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MetalWalls

Molecular dynamic production code used by Sorbonne university
researchers to simulate electrochemical systems such as
«supercapacitors»

Fortran 90 base code, parallelised with MPI
Most of the computing time = electrostatic potential computing

Computing efficiency published : model running during several weeks
on 512 cores while maintaining a parallel efficiciency above 75 %

Currently using CPU and GPU implementations (OpenAcc)



Miniapp extracted from the production code
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ldeal code for testing different
frameworks and architectures

 Framework SkePU (skeletons)

 Framework StarPU (tasks using codelets)

 Maxcompiler (FPGA acceleration)



The FPGA used here

Max5C is a U200 with one less
DIMM

3 SLR : the chip is divided in 3
Super Logic Region connected by
solders (very low bandwidth)

SLR communication should be
avoided as much as possible

MAX5C Alveo U200
FPGA VUIP VUIP
SLRs 3 .
LUTSs (k) 1,182 1182
FFs (k) 2,364 2.364
DSPs 6,840 6,840
BRAM18s 4,320 4.320
URAMSs 960 960
On Chip
Memory Capacity 43.2 MByte 43.2 MByte
DDR DIMMs 3 2
DDR Capacity
per DIMM 16 GB 16 GB
Supported DDR 933, 1066, 1200 1200

Frequencies (MHz)

DIMM_0 ->SLR0

DIMM_0 ->SLR0

DIMMtg DIMM.1 ->SLR1 DIMM_1 ->SLR1
SLR Mapping DIMM.2 ->SLR2 DIMM_2 ->SLR1
DIMM 3 ->SLR2
PCle Placement SLR1 SLRO
PCle PCle Gen 2 x8 PCle Gen 2 x8
Networking 1 x 100 GBit/s 2 x 100GBit/s
Networking Placement SLR2 SLR2




Target device on Jumax at Juelich
computing center

Machine (8101MB total)
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Figure 1: Overview of a Maxeler acceleration system

CPU host : AMD EPYC 7601
8 nodes Xilinx VU9P on one blade as target devices
8x PCle 2.0 lanes - 4.0 GB/s for all nodes

Each node has three 16-GB DDR4 Dual In-Line Memory Modules (DIMMS),
which provide a theoretical peak bandwidth of 15 GB/s each



Designing all kernels on one FPGA

* Due to hardware contraints, each kernel is put into one SLR (super
logic region)

* For simplicity, the conjugate gradient is computed on the host
* We want the highest frequency possible

* We also want the biggest number of separate pipelines

 All kernels work synchronously

* Use as much as possible the device’s DRAM to reduce
communications



Challenges

Limited ressources
More logic available —» higher design frequency likely

More pipelines - less logic available
Using DRAM makes meeting timings harder

— harder compilation, ie we are less likely to
achieve high frequency with as many pipelines
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Balancing the kernels

Need for synchronicity — balance needed

Theoretical time for each sequential kernel is
known

Balance is case dependent

For the production test case considered here,
the balance is (8,4,1)



Ressources usage of the multiple
kernel designs

Design Name

64 bits Design

40 bits Design

Final design

Design frequency (MHz ) 200 200 300
Pipes (U0, Usey Unn.t) (8,4,1) (16.8,2) (32,16,4)
Logic (LUTs & FFs) 27.7% 33.4% 44.6 %
DSPs 33.42% 29.52% 53.3%
On-chip Mem 22.7% 20.3% 28.8%

DSP limited in the U_Ir,0 kernel (87 % DSPs used in its SLR)




Airview of the compiled final design
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Design using the device’'s DRAM

* The previous design does not use the DRAM
* Q has to be sent every iteration from and to the FPGA
* (X,y,2) they can be stored
* Using LMEM makes the design harder to compile
- have to make concessions
* Best design is (24,12,3) with a frequency of 260 MHz



Watt

Results comparison
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Scaling to multiple FPGASs

* We expect to be communications bound.

* Our « all In one » designs can be immediately tested
with multiple FPGAs, but they are not adapted to all
test cases.

* To better use each FPGA we can make a design for
each kernels.

- this also allows for load balancing for any test case



Ressources usage of the single
kernel designs

Design Name Design Uiy,o | Design Us, | Design Uy, +
Design frequency (MHz ) 300 300 300
Total number of pipes 96 48 42
Logic (LUTs & FFs) 51.9% 63.3% 62.8%
DSPs 87.2% 55.4% 83.5%
On-chip Mem 27.2% 25.8% 38.4%

 DSP limited in two kernels and Logic limited in one kernel

* Adapting the (8,4,1) ratio




Speedup using multiple FPGASs
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Conclusion

* Knowledge of the target device is mandatory for an efficient
design

e Great importance of variables size for more ressources -
better performances

* An efficient design is about balance

* Our FPGA implementation showed better performance per
watt than a GPU of similar transistor size and even better
against skylake CPU

* Multiple FPGAs performance bottlenecked by old interconnect
technology but achieved nonetheless



Thank you for your attention
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