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MetalWalls

● Molecular dynamic production code used by Sorbonne university 
researchers to simulate electrochemical systems such as 
«supercapacitors»

● Fortran 90 base code, parallelised with MPI
● Most of the computing time = electrostatic potential computing
● Computing efficiency published : model running during several weeks 

on 512 cores while maintaining a parallel efficiciency above 75 %
● Currently using CPU and GPU implementations (OpenAcc)



  

Miniapp extracted from the production code



  

Ideal code for testing different 
frameworks and architectures

● Framework SkePU (skeletons)
● Framework StarPU (tasks using codelets)
● Maxcompiler (FPGA acceleration)



  

The FPGA used here
● Max5C is a U200 with one less 

DIMM

● 3 SLR : the chip is divided in 3 
Super Logic Region connected by 
solders (very low bandwidth)

● SLR communication should be 
avoided as much as possible



  

Target device on Jumax at Juelich 
computing center

● CPU host : AMD EPYC 7601
● 8 nodes Xilinx VU9P on one blade as target devices
● 8x PCIe 2.0 lanes → 4.0 GB/s for all nodes
● Each node has three 16-GB DDR4 Dual In-Line Memory Modules (DIMMs), 

which provide a theoretical peak bandwidth of 15 GB/s each 

 



  

Designing all kernels on one FPGA
● Due to hardware contraints, each kernel is put into one SLR (super 

logic region)
● For simplicity, the conjugate gradient is computed on the host
● We want the highest frequency possible
● We also want the biggest number of separate pipelines
● All kernels work synchronously
● Use as much as possible the device’s DRAM to reduce 

communications   



  

Challenges
● Limited ressources
● More logic available→ higher design frequency likely
● More pipelines → less logic available
● Using DRAM makes meeting timings harder

→ harder compilation, ie we are less likely to 
achieve high frequency with as many pipelines 



  

Numerical accuracy analysis

 We can save 
ressources but 
there is a catch :
the number of 
iterations to 
converge increases



  

Balancing the kernels
● Need for synchronicity → balance needed
● Theoretical time for each sequential kernel is 

known 
● Balance is case dependent
● For the production test case considered here, 

the balance is (8,4,1)  



  

Ressources usage of the multiple 
kernel designs

DSP limited in the U_lr,0 kernel (87 % DSPs used in its SLR)



  

Airview of the compiled final design 



  

Design using the device’s DRAM
● The previous design does not use the DRAM
● Q has to be sent every iteration from and to the FPGA
● (x,y,z) they can be stored
● Using LMEM makes the design harder to compile

→ have to make concessions
● Best design is (24,12,3) with a frequency of 260 MHz

 



  

Results comparison



  

Scaling to multiple FPGAs
● We expect to be communications bound.
● Our « all in one » designs can be immediately tested 

with multiple FPGAs, but they are not adapted to all 
test cases.

● To better use each FPGA we can make a design for 
each kernels. 

→ this also allows for load balancing for any test case



  

Ressources usage of the single 
kernel designs

● DSP limited in two kernels and Logic limited in one kernel

● Adapting the (8,4,1) ratio



  

Speedup using multiple FPGAs



  

Conclusion
● Knowledge of the target device is mandatory for an efficient 

design
● Great importance of variables size for more ressources → 

better performances
● An efficient design is about balance
● Our FPGA implementation showed better performance per 

watt than a GPU of similar transistor size and even better 
against skylake CPU

● Multiple FPGAs performance bottlenecked by old interconnect 
technology but achieved nonetheless  



  

Thank you for your attention
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