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• Supercomputer Noctua 2
– Atos Bull Sequana XH2000
– 1124 nodes, each with 2x AMD Milan 7763
– 128 NVIDIA A100 GPUs
– 48 Xilinx Alveo U280 FPGA accelerators

▪ 16 nodes, each with 3x Xilinx Alveo U280 cards
▪ 32 GiB DDR and 8 GiB HBM2

– 32 BittWare 520N with Intel Stratix 10
▪ 16 nodes, each with 2x BittWare 520N cards
▪ 32 GiB DDR

– configurable point-to-point connections to 
any other FPGA

• Worldwide leading academic installation of 
FPGAs for HPC

• System access application
https://pc2.uni-paderborn.de/go/access

FPGAs in Noctua 2 at Paderborn Center for Parallel Computing

https://pc2.uni-paderborn.de/go/access
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• In recent years FPGAs receive increased attention as 
accelerator for scientific computing.

• Selected applications at Paderborn Center for Parallel 
Computing (PC²)
– Intel FPGA SDK for OpenCL

▪ Shallow-water simulation
▪ N-body simulation method

– Intel FPGA Add-on for oneAPI Base Toolkit
▪ StencilStream Library
▪ Electron repulsion integrals (ERIs)
➜ as the nightmare of integrals by John Pople in Nobel Prize Lecture

• Benefits of FPGA using oneAPI
– DPC++ function templates for many variants of ERIs
– unrolled loop structures for 2-index recurrence relations

Introduction

• T. Kenter et. al: Algorithm-Hardware Co-design of a Discontinuous Galerkin Shallow-Water Model for a Dataflow Architecture on FPGA. PASC’21.
• J. Menzel et. al: The Strong Scaling Advantage of FPGAs in HPC for N-body Simulations. ACM Trans. Reconfigurable Technol. Syst.’21.
• StencilStream Library: https://github.com/pc2/StencilStream

https://github.com/pc2/StencilStream


Background on Method



• Computation of the enormous amount of 
ERIs forms a major bottleneck in hybrid 
density functional theory calculation.

• LiH benchmark in CP2K
– 216 atoms in a cubic box
– 18.7 trillion ERIs (the OPT2 basis)

• LiH benchmark on Noctua 1
– 16 compute nodes
– each node with 2x Intel Xeon Gold Skylake 6148

▪ 40 CPU cores per node
▪ Hyper-Threading is disabled

– pure MPI parallelization
▪ 640 MPI processes

– interconnect: Intel Omni Path 100 Gbps
– computation of ERIs ➜ 29% elapsed walltime

Background on Method



• Electron Repulsion Integral: 6-D integration

– 𝐫 = 𝑥, 𝑦, 𝑧 : coordinates of e
– 𝐫′ = 𝑥′, 𝑦′, 𝑧′ : coordinates of e'

• 𝑔𝐀,𝐚,𝛼 𝐫 : 3-D Cartesian Gaussian function centered at atom A

– 𝐀 = 𝐴𝑥, 𝐴𝑦 , 𝐴𝑧 : coordinates of atom A

– 𝐚 = 𝑎𝑥, 𝑎𝑦 , 𝑎𝑧 : angular momentum in x, y, z

– 𝛼: exponent of Gaussian function

Mathematical Definition



• ERI quartet: [𝑎𝑏|𝑐𝑑]
– collection of all [𝐚𝐛|𝐜𝐝] with the same angular momenta
– must be computed together to maximize data re-use
– 256 variants of ERI quartet are normally required in Physics/Chemistry applications.

ERI Quartet

ID notation
number of 

integrals
FLOPs loops

0 𝑠𝑠|𝑠𝑠 1 about tens a few

1 𝑠𝑠|𝑠𝑝 3

2 𝑠𝑠|𝑠𝑑 6

3 𝑠𝑠|𝑠𝑓 10

… …

255 𝑓𝑓|𝑓𝑓 10000
several hundreds 

of thousands

complicated 

nested

challenges:
• 256 variants
• different FLOPs
• complicated loop structures

➜ DPC++ function template 
for FPGA kernels



template<class Real, int a, int b, int c, int d>

void Rys4Compute( ... )

{

/*

* compile-time constants for

* - custom FPGA local memory designs

* - complicated unrolled loop structures

*/

constexpr int d2a { smallest_power_of_2(a) },

nga { (a + 1) * (a + 2) >> 1 };

q.submit([&](sycl::handler& h)

{

h.single_task<R4Kernel<1000 * a + 100 * b + 10 * c + d>>([=]()

{

/*

* FPGA kernel for the ERI quartet

*/

});

});

}

DPC++ Function Template for FPGA Kernels



• Three major algorithms
– the McMurchie-Davidson algorithm
➜ in SHARK of ORCA 5

– the Head-Gordon-Pople algorithm
➜ in libint and used in CP2K

– the Rys quadrature algorithm
➜ in libcint

• Rys quadrature
– compute [𝑎𝑏|𝑐𝑑] via Gaussian quadrature using a set of 

orthogonal Rys polynomials
– features:

▪ efficient for ERI quartet of higher angular momentum
▪ low memory requirement for intermediate results
➜ use of fast on-chip memories in FPGA

▪ numerically very stable in computation
➜ allows single-precision floating-point arithmetic

Rys Quadrature

J. Rys et. al: Computation of Electron Repulsion Integrals Using the Rys Quadrature Method. J. Comput. Chem. 1983.

hotspot



FPGA Design and 
Implementations



• Intel Stratix 10 GX 2800
– 5760 DSP blocks

▪ 1 single precision FMA/cycle each

– 11721 M20K RAM blocks (20 Kb each)
▪ 229 Mbits

– 933120 ALMs: control, addresses, all non-FP arithmetic
▪ 4 registers per ALM
▪ > 3.7 million registers: form pipeline stages

– 23796 MLAB (640 bits each)
▪ each is configured with 10 ALMs
▪ 15 Mbits

• BittWare 520N card
– PCIe Gen3 x8 (x16)
– 4x DDR4 channels (8 GB each, 32 GB in total)

• Intel FPGA Add-on for oneAPI Base Toolkit

Target FPGA Device



FPGA Design

Keys to good performance:

• FPGA on-chip memories
• fully unrolled loop structures

for recurrence relations
• optimized stores for global memory

setup loop

compute loop

copy loop



Setup loop: calculation of 4-D integrals

• 𝐼(𝑟, 𝑏, 𝑡, 𝑑)
– < 3 KB, use FPGA registers in ALMs
– All loops are fully unrolled for all 2-index recurrence relations.
– Compiler generates deeply pipelined hardware datapath.

• 𝐼𝜇,𝜈(𝑎, 𝑏, 𝑐, 𝑑)

– 6-D array with custom local memory layout
– parallel data accesses via memory banks
– only 1 replicate for minimized hardware resources

Setup Loop



Compute loop: calculation of ERI quartet

• [𝑎𝑏|𝑐𝑑]
– 2-D array with custom memory layout on FPGA is 

designed for this 4-D array in math.
▪ [𝑎𝑏|: number of memory banks
▪ |𝑐𝑑]: bank depth

– the actual implementation of on-chip memories is 
determined by compiler
▪ can be BRAM or MLAB

(a few replicates may be necessary)
▪ or FPGA register for small ERI quartet

Compute Loop



• Intel Stratix 10 GX2800 global memory
– 4x channels
– data width per DDR channel:

512 bits = 64 bytes = 16 FP32

• Compute loop
– produce 𝑛𝑐 × 𝑛𝑑 integers / cycle
– however 𝑛𝑐 × 𝑛𝑑 may not be multiple of 16

• Copy loop
– copy the generated [𝑎𝑏|𝑐𝑑] from on-chip 

memories to FPGA global memory
– all loads and stores are parallel

Copy Loop



Results and Discussion



• [𝑠𝑠|𝑠𝑠] to [𝑓𝑓|𝑓𝑓]: 256 kernel variants with DPC++ function template

Resource Consumptions: fMax

243 MHz for [𝑓𝑓|𝑓𝑓]



• [𝑠𝑠|𝑠𝑠] to [𝑓𝑓|𝑓𝑓]: 256 kernel variants with DPC++ function template

Resource Consumptions: BRAMs

1680 BRAMs (14%) 
for [𝑓𝑓|𝑓𝑓]



• [𝑠𝑠|𝑠𝑠] to [𝑓𝑓|𝑓𝑓]: 256 kernel variants with DPC++ function template

Resource Consumptions: DSPs

2210 DSPs (38%) 
for [𝑓𝑓|𝑓𝑓]



Performance Model

• FPGA performance model

• CPI: Cycles Per Integral

CPI =
max(setup, compute, copy)

𝑛ERI

loop number of clock cycles

setup 3𝑛Rys(𝑑 + 1)

compute 𝑛𝑐 × 𝑛𝑑

copy
𝑛ERI
16



Clock Cycles for the Loops

• The copy loop dominates for large ERI quartets.



CPI: Cycles Per Integral
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• GERIS: Giga (109) ERIs per Second

GERIS =
𝑓Max
CPI

• FPGA: 1x Intel Stratix 10 GX 2800

• CPU: 2x Intel Xeon Gold Skylake 6148
– 40 CPU cores per node
– libint: version 2.6.0

▪ built with EasyBuild foss-2021a toolchain
▪ only support double-precision floating-point arithmetic

Performance Analysis



Performance Analysis: GERIS

CPU is better

FPGA is better



Conclusion and Future Work



• Development of the computation of electron 
repulsion integrals on FPGA using oneAPI
– DPC++ function template for FPGA kernels
– custom FPGA local memory layouts
– optimized stores for global memory

• Performance analysis
– FPGA is good for large ERI quartets
– CPI: good agreement with performance model
– GERIS: 1 FPGA faster than 2x CPUs (40 cores)

• Future work
– compression of ERIs on FPGAs
– integration in CP2K

Conclusion and Future Work


