

Matrix free conjugate gradient with Maxeler Data
Flow Engine technology

Charles Prouveur

Table of content
● Introduction
● Metalwalls
● Target device
● FPGA design

- Numerical analysis

- Kernel balancing in a « all in one » design

- Design using Multiple FPGAs

● Results
● Conclusion

MetalWalls

● Molecular dynamic production code used by Sorbonne university
researchers to simulate electrochemical systems such as
«supercapacitors»

● Fortran 90 base code, parallelised with MPI
● Most of the computing time = electrostatic potential computing
● Computing efficiency published : model running during several weeks

on 512 cores while maintaining a parallel efficiciency above 75 %
● Currently using CPU and GPU implementations (OpenAcc)

Miniapp extracted from the production code

Ideal code for testing different
frameworks and architectures

● Framework SkePU (skeletons)
● Framework StarPU (tasks using codelets)
● Maxcompiler (FPGA acceleration)

The FPGA used here
● Max5C is a U200 with one less

DIMM

● 3 SLR : the chip is divided in 3
Super Logic Region connected by
solders (very low bandwidth)

● SLR communication should be
avoided as much as possible

Target device on Jumax at Juelich
computing center

● CPU host : AMD EPYC 7601
● 8 nodes Xilinx VU9P on one blade as target devices
● 8x PCIe 2.0 lanes → 4.0 GB/s for all nodes
● Each node has three 16-GB DDR4 Dual In-Line Memory Modules (DIMMs),

which provide a theoretical peak bandwidth of 15 GB/s each

Designing all kernels on one FPGA
● Due to hardware contraints, each kernel is put into one SLR (super

logic region)
● For simplicity, the conjugate gradient is computed on the host
● We want the highest frequency possible
● We also want the biggest number of separate pipelines
● All kernels work synchronously
● Use as much as possible the device’s DRAM to reduce

communications

Challenges
● Limited ressources
● More logic available→ higher design frequency likely
● More pipelines → less logic available
● Using DRAM makes meeting timings harder

→ harder compilation, ie we are less likely to
achieve high frequency with as many pipelines

Numerical accuracy analysis

 We can save
ressources but
there is a catch :
the number of
iterations to
converge increases

Balancing the kernels
● Need for synchronicity → balance needed
● Theoretical time for each sequential kernel is

known
● Balance is case dependent
● For the production test case considered here,

the balance is (8,4,1)

Ressources usage of the multiple
kernel designs

DSP limited in the U_lr,0 kernel (87 % DSPs used in its SLR)

Airview of the compiled final design

Design using the device’s DRAM
● The previous design does not use the DRAM
● Q has to be sent every iteration from and to the FPGA
● (x,y,z) they can be stored
● Using LMEM makes the design harder to compile

→ have to make concessions
● Best design is (24,12,3) with a frequency of 260 MHz

Results comparison

Scaling to multiple FPGAs
● We expect to be communications bound.
● Our « all in one » designs can be immediately tested

with multiple FPGAs, but they are not adapted to all
test cases.

● To better use each FPGA we can make a design for
each kernels.

→ this also allows for load balancing for any test case

Ressources usage of the single
kernel designs

● DSP limited in two kernels and Logic limited in one kernel

● Adapting the (8,4,1) ratio

Speedup using multiple FPGAs

Conclusion
● Knowledge of the target device is mandatory for an efficient

design
● Great importance of variables size for more ressources →

better performances
● An efficient design is about balance
● Our FPGA implementation showed better performance per

watt than a GPU of similar transistor size and even better
against skylake CPU

● Multiple FPGAs performance bottlenecked by old interconnect
technology but achieved nonetheless

Thank you for your attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

