ ℝℝ
n

ℝ
n (E)

:= (,)X0 x0 p0

(,)x0 p0

N(x, p) = ⟨x − , d ⟩θ

length(x)
x0 x0

+(1 − θ) ⋅ (p −) ⋅ d − ds = 0p0 p0

(d , d)x0 p0 X0

(,) =x1 p1

(,) + ds ⋅ (d , d)x0 p0 x0 p0

[F, N]

35 / 57

Deflated continuation

Find "all" solutions to (E)

Smart brute force by P. Farrell

memory intensive if many solutions
difficult to parallelize
loss of time on diverged Newton
automatic branching

Pseudo arc-length continuation

Connected component of

"fast"
small memory needed
branching requires dedicated
aglorithms

Two different numerical continuation algorithms

Goal find continuous curves of solutions to

using a Newton-Krylov solver from a known solution .

γ = (x(s), p(s))s∈I

F(x, p) = 0 ∈ , x ∈ , p ∈ ℝℝ
n

ℝ
n (E)

:= (,)X0 x0 p0

(,)x0 p0

36 / 57

Pseudo arc-length continuation PALCDeflated continuation

Two different numerical continuation algorithms: comparison

Let us consider the singular perturbation problem (see tutorials):

+ 2 (1 −) y + = 1, y(−1) = y(1) = 0.ϵ2y′′ x2 y2

37 / 57

We now focus on PALC

Towards automatic bifurcation diagram

37 / 57

1. computes 3-jet of
2. solves resulting polynomials

equations
3. use solutions as guesses for

Deflated Newton

See [Wouters et al. :2019]

Automatic Branch Switching (aBS) at stationary bifurcation

New algorithm twist.

New solutions (may) emerge at bifurcation points i.e. when

Lyapunov-Schmidt method gives equivalent reduced equation

 Iterate to get automatic bifurcation
diagram

jet = getJet(F)
br, = continuation(jet[1], jet[2], x0,
br1, = continuation(jet..., br, 1)

d ≡ dim ker dF(,) > 0.x0 p0

Φ(, p) = 0 ∈xKer ℝ
d

Φ

⇒

38 / 57

Automatic Bifurcation Diagram (aBD)

2d Bratu–Gelfand problem (see tutorials),

Sparse formulation (DiffEqOperators.jl), Eigen Solver from KrylovKit.jl

diagram = bifurcationdiagram(jet..., sol0, par_mit, (@lens _.λ), 5, opts)

Δu = 10(u − λ), Ω = (0, 1 , u = 0 ∂Ωeu)2 ∂n

39 / 57

Automatic Bifurcation Diagram (aBD) on GPU

2d Kuramoto-Sivashinsky. Based on FFT (CUDA.jl), Eigen Solver from KrylovKit.jl

(2u + 2u + Δu) + 4 u = 0
1

α
ux uy Δ

2

40 / 57

Semi Automatic Bifurcation diagram entirely on GPU (1/2)

We solve the Neural Fields Equations (model of visual hallucinations)

Constraints:

need to be done on GPU
lots of symmetries, difficult aBS
you cannot keep in memory all Eigen elements

Details:

runs entirely on GPU (V100 Tesla), 3d FFT! using CUDA.jl
Linear solver (GMRES), Eigen solver KrylovKit.jl
Bifurcation points located with bisection
Reduced equation computed on the fly, aBS on GPU
~1e7 unknowns

 One of the few bifurcation diagrams computed entirely on GPU

V(x, t) = −V(x, t) + W(x, y)S(γV(y, t))dy, x, y ∈ , W(x, y) ∈ ℝ
d

dt ∫
Ω

ℝ
3

⇒

41 / 57

Semi Automatic Bifurcation diagram entirely on GPU (2/2)

42 / 57

Weak points...

improve the tree structure which holds the bifurcation diagram (type stability)

remove loops during computations

write GUI (Makie) to improve navigation

43 / 57

Focus on periodic orbits

43 / 57

By discretizing, we obtain ()

optimized code, reduced allocations
7 different linear solvers (dense,
iterative, AD...)
Floquet multipliers computation
(not super precise for now)
run on GPU
Hopf, BPLC aBS

For the Brusselator 1d

Computing periodic orbits (PO) 1/3

Trapeze method

We look for periodic orbits as solutions of(x(0), T)

= T ⋅ F(x), x(0) = x(1).
dx

dt

h = T/m

44 / 57

4 different linear solvers
Floquet multipliers computation
(not super precise for now)
user defined flow
wrapper to
DifferentialEquations.jl
Hopf aBS

Thanks to `DifferentialEquations.jl`, we
are >= state of the art

For the 1d Brusselator

Computing periodic orbits (PO) 2/3

(Multiple parallel) Standard Shooting method

We aim at finding periodic orbits of with flow
by solving= f (x)dx

dt
()ϕt x0

(x) − x = 0, s(x, T) = 0.ϕT

45 / 57

needs to find a section but N-1
unknowns
4 different linear solvers
Floquet multipliers computation
(not super precise for now)
wrapper to
DifferentialEquations.jl
Hopf aBS

Thanks to `DifferentialEquations.jl`, we
are >= state of the art

For the 1d Brusselator

Computing periodic orbits (PO) 3/3

(Multiple) Poincaré Shooting method

We aim at finding periodic orbits of by solving a Poincaré return map

equation

= f (x)dx

dt

Π(x) − x = 0.

46 / 57

Let's talk about the docs

Automation

46 / 57

Documentation inside code

Documentation located https://github.com/bifurcationkit/BifurcationKitDocs.jl

used to be part of BifurcationKit.jl
based on DocStringExtensions.jl to generate DocStrings

"""
$(TYPEDEF)

Returns a variable containing parameters to affect
the `newton` algorithm when solving `F(x) = 0`.

Arguments (with default values):
$(TYPEDFIELDS)

"""
@with_kw struct NewtonPar{T, L <: AbstractLinearSolver,
 E <: AbstractEigenSolver}
 "absolute tolerance for `F(x)`"
 tol::T = 1e-12
end

47 / 57

https://github.com/bifurcationkit/BifurcationKitDocs.jl

Documentation (online)

documentation website based on Documenter.jl, hosted on github
DocStrings are grouped in Library.html

using Documenter, BifurcationKit, Setfield

makedocs(doctest = false,
 sitename = "Bifurcation Analysis in Julia",
 format = Documenter.HTML(collapselevel = 1,assets = ["assets/indigo.css"]),
 authors = "Romain Veltz",
 pages = Any[
 "Home" => "index.md",
 "Tutorials" => "tutorials/tutorials.md",
 "Functionalities" => [
 "Plotting" => "plotting.md",
],
 "Library" => "library.md"])
deploydocs(
 repo = "github.com/bifurcationkit/BifurcationKitDocs.jl.git",
 devbranch = "main"
)

tutorials and codes are (mostly) automatically generated
less figures to export
less error prone
proof that it works to the user
...

48 / 57

The future of BifurcationKit.jl

48 / 57

More functionalities / Improvements
computation of periodic orbits based on othogonal collocation with adpative
mesh (under test)
computation of travelling waves and their bifurcations (under test)

computation of homoclinic trajectories and homoclinic bifucations (end of codim
2)

improvements to Deflated Continuation

deflated continuation applied to periodic orbits

improve computation of Floquet coefficients PeriodicSchurDecompositions.jl

add new continuation algorithms Moore-Penrose, ANM, ...

Code

better use of StaticArrays.jl
Makie.jl recipes

49 / 57

Software design 1/2

Hard nuts (mostly done)

Change interface to br = continuation(prob, PALC(), options)
problem and algo saved in br, simpler dispatch, modify prob and alg with
Setfield.jl
remove duplicated code
less demanding on the user, more automation
similar to solve(odeprob, Tsit5()).
Allow to change the continuation algorithm very easily br = continuation(prob,
MoorePenrose(), options)

Benefits

easier interface to other problems
easier interface to SciML
ODEProblem? DDEProblem?

50 / 57

Software design 1/2

Hard nuts (mostly done)

Now

jet = getJet(Fb)
br, = continuation(jet[1]. jet[2], sol0, (1., 1.), (@lens _[1], opts;
 tangentAlgo = BorderedPred())
nf = computeNormalForm(jet..., br, 1)
br2 = continuation(jet..., br, 1)

Tomorrow

prob = BK.BifurcationProblem(Fb, sol0, (1., 1.), (@lens _[1])
br = continuation(prob, PALC(tangent = Bordered()), opts_br0)
nf = computeNormalForm(br, 1)
br2 = continuation(br, 1)

51 / 57

Software design 2/2

Tough nuts

1. custum types v.s. AbstractArray (AD?)

2. inplace / outplace methods

3. link between 1. and 2.

4. define interface

52 / 57

Goodies: tricks used in BK

Applying AD generated differentials to complex arguments

struct BilinearMap{Tm}
 bl::Tm
end

function (R2::BilinearMap)(dx1, dx2)
 dx1r = real.(dx1); dx2r = real.(dx2)
 dx1i = imag.(dx1); dx2i = imag.(dx2)
 return R2(dx1r, dx2r) .- R2(dx1i, dx2i) .+
 im .* (R2(dx1r, dx2i) .+ R2(dx1i, dx2r))
end
(b::BilinearMap)(dx1::T, dx2::T) where {T <: AbstractArray{<: Real}} =
 b.bl(dx1, dx2)

53 / 57

Goodies: tricks used in BK

Dispatch on few fields

foo(br::ContResult{Tkind, Tbr, Teigvals, Teigvec, Biftype}) where
 {Tkind, Tbr, Teigvals, Teigvec, Biftype} = Tkind != Nothing

vs

foo(br::ContResult{Tkind}) where {Tkind} = Tkind != Nothing

(one can use Abstract types too.)

54 / 57

Conclusion

highly tunable library for ODE, PDE and other working on CPU/GPU

many unique features (aBD, GPU, Shooting & Trapeze, codim 2) all in large
dimensions

"easy" interface with ApproxFun.jl, Gridap.jl, FourierFlows.jl...

Ideas

interval arithmetics
a GUI based on Makie to do all this interactively
distributed computing

55 / 57

Thank you for your attention

56 / 57

57 / 57

