
FPGA compute acceleration with                 
Intel® oneAPI

Scientific Computing Accelerated on FPGA 2022

Maurizio Paolini

Field Applications Engineer, Intel Corporation

July 2022
Copyright © 2022 Intel Corporation.

This document is intended for personal use only.

Unauthorized distribution, modification, public performance,

public display, or copying of this material via any medium is strictly prohibited

Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names 

and brands may be claimed as the property of others.



Intel ConfidentialDepartment or Event Name 2Copyright © 2022 Intel CorporationCopyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

Agenda

▪ Introduction to oneAPI

▪ The DPC++ programming language

▪ oneAPI Development Flow for FPGAs

▪ FPGA hardware for oneAPI

▪ Introduction to Intel® DevCloud

FPGA Compute Acceleration with Intel® oneAPI



3Intel ConfidentialDepartment or Event Name

Introduction to oneAPI



Intel ConfidentialDepartment or Event Name 4Copyright © 2022 Intel CorporationCopyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

Advantages of Heterogeneous Computing

▪ Developers can optimize specialized inline and offload workloads to meet business needs.

• Strengths of individual xPUs (CPU, GPU, FPGAs, etc.) can be combined for the benefit of the overall system

Multiple Architectures



Intel ConfidentialDepartment or Event Name 6Copyright © 2022 Intel CorporationCopyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

Programming Challenges

▪ Separate programming models and toolchains for 
each architecture.

• Required training and licensing – compiler, IDE, debugger, 
analytics/monitoring tool, deployment tool, et al. – per 
architecture.

• Challenging experience in debug, monitoring, and 
maintenance of a cross-architectural source code.

• Difficult integration across proprietary IPs and architectures 
and no code re-use.

▪ Software development complexity limits freedom of 
architectural choice.

• Isolated investments required for technical expertise to 
overcome the barrier-to-entry

Multiple Architectures



Intel ConfidentialDepartment or Event Name 7Copyright © 2022 Intel CorporationCopyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

A Unified Programming Model

The oneAPI product delivers a unified programming
model to simplify development across diverse
architectures.

It guarantees:

▪ Common developer experience across Scalar, Vector,
Matrix and Spatial architectures (CPU, GPU, AI and
FPGA)

▪ Uncompromised native high-level language
performance

▪ Industry standardization and open specifications

Multiple Architectures



Intel ConfidentialDepartment or Event Name 8Copyright © 2022 Intel CorporationCopyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

Intel® oneAPI Product

Faster 
Development

• Performance tuning and timing closure through 
emulation and reports.

• Runtime analysis via VTune™ Profiler
• Complex hardware patterns implemented 

through built-in language features: macros, 
pragmas, headers

Extensible 
Code

• Code re-use across architectures and 
vendors.

• Compatible with existing high-
performance languages.

Reduced 
Barrier of 

Entry

• Leverage familiar sequential programming 
languages: improved ramp-up and debug
time.

• IDE Integration: Eclipse, VS, VS Code

...

Available Now

https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.04rtej


Intel ConfidentialDepartment or Event Name 9Copyright © 2022 Intel CorporationCopyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

Intel® FPGAs + Intel® oneAPI Toolkits

Spatial 
Architecture

• Data-dependent parallelism

• Streaming and graph processing 
patterns

Rich I/O
• Low and deterministic latency 

• Customizable network 
interfaces and protocols

Memory
• Customizable memory architecture

• Distributed, high bandwidth, on-
chip memory topology 

Direct Programming

Data Parallel C++

FPGA

Analysis & 
Debug Tools

oneAPI Product

FPGA



Intel ConfidentialDepartment or Event Name 10Copyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

Large number of use cases 

▪Data compression

▪ Image compression

▪ File parsing

▪Data Base acceleration

▪Genomics

▪ Financial

▪…

Examples



11Intel ConfidentialDepartment or Event Name

The DPC++ Programming Language



Intel ConfidentialDepartment or Event Name 12Copyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

Data Parallel C++ (DPC++)

▪Common language designed to 
target any XPU

• Tuning still needed for each 
architecture

▪Goal: to incorporate everything 
needed to get the best 
performance out of every 
architecture

Based on C++ and SYCL

• SYCL is based on OpenCL

• Think of it as SYCL + extensions

Allows for single-source 
targeting of accelerators

• Doesn’t require multiple files

Open specification



Intel ConfidentialDepartment or Event Name 13Copyright © 2022 Intel Corporation

DPC++: Three Scopes
▪ DPC++ programs consist of 3 scopes:

• Application scope - Code executed on the host

• Command group scope - Code for submitting 
data and commands to the accelerator

• Kernel scope – Code executed on the accelerator

▪ The full capabilities of C++ are available at 
application and command group scope

▪ At kernel scope there are limitations in 
accepted C++

• Most important is no recursive code

• See SYCL specification for complete list

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Application
Scope

Command
Group
Scope

Kernel Scope



Intel ConfidentialDepartment or Event Name 14Copyright © 2022 Intel Corporation

The “Runtime”

▪ The DPC++/SYCL runtime is the program running in the background 
on the host controlling the execution and data passing needs of the 
heterogeneous compute execution

▪ It handles:

• Kernel and host execution in an order imposed by data dependency needs 
(discussed later)

• Passing data back and forth between the host and device

• Querying the device

• Etc.



Intel ConfidentialDepartment or Event Name 15Copyright © 2022 Intel Corporation

A Note About Lambda Functions

▪ Two common constructs in DPC++ - queue submissions and kernel 
dispatch functions - take function pointers as arguments

▪ This doesn’t lend itself to simple, in-line code

▪ To write simpler and neat code, lambda functions are used 

▪ Lambda functions are un-named functions used in-line with other code

▪ If you are not familiar with them, here is a simple guide

[ captureClause ] ( parameters ) {
statements;

}

Variables you want to 
have access to in the 

function code

[=] means everything, 
pass by value

[&] means everything, 
pass by reference

What the function needs 
access to. This can be an 
object like “handler &h” if 

you need access to 
member functions of 

that object.

Final note: If you’d rather not use lambdas 
& wrap everything in normal functions and 
point to those in your own code, that’s fine!

Normal statements for 
functionality like in any 

C++ function



Intel ConfidentialDepartment or Event Name 16Copyright © 2022 Intel Corporation

DPC++ Class: device

▪ The device class represents the accelerators in a oneAPI system

▪ The device class contains member functions for querying information 
about the available devices

▪ The function get_info gives information about a device:

• Name, vendor, and version of the device

• Width for built in types, clock frequency, cache width and sizes, online or offline

// Get all of the devices a system is capable of operating

std::vector<device> my_devices = device::get_devices();

// Grab the first device to print info out for

device my_device = my_devices[0];  

// Print the name of the first device

std::cout << "Device: " << my_device.get_info<info::device::name>() << std::endl;



Intel ConfidentialDepartment or Event Name 17Copyright © 2022 Intel Corporation

DPC++ Class: device_selector

▪ The  device_selector enables the 
selection of a device to execute 
kernels on

▪ Use the selector when you create 
a queue (covered next)

▪ The code sample shows use of 
several example device selectors, 
including an FPGA

▪ A custom device selector can be 
defined and used for targeting 
specific devices

// Other example selectors that are not FPGAs

// default_selector selector;

// host_selector selector;

// cpu_selector selector;

// gpu_selector selector;

// Create the selector as an fpga_selector type

INTEL::fpga_selector selector;

// Use the selector when you create a queue

queue q(selector);



Intel ConfidentialDepartment or Event Name 18Copyright © 2022 Intel Corporation

DPC++ Class: queue

▪ A queue is a mechanism where work is submitted to a device

▪ A queue submits command groups to be executed by the SYCL runtime

▪ A queue.submit() is the beginning of the command group scope

• Groups of work to be executed by the SYCL runtime on an accelerator

▪ A queue maps to a single device

// Declare a queue to a device

queue q(selector);

// Submit things to the queue

q.submit([&](handler& h) {

// COMMAND GROUP CODE

});

The handler is a class that contains all of the 
command group functions of SYCL

You can think of it as an abstraction of the runtime

This keeps us from having to type handler:: again and 
again in the command group scope



Intel ConfidentialDepartment or Event Name 19Copyright © 2022 Intel Corporation

DPC++ Class: kernel

▪ The kernel encapsulates code that will be run on the accelerator

▪A kernel object is not explicitly constructed by the user

▪ It is constructed when a kernel dispatch function, such as 
parallel_for() or single_task() is called

q.submit([&](handler& h) {

// The “kernel” is everything after the kernel dispatch function

h.single_task<VectorAdd>([=]() {

// Everything inside here is “KERNEL SCOPE”

for (int i = 0; i < kSize; ++i) {

c[i] = a[i] + b[i];

}

});



Intel ConfidentialDepartment or Event Name 20Copyright © 2022 Intel Corporation

Single Task Kernels

▪ single_task() kernels allow complex or 
lengthy datapaths to be built from 
custom hardware in FPGAs

▪Useful to offload code with dependencies 
that are difficult to execute in a data 
parallel fashion

▪ Look like CPU code

• Contain an outer loop to process all data

▪ Ideal for & recommended for FPGAs

for(int i=0; i < 1024; i++){

a[i] = b[i] + c[i];

}); CPU 
Implementation

h.single_task([=](){

for (int i=0; i < 1024; i++) {

A[i] = B[i] + C[i];

}

});

FPGA Kernel 
Implementation



Intel ConfidentialDepartment or Event Name 21Copyright © 2022 Intel Corporation

DPC++ Class: buffer and accessor

▪ buffer

• Encapsulates data in a SYCL 
application

• Across both devices and host!

▪ accessor

• Mechanism to access buffer data

• Determines data dependencies in 
that order kernel executions 
(covered later)

int main() {

… // Code to set up standard C++ vectors

buffer buf_a(vector_a);

buffer buf_b(vector_b);

buffer buf_c(vector_c);

queue q(selector);

q.submit([&](handler& h) {

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});



Intel ConfidentialDepartment or Event Name 22Copyright © 2022 Intel Corporation

#Include Files

▪ oneAPI programs require the include of cl/sycl.hpp

▪ Programs targeting FPGAs require the include of 
cl/sycl/INTEL/fpga_extensions.hpp

// Always include these at the top of your program

#include <CL/sycl.hpp>

#include <CL/sycl/INTEL/fpga_extensions.hpp>



Intel ConfidentialDepartment or Event Name 23Copyright © 2022 Intel Corporation

DPC++ Simple Program 
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA



Intel ConfidentialDepartment or Event Name 24Copyright © 2022 Intel Corporation

DPC++ Simple Program 
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector



Intel ConfidentialDepartment or Event Name 25Copyright © 2022 Intel Corporation

DPC++ Simple Program 
Walk-Through

void dpcpp_code(int* a, int* b, int* c, int N) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers



Intel ConfidentialDepartment or Event Name 26Copyright © 2022 Intel Corporation

DPC++ Simple Program 
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Step 4: Submit a command group for execution



Intel ConfidentialDepartment or Event Name 27Copyright © 2022 Intel Corporation

DPC++ Simple Program 
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < kSize; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data



Intel ConfidentialDepartment or Event Name 28Copyright © 2022 Intel Corporation

DPC++ Simple Program 
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data

Step 6: Send a kernel for execution



Intel ConfidentialDepartment or Event Name 29Copyright © 2022 Intel Corporation

DPC++ Simple Program 
Walk-Through

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector

INTEL::fpga_selector selector;

// Set up a DPC++ device queue

queue q(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));

buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

q.submit([&](handler &h){

//Create device accessors to buffers

accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read_only);

accessor c(buf_c, h, write_only);

//Dispatch the kernel

h.single_task<VectorAdd>([=]() {

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i];

}

});

});

}

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data

Step 6: Send a kernel for execution

Done!

The contents of buf_c are copied to *c when the 
function finishes

(because of the buffer destruction of buf_c)



Intel ConfidentialDepartment or Event Name 30Copyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

Kernel Execution Order

▪ Kernels can 
execute at the 
same time

• If no data 
dependences

▪ Accessors are 
used to determine 
dependences

▪ Execution ordering 
is automatically 
determined

int main() {

auto R = range<1>{ num };

buffer<int> A{ R }, B{ R };

queue Q;

Q.submit([&](handler& h) {

auto out = A.get_access<access::mode::read_write>(h);

h.parallel_for(R, [=](id<1> idx) {

out[idx] = idx[0]; }); });

Q.submit([&](handler& h) {

auto out = A.get_access<access::mode::read_write>(h);

h.parallel_for(R, [=](id<1> idx) {

out[idx] = idx[0]; }); });

Q.submit([&](handler& h) {

auto out = B.get_access<access::mode::read_write>(h);

h.parallel_for(R, [=](id<1> idx) {

out[idx] = idx[0]; }); });

Q.submit([&](handler& h) {

auto in = A.get_access<access::mode::read>(h);

auto inout =

B.get_access<access::mode::read_write>(h);

h.parallel_for(R, [=](id<1> idx) {

inout[idx] *= in[idx]; }); });

}

Kernel 1

Kernel 2

Kernel 3

Kernel 4 Program 
completion

A

A

B

A

B
Kernel 1

Kernel 3

Kernel 2

Kernel 4

= data 
dependence

B



Intel ConfidentialDepartment or Event Name 31Copyright © 2022 Intel Corporation

Asynchronous Host/Kernel Execution
#include <CL/sycl.hpp>

#include <iostream>
constexpr int num=16;

using namespace cl::sycl;

int main() {

auto R = range<1>{ num };

buffer<int> A{ R };

queue{}.submit([&](handler& h) {

auto out = 
A.get_access<access::mode::write>(h);

h.parallel_for(R, [=](id<1> idx) {

out[idx] = idx[0]; });

});

auto result = 
A.get_access<access::mode::read>();

for (int i=0; i<num; ++i)

std::cout << result[i] << "\n";

return 0;

}

Host code 
execution

Kernel

A

A

▪ The execution of 
the host code is 
asynchronous to 
what is being 
executed on the 
accelerator

▪ If you need 
synchronization, 
you must impose 
that yourself

Kernel 
Execution



Intel ConfidentialDepartment or Event Name 32Copyright © 2022 Intel Corporation

Synchronization Method 1: Host Accessor

▪ In the command scope, 
accessors are created for the 
accelerator

▪ In the application scope, 
accessors are created for the 
host

▪A host accessor creates a 
dependency node in the 
execution graph

• Execution at the host is blocked 
until the data is ready

int main() {

constexpr int N = 100;

auto R = range<1>(N);

std::vector<double> v(N, 10);

queue q;

buffer<double, 1> buf(v.data(), R);

q.submit([&](handler& h) {

auto a = buf.get_access<access::mode::read_write>(h);

h.parallel_for(R, [=](id<1> i) {

a[i] -= 2;

});

});

auto b = buf.get_access<access::mode::read>();

for (int i = 0; i < N; i++)

std::cout << v[i] << "\n";

return 0;

}

Command
Scope

Application
Scope



Intel ConfidentialDepartment or Event Name 33Copyright © 2022 Intel Corporation

Synchronization Method 2: Buffer Destruction

▪ Buffer creation happens within 
a separate function scope

▪ When execution advances 
beyond this function scope, 
buffer destructor is invoked

▪ Relinquishes ownership of data 
and copies back the data to the 
host memory

▪ Scope can also be created with 
simple use of { }

#include <CL/sycl.hpp>

constexpr int N=100;

using namespace cl::sycl;

void dpcpp_code(std::vector<double> &v, queue &q){

auto R = range<1>(N);

buffer<double, 1> buf(v.data(), R);

q.submit([&](handler& h) {

auto a = buf.get_access<access::mode::read_write>(h);

h.parallel_for(R, [=](id<1> i) {

a[i] -= 2;

});

});

}

int main() {

std::vector<double> v(N, 10);

queue q;

dpcpp_code(v,q);

for (int i = 0; i < N; i++)

std::cout << v[i] << "\n";

return 0;

}



Intel ConfidentialDepartment or Event Name 34Copyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

Unified Shared Memory

▪ USM => unified virtual address space

• Any pointer value returned by a USM 
allocation routine is valid on the device

• Three different types of allocations are 
defined

• Device - data on device, must be explicitly
transferred, not accessible from host

• Host - data on host, accessible from device

• Shared - data on host and/or on device, runtime 
managed data movement 

• Host allocation ideal for streaming 
applications at interface speed



Intel ConfidentialDepartment or Event Name 35Copyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

Learn More About DPC++

▪Download DPC++ book for free

• https://link.springer.com/book/10.1
007%2F978-1-4842-5574-2

▪DPC++ Training Modules

• https://devcloud.intel.com/oneapi/g
et_started/baseTrainingModules/

https://link.springer.com/book/10.1007%2F978-1-4842-5574-2
https://devcloud.intel.com/oneapi/get_started/baseTrainingModules/


36Intel ConfidentialDepartment or Event Name

OneAPI Development Flow for FPGAs



Intel ConfidentialDepartment or Event Name 37Copyright © 2022 Intel Corporation

Getting Started with oneAPI on an FPGA

Note: Developers using custom platforms should download the Intel® FPGA Add-on for Intel® Custom 
Platforms with the respective Intel® Quartus® version and obtain a BSP from their 3rd part platform vendor.

Board Support Package (BSP)Intel® oneAPI Base Toolkit Intel® FPGA Add-on for oneAPI 
Base Toolkit

https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#fpga


Intel ConfidentialDepartment or Event Name 38Copyright © 2022 Intel Corporation

Installing oneAPI

▪Get started by visiting the Intel® Software Developer Zone landing 
page for the Intel® oneAPI Toolkits

• https://software.intel.com/en-us/oneapi

▪Get the Intel® oneAPI Base Toolkit for Linux*

• Supports compiles for emulation and the optimization report

▪ Install the Intel® FPGA Add-on for oneAPI Base Toolkit

• Needed for compiles to FPGA hardware

• Contains Intel® Quartus® Prime software “under the hood,” be sure to comply 
to required versions of operating system

https://software.intel.com/en-us/oneapi


Intel ConfidentialDepartment or Event Name 39Copyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

FPGA Development Flow for oneAPI Projects 

• FPGA Emulator target (Emulation)

• Compiles in seconds

• Runs completely on the host

• Optimization report generation

• Compiles in seconds to minutes

• Identify bottlenecks

• FPGA bitstream compilation

• Compiles in hours

• Enable profiler to get runtime analysis



Intel ConfidentialDepartment or Event Name 40Copyright © 2022 Intel Corporation

Anatomy of a dpcpp Command Targeting FPGAs

dpcpp –fintelfpga *.cpp/*.o [device link options] [-Xs arguments]

Language

DPCPP = Data 
Parallel C++

Target Platform

Input Files

source or object

Link Options FPGA-Specific 
Arguments



Intel ConfidentialDepartment or Event Name 41Copyright © 2022 Intel Corporation

Emulation

Quickly generate code that runs on the x86 host to emulate the FPGA

Developers can:

▪Verify functionality of design through CPU compile and emulation.

▪ Identify quickly syntax and pointer implementation errors for 
iterative design/algorithm development. 

▪ Enable deep, system-wide debug with Intel® Distribution for GDB.

▪ Functional debug of SYCL code with FPGA extensions.

Seconds of Compilation

Does my code give me the 
correct answers?



Intel ConfidentialDepartment or Event Name 42Copyright © 2022 Intel Corporation

Emulation Command

dpcpp

Compiler

./mycode.emu

…

Running …

mycode.cpp

dpcpp -fintelfpga <source_file>.cpp –DFPGA_EMULATOR

#ifdef FPGA_EMULATOR

intel::fpga_emulator_selector device_selector;

#else

intel::fpga_selector device_selector;

#endif Include this construct in 
your code



Intel ConfidentialDepartment or Event Name 43Copyright © 2022 Intel Corporation

Report Generation

Quickly generate a report to guide optimization efforts

Developers can:

▪ Identify any memory, performance, data-flow bottlenecks in their
design.

▪ Receive suggestions for optimization techniques to resolve said
bottlenecks.

▪Get area and timing estimates of their designs for the desired FPGA.

Minutes of Compilation

Where are the bottlenecks?



Intel ConfidentialDepartment or Event Name 44Copyright © 2022 Intel Corporation

Command to Produce an Optimization Report

▪A report showing optimization, area, and architectural information 
will be produced in <file_name>.prj/reports/

dpcpp -fintelfpga <source_file>.cpp -c -o <file_name>.o

dpcpp -fintelfpga <file_name>.o -fsycl-link -Xshardware

Two Step Method:

dpcpp -fintelfpga <source_file>.cpp -fsycl-link -Xshardware

One Step Method:

The default value for –fsycl-link is  -fsycl-link=early 
which produces an early image object file and 
report



Intel ConfidentialDepartment or Event Name 45Copyright © 2022 Intel Corporation

Bitstream Compilation

Developers can:

▪Compile FPGA bitstream for their design and run it on an FPGA.

▪Attain automated timing closure.

▪Obtain in-hardware verification.

▪ Take advantage of Intel® VTune™ Profiler for real-time analysis of 
design.

Runs Intel Quartus Prime Software “under the hood”
(no licensing required)



Intel ConfidentialDepartment or Event Name 46Copyright © 2022 Intel Corporation

Compile to FPGA Executable with Profiler

The profiler will be instrumented within the image and you will be able to run 
the executable to return information to import into Intel® Vtune Amplifier.

To compile to FPGA executable without profiler, leave off –Xsprofile.

dpcpp -fintelfpga <source_file>.cpp -c -o <file_name>.o

dpcpp -fintelfpga <file_name>.o –Xshardware -Xsprofile

Two Step Method:

dpcpp -fintelfpga <source_file>.cpp –Xshardware -Xsprofile

One Step Method:



Intel ConfidentialDepartment or Event Name 47Copyright © 2022 Intel Corporation

Compiling FPGA Device Separately and Linking

▪ In the default case, the DPC++ Compiler handles generating the host 
executable, device image, and final executable

▪ It is sometimes desirable to compile the host and device separately 
so changes in the host code do not trigger a long compile

host_only.cpp

has_kernel.cpp
dpcpp –fintelfpga has_kernel.cpp –fsycl-link=image –o has_kernel.a –Xshardware

Partition code

Then run this command to compile the FPGA image:

dpcpp –fintelfpga host_only.cpp –c –o host_only.o
This command to produce an object file out of the host only code:

dpcpp –fintelfpga has_kernel.a host_only.o –o executable.fpga

This command to put the object files together into an executable:

This is the long 
compile



Intel ConfidentialDepartment or Event Name 48Copyright © 2022 Intel Corporation

Porting OpenCL code to oneAPI

▪ Same programming flow => easy porting

▪ Migration guidelines available at 
https://www.intel.com/content/www/us/en/develop/documentation/migrate-opencl-fpga-
designs-to-dpcpp/top.html

Kernel uses C99 Kernel uses DPC++

Autorun kernel No autorun kernel but easy workaround available

Buffer read/write access is from the host point of view Buffer access is from the device point of view

Buffers with clEnqueueWriteBuffer or USM buffers Buffers and accessors controlled by SYCL runtime or USM 
pointers

Programming file AOCX separated from host executable Single executable combining FPGA programming file and host 
executable – fat binary

VTune profiling only from host system VTune profiling from host and kernel system

https://www.intel.com/content/www/us/en/develop/documentation/migrate-opencl-fpga-designs-to-dpcpp/top.html


Intel ConfidentialDepartment or Event Name 49Copyright © 2022 Intel Corporation

Intel® VTune™

▪Add –Xsprofile to the set of flags in Makefile of hardware compile

▪ Start VTune with root rights and configure analysis CPU/FPGA

Start



Intel ConfidentialDepartment or Event Name 50Copyright © 2022 Intel Corporation

Intel® VTune™

▪ Kernel schedule 
in respect to host

▪ FPGA utilization

▪ PCIe BW

▪DRAM BW



Intel ConfidentialDepartment or Event Name 51Copyright © 2022 Intel Corporation

Intel® VTune™

▪ Performance 
counters inside 
kernel

▪ Bottleneck inside 
kernel visible

▪Utilization of 
resources and 
throughput of each 
loop in kernel



Intel ConfidentialDepartment or Event Name 52Copyright © 2022 Intel Corporation

Use of RTL Libraries for FPGA in oneAPI

▪ Create a static library file using RTL

• fpga_crossgen: rtl -> object

• fpga_libtool: objects -> library

Files needed:

• RTL wrapper

• XML description

• Emulation model file (SYCL-based)

RTL design constraints:

• RTL module must have a clock port, a resetn port, and Avalon® streaming interface input and output ports

• A single pair of ready and valid logic must control all the inputs

• Declare the RTL module as stall-free if possible

▪ Include library file to use the functions inside your SYCL* kernels.
dpcpp -fintelfpga main.cpp lib.a



53Intel ConfidentialDepartment or Event Name

FPGA Hardware for oneAPI



Intel ConfidentialDepartment or Event Name 54Copyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

FPGA Boards and Board Support Packages

To interface with computers, FPGAs must be mounted
onto boards

Boards provide:

power and thermal management

memory

physical interfaces between the FPGA and other devices

Board Support Packages (BSPs) => interface between 
boards and the Intel oneAPI compiler

A BSP consists of:

software layers (card drivers, card management code)

a precompiled FPGA hardware design implementing memory 
and physical interfaces and card management logic

The FPGA design implementing the kernel(s) is stitched 
by the compiler into the framework provided by the BSP



Intel ConfidentialDepartment or Event Name 55Copyright © 2022 Intel Corporation

Intel® FPGA Cards Available for use with oneAPI



Intel ConfidentialDepartment or Event Name 56Copyright © 2022 Intel Corporation

Example of Intel® Agilex® FPGA Card with oneAPI

Bittware®: IA-840F



Intel ConfidentialDepartment or Event Name 57Copyright © 2022 Intel CorporationCopyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

FPGA supported Technologies

▪UPI (coming soon: CXL)

• Cache-coherent, high bandwidth                                                                    
and low latency interface

• Memory extension with DDR4/DDR-T

▪High Bandwidth Memory

• In package 16GB HBM2, up to 512GB/s

▪ IKL – FPGA to FPGA connection

▪Network interfaces

FPGA Advantages

Bittware®: 520N-MX

Intel® S10DX



58Intel ConfidentialDepartment or Event Name

Introduction to ntel® DevCloud



Intel ConfidentialDepartment or Event Name 59Copyright © 2022 Intel Corporation

Intel® DevCloud

▪ Free cloud environment for learning and project prototyping

▪Complimentary access to a wide range of Intel® architectures 
(including FPGAs)

▪ Pre-installed Intel® optimized frameworks, tools, and libraries



Intel ConfidentialDepartment or Event Name 60Copyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

Intel® DevCloud

▪ Sign up here: 

• https://software.intel.com/devcloud

• Account for 120 days

• Intel® oneAPI environment pre-
installed and ready for use

• Nodes with cards installed in the 
group fpga_runtime

• Nodes with extra memory for full 
FPGA compiles in the group 
fpga_compile

https://software.intel.com/devcloud


Intel ConfidentialDepartment or Event Name 61Copyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

Use the Intel® DevCloud

▪ SSH to gateway

▪ Or Jupyter Notebooks                           
via browser

▪ Job queue for compile and run

• Job output into log file

▪ Access to single node also 
possible

▪ Session time limit:               
default :   6hrs
max : 24hrs

▪ Many samples and tutorials in Git 
repo

https://github.com/oneapi-src/oneAPI-
samples/tree/master/DirectProgrammin
g/DPC%2B%2BFPGA

Jupyter Notebooks 

https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/DPC%2B%2BFPGA


Intel ConfidentialDepartment or Event Name 62Copyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

Intel® DevCloud – Available FPGA Hardware 

▪ What are you trying to use the Devcloud for? 

1) Arria 10 PAC - RTL AFU, OpenCL

2) Arria 10 - OneAPI, OpenVINO

3) Stratix 10 - RTL AFU, OpenCL

4) Stratix 10 – OneAPI

5) Emulation

6) Compilation (bitstream creation)

Coming soon: Agilex cards with OneAPI support



Intel ConfidentialDepartment or Event Name 63Copyright © 2022 Intel CorporationCopyright © 2022 Intel Corporation

Summary

▪ Intel® oneAPI enables software engineers to use easily Intel 
FPGAs as compute accelerators without deep FPGA 
knowledge

▪ Unified programming model for different device types is 
making port between devices simple

▪ Modern programming language (DPC++) 

▪ Support of industry standard debug and optimization tools 
like GDB, Intel® VTune™

▪ Including optimized RTL blocks as libraries

▪ Test easily in Intel® DevCloud ☺

▪ Let your use case also benefit from                                       
Intel® oneAPI FPGA compute acceleration 

FPGA compute acceleration with Intel® oneAPI



64


