-PGA compute acceleration with
ntel® oneAP!

Maurizio Paolini

Field Applications Engineer, Intel Corporation
Copyright © 2022 Intel Corporation.

J u ly 202 2 This document is intended for personal use only.
Unauthorized distribution, modification, public performance,
public display, or copying of this material via any medium is strictly prohibited
I n tel Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names
®

and brands may be claimed as the property of others.

Agenda
FPGA Compute Acceleration with Intel® oneAPI

* [ntroduction to oneAP|

= The DPC++ programming language

* oneAP| Development Flow for FPGAs oneAPI
* FPGA hardware for oneAP|

= Introduction to Intel® DevCloud

Copyright © 2022 Intel Corporation intel.

Introduction to oneAP]

Department or EventName ~ Intel Conf idential |nte|. E

Advantages of Heterogeneous Computing
Multiple Architectures

= Developers can optimize specialized inline and offload workloads to meet business needs.

« Strengths of individual xPUs (CPU, GPU, FPGAs, etc.) can be combined for the benefit of the overall system

Memory
Performance/Watt Throughput Latency 1O Flexibility Bandwidth Architecture

(7

Copyright © 2022 Intel Corporation

intel.

Programming Challenges
Multiple Architectures

Application Workloads Need Diverse Hardware

» Separate programming models and toolchains for il i e
eaCh arChIteCture Scalar Vector Spatial Matrix

* Required training and licensing — compiler, IDE, debugger, Middleware & Framemarke
analytics/monitoring tool, deployment tool, et al. — per
architecture.

* TensorFlow @xnet ﬁ'g‘i NumPy P

PyTorch e X.. n

 Challenging experience in debug, monitoring, and
maintenance of a cross-architectural source code.

CPU GPU FPGA Other accel.
programming programming programming programming

» Difficult integration across proprietary IPs and architectures modal modal model models
and no code re-use.

» Software development complexity limits freedom of
architectural choice.

* |solated investments required for technical expertise to
overcome the barrier-to-entry

Other accel.

Copyright © 2022 Intel Corporation intel.

A Unified Programming Model

Multiple Architectures

The oneAPI product delivers a unified programming
model to simplify development across diverse
architectures.

It guarantees:

= Common developer experience across Scalar, Vector,
Matrix and Spatial architectures (CPU, GPU, Al and
FPGA)

= Uncompromised native high-level language
performance

» |ndustry standardization and open specifications

Copyright © 2022 Intel Corporation

intel.

7

Intel® oneAPI| Product

emulation and reports.
« Runtime analysis via VTune™ Profiler

« Complex hardware patterns implemented
through built-in language features: macros,
pragmas, headers

Faster
Development

« Code re-use across architectures and
vendors.

« Compatible with existing high-
performance languages.

Extensible
Code

Reduced « Leverage familiar sequential programming

Barrier of languages: improved ramp-up and debug
Entry time.

« IDE Integration: Eclipse, VS, VS Code

Copyright © 2022 Intel Corporation

« Performance tuning and timing closure through

Application Workloads Need Diverse Hardware

Middleware & Frameworks

PyTorch {@xnet

@ ﬁ:ﬁ NumPy X.. ©penVIN®

F TensorFlow

Intel® oneAPI
on;API PrOduct

Compatibility
Tool

Analysis &

Languages Libraries Selsue Tesl

Low-Level Hardware Interface

Available Now

intel.

8

https://www.intel.com/content/www/us/en/developer/tools/oneapi/overview.html#gs.04rtej

Intel® FPGASs + Intel® oneAPI| Toolkits

» Data-dependent parallelism

Spatial « Streaming and graph processing
Architecture patterns

» Low and deterministic latency

« Customizable network
interfaces and protocols

» Customizable memory architecture

« Distributed, high bandwidth, on-
chip memory topology

Copyright © 2022 Intel Corporation

oneAPI Product

Direct Programming

Data Parallel C++

Analysis &
Debug Tools

intel.

Large number of use cases

Examples

= Data compression
" [mage compression

= File parsing

= Data Base acceleration
= Genomics

= Financial

Copyright © 2022 Intel Corporation

Accelerating Re-Pair Compression using FPGAs

Robert Lasch Suleyman §. Demirsay Norman May
oleert.
SAPSE Intel Corporaton (UK) Limited SAPSE
Veeraraghavan Ramamurthy Christian Farber Kai-Unwe Sattler
ehiristian EaetherGntel Kus@tu-lmenau de
Intel Corporation tatel Corperation TU lmensu
ABSTRACT lex ol

Be-Par is a ompression algarithm well- s
require randam accesses to compressed
widespread use i the data management
ibitively high compression imes. As Re

FPGA-Accelerated Compression of Integer Vectors

epeniv gt TP e eca] Mzhmoud Mohsen Christian Firber David Broneske®
man ta accelerate such problems in data cf Norman May i i david d
compresc Intel Corparation University of Viayde
o
sealized in RTL for mare control over t SAPSE
Our experiments demanstate that an I
with eur system compresses an order of| - ABSTRACT
highly-optimized CPU vesion of Re-Fai HE Nooe | 18073
. tous| Ao ke]
deployed o Tt
ACH Refereace Foruat weight compressian techniques that trade

Ealert Lusch, Suleyman . Desussy, o
sy, Chrs s Firbes, e Kil-Uwe St
. i

accesses for lower compression ratios. Con
coliums in @ wide table benefitfram light-+

s e Hardvre ALV 3 e 1520
N USA,§

ar sparse encoding. Besides bit-packing.othey

1 INTRODUCTION

ancompressed,
pressicn fato far many cohumas. Furthermar
for compeession was the CPU as compression

agement [13]. Besides the obvious advi
I i oin]

transer
overhead wipes out perfomance gains from

it is possibe to operale directly on tf

pression atis even for previously uncarepress|

PipeJSON: Parsing JSON at Line Speed on FPGAs

Jonas Dann, Royden Wagner,
Daniel Ritter
frstname astnamel @sap.com

Abstract

Christian Farber Holger Friining
latel Corporation heidelberg de
Munich, Gerrmany Heidelberg University
Heidelberg, Germany
T] =

JavaSeript Object Notation (JSON) gaif
Whl

¥

FOA

moders C1 improved JSON

o speed
Re-Pair 2] is a gramrmar-hused cornp

e
tation, we achieve @ saturation of the availat

porallelism

1hd
and limited pipelining of CPUs prevent

Resource-Efficient Database Query Processing on FPGAs

st to most general-purposc algarithny compression an the FPGA, by using less thar P el Mehdi 4 Christian Firber Wolfgang Lehner
family or by Fusth per{ We present PipelSON, the first stand) TU Dresden & SAP SE Intel Corporation TU Dresden
which s deible o v caes such o bucd SAPHANA shows 3 prormarce 39y e o processtens of igabyle o olfgang lehner@ty-dresden de
coumes (2] factacof 2 utlizes FPGA harduware to make extens]
tional camplexity and ths it lang con] . il pere] Norman May Aknsh Kumar
been ale toparty milgale i in i sability in sftware pacjects, PipefS0] SAPSE TU Diesten
Femisn e g oo copenctator| - KEYWORDS Parall] Coe and achieves 7.95% speed] dresden.d
e gt ot b i, inary Pcking art JSON parsers on CPU, despite data X
[sty rote ABSTRACT resaurces, regardless of whether it s being actively used ar not.
1 c Keywords: FPGA, Hardware Pipelining)] FPGA technology has infroduced new ways to accclrate daty- Therefore,the mumber and type of algosiths that an FFGiA can
Norman .
pio - s o base query processing, that often result in higher per - e modes ey
ST r——r— Jonas g
T ey it 24 o, O, LSA ACH. New ork N s oo, 20 o 2 lmaing factor for sieaming aperators (e, lter, projection)
et) 0 gven it bow complesy -
H TS24 1 . In this paper, we propase *mar-
hing s ey considemston.
ce
1 Introduction H : ashing o snting
I recent years Javaseript Object Notd con. sggreguion. nd equioin. The ropesed 5] i :
cusons s st i o it s asdata el E o et
et el gy o] focmal e Lo thei flesible, semi-sr i pesi 12,16,
b o Copid o e o
Ty rremetterte] a5, [1,7) Tisis especaly o 7 i Ths
" Fi
FO an FPGA caneficiety support af run-time.
AN, e 4,50 P, 8, 54 i cient me] | KEYWORDS An FPGA modle can achieve resource eficincy by seusing
U ingesting raw JSON FPGA, s ation jin i o
e e] [7, 11, 12]. Recent advances on moder{ sort-merge, Chisel, OPAE o
son [12] mot shown) and—ts techmical | yenwop o ey ad equ
 Cheistian Fasker, Weligang Lehier, Narrin M Had
e Ak K. 01 "
s)
R — and high " Marghi

EWATON'21 e 0m35, 00, Vi) v, China. ACS,New Tork, XY,
tsig

o this woek owned b ohers thas ACH s e I
To ey otherwae e bl
ssatebuteto s, reqiees o spifc perni

1 INTRODUCTION

detailed in Sections 4. 44, and 4.5, Our benchmarks in Section
§ demanstrate speedups of up 1o 25 compared 1o a 26-threaded
MonetD instalation.

With adv 121,38, and its
Dadla'2, June 11202 Piadelphia A, LSA Py
. 2 BAC ONFFGAS
A B TSN SIS | e e 7 -
ot oeg BTG 12445 1122456 " 3 Field i
0
Frery agorithm.

implemeted a5 a modude on an FPGA sesa fxed amount of its

ASIC. Nometheless, thank:

design cycle, they ace suit-
able far ign chunges o frequent
e he FIG (CPUandits

PR —————
DN e 224,26, Vil e i

0 221 i o Comptn Moy,

A BN o sS40
[T ————

"RAM) theongh a ho ik feg. PC
data and commands betoeeen the two [4, 18, 26,24,

FRGAS cormprise of fved amount of at least § types of pro-
grammable resaurces:

intel.

10

The D

eeeeeeeeeeeeeeeeeeeee

PC++

rogramming Language

Intel Confidential

intel

Data Parallel C++ (DPC++)

= Common language designed to
target any XPU Based on C++ and SYCL

* Tuning still needed for each . SYCL is based on OpenCL
architecture . Think of it as SYCL + extensions

Allows for single-source
targeting of accelerators

* Goal: to incorporate everything
needed to get the best « Doesn’t require multiple files

performance out of every e
architecture Open specification

Copyright © 2022 Intel Corporation intel.

DPC++: Three Scopes

» DPC++ programs consist of 3 scopes:
» Application scope - Code executed on the host

« Command group scope - Code for submitting
data and commands to the accelerator

» Kernel scope — Code executed on the accelerator

* The full capabilities of C++ are available at
application and command group scope

= At kernel scope there are limitations in
accepted C++

* Most important is no recursive code

* See SYCL specification for complete list

Copyright © 2022 Intel Corporation

intel.

13

The “Runtime”

» The DPC++/SYCL runtime is the program running in the background
on the host controlling the execution and data passing needs of the
heterogeneous compute execution

= [t handles:

» Kernel and host execution in an order imposed by data dependency needs
(discussed later)

» Passing data back and forth between the host and device
* Querying the device
* Etc.

Copyright © 2022 Intel Corporation intel.

A Note About Lambda Functions

* Two common constructs in DPC++ - gueue submissions and kernel
dispatch functions - take function pointers as arguments

* This doesn't lend itself to simple, in-line code

» To write simpler and neat code, lambda functions are used

= L ambda functions are un-named functions used in-line with other code
* [f you are not familiar with them, here is a simple guide

Variables you want to [captureClause] (parameters) {

What the function needs
have access to in the /stateme nts; \ ccess to. This can be an
function code }

object like “handler &h" if
you need access to

member functions of
Normal statements for that object.

[=] means everything,
pass by value
[&] means everything,

functionality like in any
pass by reference

C++ function Final note: If you'd rather not use lambdas
& wrap everything in normal functions and
point to those in your own code, that's fine!

Copyright © 2022 Intel Corporation

intel.

15

DPC++ Class: device

» The device class represents the accelerators in a oneAP| system

* The device class contains member functions for querying information
about the available devices

» The function get _info gives information about a device:

 Name, vendor, and version of the device
« Width for built in types, clock frequency, cache width and sizes, online or offline

// Get all of the devices a system is capable of operating

std::vector<device> my_devices = device::get devices();

// Grab the first device to print info out for

device my_device = my_devices[0O];

// Print the name of the first device

std::cout << "Device: " << my_device.get info<info::device::name>() << std::endl;

Copyright © 2022 Intel Corporation intel. s

DPC++ Class: device selector

*» The device selector enables the
selection of a device to execute
kernels on

= Use the selector when you create
a queue (covered next)

* The code sample shows use of
several example device selectors,
including an FPGA

= A custom device selector can be
defined and used for targeting
specific devices

Copyright © 2022 Intel Corporation

// Other example selectors that are not FPGAs
// default selector selector;

// host _selector selector;

// cpu_selector selector;

// gpu_selector selector;

// Create the selector as an fpga_selector type
INTEL: :fpga_selector selector;

// Use the selector when you create a queue
queue q(selector);

intel.

17

DPC++ Class: queue

= A gueue is a mechanism where work is submitted to a device

= A queue submits command groups to be executed by the SYCL runtime

» A queue.submit() is the beginning of the command group scope

* Groups of work to be executed by the SYCL runtime on an accelerator

= A queue maps to a single device

The handler is a class that contains all of the
command group functions of SYCL

// Declare a queue to a device
queue q(selector); You can think of it as an abstraction of the runtime

This keeps us from having to type handler:: again and
again in the command group scope

// Submit thingslto the queue
g.submit([&](handler& h) {
// COMMAND GROUP CODE

})s

Copyright © 2022 Intel Corporation

intel.

18

DPC++ Class: kernel

* The kernel encapsulates code that will be run on the accelerator
= A kernel object is not explicitly constructed by the user

* |[tis constructed when a kernel dispatch function, such as
parallel for() or single task() is called

g.submit([&](handler& h) {

// The “kernel” is everything after the kernel dispatch function
h.single task<VectorAdd>([=]() {

// Everything inside here is “KERNEL SCOPE”
for (int i = 0; i < kSize; ++i) {
c[i] = a[i] + b[i];
}
1)

Copyright © 2022 Intel Corporation intel.

Single Task Kernels

= single task() kernels allow complex or
lengthy datapaths to be built from

for(int i=0; i < 1024; i++){
a[i] = b[i] + c[i];

1); CPU
Implementation

custom hardware in FPGAs

» Useful to offload code with dependencies
that are difficult to execute in a data

parallel fashion
= | ook like CPU code

« Contain an outer loop to process all data

= |deal for & recommended for FPGAS

FPGA Kernel
Implementation

h.single task([=](){
for (int i=0; i < 1024; i++) {
A[i] = B[i] + C[i];
}
1)

Copyright © 2022 Intel Corporation

intel.

20

DPC++ Class: buffer and accessor

= huffer

* Encapsulates dataina SYCL
application

* Across both devices and host!
B aCCessOor
* Mechanism to access buffer data

» Determines data dependencies in
that order kernel executions
(covered later)

Copyright © 2022 Intel Corporation

int main() {
.. // Code to set up standard C++ vectors

buffer buf_a(vector_a);
buffer buf_b(vector_b);
buffer buf_c(vector c);

queue q(selector);

g.submit([&](handler& h) {
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read only);
accessor c(buf_c, h, write_only);

h.single_task<VectorAdd>([=]() {
for (int i = @; i < kSize; i++) {
c[i] = a[i] + b[i];

}
})s
})s

intel.

21

#include Files

» oneAPI programs require the include of cl/sycl.hpp

» Programs targeting FPGAs require the include of
cl/sycl/INTEL/fpga_extensions.hpp

// Always include these at the top of your program

#include <CL/sycl.hpp>
#include <CL/sycl/INTEL/fpga extensions.hpp>

Copyright © 2022 Intel Corporation intel. 2

void dpcpp_code(int* a, int* b, int* c) {

= DPC++ Simple Program

INTEL: :fpga selector selector;

// Set up a DPC++ device queue Wal_k_Th rOUgh

queue q(selector);

// Setup buffers for input and output vectors “\\\\~ - - H
buffer buf_a(a, range<i>(N)); Step 1: Create a device selector targeting the FPGA

buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue
g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

//Dispatch the kernel
h.single task<VectorAdd>([=]() {
for (int i = 0; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

});

Copyright © 2022 Intel Corporation intel. =

void dpcpp_code(int* a, int* b, int* c) {

s wp e e e s DPC++ Simple Program

INTEL: :fpga_selector selector;

// Set up a DPC++ device queue Wal_k_Th rOugh

queue q(selector);

// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N)); \‘\\\\
buffer buf_c(c, range<1>(N));

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

//Submit Command group function object to the queue
g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

//Dispatch the kernel
h.single task<VectorAdd>([=]() {
for (int i = 0; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

});

Copyright © 2022 Intel Corporation intel. 24

void dpcpp_code(int* a, int* b, int* c, int N) {

s wp e e e s DPC++ Simple Program

INTEL: :fpga_selector selector;

// Set up a DPC++ device queue Wal_k_Th rOugh

queue q(selector);

// Setup buffers for input and output vectors)) h

buffer buf a(a, range<i>(N));: Step 1: Create a device selector targeting the FPGA

buffer buf_b(b, range<1>(N)); < 5 C devi) he FPGA devi :
buffer buf_c(c, range<l>(N)); tep : Create a adevice queue, usmgt e evice selector
//Submit Command group function object to the queue \\\\\\

Step 3: Create buffers

g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

//Dispatch the kernel
h.single task<VectorAdd>([=]() {
for (int i = 0; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

});

Copyright © 2022 Intel Corporation intel. =

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector
INTEL: :fpga_selector selector;

// Set up a DPC++ device queue
queue g(selector);

// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue
g.submit([&](handler &h){

I

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

//Dispatch the kernel
h.single task<VectorAdd>([=]() {
for (int i = 0; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

});

Copyright © 2022 Intel Corporation

DPC++ Simple Program
Walk-Through

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Step 4: Submit a command group for execution

intel.

26

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector
INTEL: :fpga_selector selector;

// Set up a DPC++ device queue
queue g(selector);

// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue
g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

DPC++ Simple Program
Walk-Through

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector
Step 3: Create buffers

Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data

//Dispatch the kernel
h.single task<VectorAdd>([=]() {
for (int i = 0; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

});

Copyright © 2022 Intel Corporation

intel.

27

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector
INTEL: :fpga_selector selector;

// Set up a DPC++ device queue
queue g(selector);

// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue
g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

DPC++ Simple Program
Walk-Through

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector
Step 3: Create buffers
Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data

//Dispatch the kernel
h.single task<VectorAdd>([=]() {
for (int i = 0; i < N; i++) {
c[i] = a[i] + b[i];
}
})s

Step 6: Send a kernel for execution

})s

Copyright © 2022 Intel Corporation

intel.

28

void dpcpp_code(int* a, int* b, int* c) {

s wp e e e s DPC++ Simple Program

INTEL: :fpga_selector selector;

// Set up a DPC++ device queue Wal_k_Th rOugh

queue q(selector);

// Setup buffers for input and output vectors))

I T I LT Step 1: Create a device selector targeting the FPGA
— J J

buffer buf_b(b, range<1>(N));

ST B e, FEnEedds (i) Step 2: Create a device queue, using the FPGA device selector

//Submit Command group function object to the queue

Step 3: Create buffers
g.submit([&](handler &h){

//Create device accessors to buffers Step 4: Submit a command for execution
accessor a(buf_a, h, read_only);

accessor b(buf_b, h, read only);

Step 5: Create buffer accessors so the FPGA can access the data
accessor c(buf_c, h, write_only);

//Dispatch the kernel Step 6: Send a kernel for execution
h.single task<VectorAdd>([=]() {

for (int i = 0; i < N; i++) {

c[i] = a[i] + b[i]; Donel!
}
1) The contents of buf c are copied to *c when the
1) function finishes
} (because of the buffer destruction of buf ¢)

Copyright © 2022 Intel Corporation intel. 2

int main() {
auto R = range<1>{ num };
buffer<int> A{ R }, B{ R };
queue Q;

Q.submit([&](handler& h) {
auto out = A.get _access<access::mode::read_write>(h);

h.parallel for(R, [=](id<1> idx) {
out[idx] = idx[6]; }); }); } Kernel 1
Q.submit([&](handler& h) {
auto out = A.get_access<access::mode::read_write>(h);
h.parallel for(R, [=](id<1> idx) {
out[idx] = idx[@]; }); }); } Kernel 2
Q.submit([&](handler& h) {
auto out = B.get_access<access::mode::read_write>(h);
h.parallel for(R, [=](id<1> idx) {
out[idx] = idx[0]; }); }); } Kernel 3
Q.submit([&](handler& h) {
auto in = A.get_access<access::mode::read>(h);

auto inout =
B.get_access<access::mode: :read_write>(h);

h.parallel for(R, [=](id<1> idx) {
inout[idx] *= in[idx]; }); }); } Kernel 4

Copyright © 2022 Intel Corporation

Kernel Execution Order

§ = data
dependence

= Kernels can
execute at the
same time

Kernel 1

* |If no data
dependences

m Accessors are
used to determine
dependences

= Execution ordering
Is automatically
determined

B
Program
completion

intel.

30

Asynchronous Host/Kernel Execution

» The execution of
the host code is
asynchronous to
what is being
executed on the
accelerator

= [f you need
synchronization,
you must impose
that yourself

Copyright © 2022 Intel Corporation

Host code
execution

#include <CL/sycl.hpp>

#include <iostream>
constexpr int num=16;

using namespace cl::sycl;

int main() {
auto R = range<1>{ num };
buffer<int> A{ R };

queue{}.submit([&](handler& h) {

auto out =
A.get _access<access::mode: :write>(h);

h.parallel for(R, [=](id<1> idx) {
out[idx] = idx[0]; });

1 }->

auto result =
A.get _access<access::mode::read>();

for (int i=0; i<num; ++1i)
std::cout << result[i] << "\n";

return 0;

}

Kernel
Execution

A

intel.

31

Synchronization Method 1: Host Accessor

" [n the command scope,
accessors are created for the
accelerator

" |n the application scope,
accessors are created for the
host

= A host accessor creates a
dependency node in the
execution graph

e Execution at the host is blocked
until the data is ready

Copyright © 2022 Intel Corporation

int main() {
constexpr int N = 100;
auto R = range<1>(N);
std: :vector<double> v(N, 10);
queue q;

buffer<double, 1> buf(v.data(), R);
g.submit([&] (handler& h) {
auto a = buf.get access<access::mode::read write>(h);

N h.parallel for(R, [=](id<1> i) {
)i] -= 2; Command
})s
15F Scope

N\

X
auto b = buf.get access<access::mode::read>();

for (int 1 = @; 1 < N; i++) Application
std::cout << v[i] << "\n";
return 0; SCOpe
i
intel.

32

Synchronization Method 2: Buffer Destruction

= Buffer creation happens within
a separate function scope

= \When execution advances
beyond this function scope,
buffer destructor is invoked

= Relinquishes ownership of data
and copies back the data to the
host memory

» Scope can also be created with
simple use of { }

Copyright © 2022 Intel Corporation

#include <CL/sycl.hpp>
constexpr int N=100;
using namespace cl::sycl;

void dpcpp_code(std::vector<double> &v, queue &q){
auto R = range<1>(N);
buffer<double, 1> buf(v.data(), R);
g.submit([&] (handler& h) {
auto a = buf.get access<access::mode::read_write>(h);
h.parallel for(R, [=](id<1> i) {
al[i] -= 2;
3
})s

int main() {
std::vector<double> v(N, 10);
queue q;

dpcpp_code(v,q);

for (int i = @; i < N; i++)
std::cout << v[i] << "\n";
return 0;

intel.

33

Unified Shared Memory

» USM => unified virtual address space

* Any pointer value returned by a USM
allocation routine is valid on the device

* Three different types of allocations are
defined

» Device - data on device, must be explicitly
transferred, not accessible from host

* Host - data on host, accessible from device

* Shared - data on host and/or on device, runtime
managed data movement

* Host allocation ideal for streaming
applications at interface speed

Copyright © 2022 Intel Corporation

562 ? g.submit ([&] (handlers h) {
563 o h.single task<paralleladdKernel>([=]() [[intel::kernel args restrict]] {
564
565 host_ptr<int> in(in_host);
566 host_ptr<int> out (out_host) ;
567
568 int i_cnt = 0;
569
570 // Init regs to zero
571 [[intel::fpga register]] std::array<int, &> raw_data;
572 #$pragma unroll
573 for (int i = 0; i < 16; i++) { raw _data[i] = 0; }
574
575 [[intel::fpga register]] std::array<int, 9> add_data;
576 #pragma unroll
577 for (int i = 0; i < 8; i++) { add_data[i] = 0; }
578
579
81 // Run over all CLs
82 while(i_cnt < iterations) {
g4 // Load complete CL in one clock cycle, (same for PCIe and DDR4)
85 #pragma unroll
86 @ for (uint idx = 0; idx < 16; idx++) |
87 o {
88 raw_data[idx] =|in[idx + i cnt*lg];
89 }
a0 }
g1
92 add_data[U] = raw_data[0] + raw_data[®];
93 add _data[!] = raw_data[l] + raw_data[“];
9 add_data[?] = raw_data[?] + raw_data[l0];
9 add _data[3] = raw_data[:] + raw data[!l];
9 ¢ add_data[4] = raw_data[4] + raw _data[l!Z];
97 add_data[®] = raw_data[®] + raw_data[!3];
98 add_data[¢] = raw_data[c] + raw data[!%];
99 add data[7] = raw_data[’/] + raw _data[!5];
601 // Write results back with half CL, as we can write and read
602 // a CL per clock cycle this will create no bottleneck
603 #pragma unroll
604 =] for (uint idx = 0; idx < 8; idx++) {
605 © {
606 out[idx + 1 cnt*8] = add_data[idx];
607 }
608 }
609
611 i cnt++;
612 -
613 }
614
3
616 | }).wait();

intel.

34

Learn More About DPC++

* Download DPC++ book for free = DPC++ Training Modules

e https://link.springer.com/book/10.7 e https://devcloud.intel.com/oneapi/g
007%2F978-1-4842-5574-2 et_started/baseTrainingModules/

Module 1 Module 2
Inroduction to DPC++ n DPCYS A Sivaciars
h o Anicu TR
i « Usede on 1o officad
e

B Data Parallel C++

B Mastering DPC++ for Programming of Heterogeneous Systems using C++ and SYCL

Authors (view affiliations)
James Reinders, Ben Ashbaugh, James Brodman, Michael Kinsner, John Pennycook, Xinmin Tian

Book
1 21 207k
Citations Mentions Downloads
Download book PDF L2 Download book EPUB ¥

Copyright © 2022 Intel Corporation intel.

35

https://link.springer.com/book/10.1007%2F978-1-4842-5574-2
https://devcloud.intel.com/oneapi/get_started/baseTrainingModules/

OneA

eeeeeeeeeeeeeeeeeeeee

o

Development Flow for F

Intel Confidential

PGAS

intel

Getting Started with oneAPI on an FPGA

1/O Memory Interfac
Pre-Compiled BSP

—1

intel.

FPGA Add-Omfaine \ A\

- oneAP|) -+

Base Toolkit

oneAPI

BASE TOOLKIT

Intel® oneAPI Base Toolkit Intel® FPGA Add-on for oneAPI Board Support Package (BSP)
Base Toolkit

Note: Developers using custom platforms should download the Intel® FPGA Add-on for Intel® Custom
Platforms with the respective Intel® Quartus® version and obtain a BSP from their 3™ part platform vendor.

Copyright © 2022 Intel Corporation intel. ¥

https://software.intel.com/content/www/us/en/develop/articles/oneapi-standalone-components.html#fpga

Installing oneAPI

= Get started by visiting the Intel® Software Developer Zone landing
page for the Intel® oneAPI Toolkits

* https://software.intel.com/en-us/oneapi

= Get the Intel® oneAPI| Base Toolkit for Linux*

* Supports compiles for emulation and the optimization report

= Install the Intel® FPGA Add-on for oneAPI| Base Toolkit

* Needed for compiles to FPGA hardware

» Contains Intel® Quartus® Prime software “under the hood,” be sure to comply
to required versions of operating system

Copyright © 2022 Intel Corporation intel. 3

https://software.intel.com/en-us/oneapi

FPGA Development Flow for oneAPI Projects

_ FPGA Development Flow
* FPGA Emulator target (Emulation) / \

« Compiles in seconds Coding >
* Runs completely on the host ¥
° TMi i i E Emulation
Optimization report generation UL (- ctional Vatdation)
« Compiles in seconds to minutes
. i Minutes Static
|dentify bottlenecks Reports

* FPGA bitstream compilation

Full Compile and

« Compiles in hours Hours

Hardware Profiling

* Enable profiler to get runtime analysis l
Deploy /

Copyright © 2022 Intel Corporation intel.

Anatomy of a dpcpp Command Targeting FPGAS

dpcpp -fintelfpga *.cpp/*.o0 [device link options] [-Xs arguments]

Target Platform
Language Input Files
DPCPP = Data source or object
Parallel C++

Copyright © 2022 Intel Corporation intel. «

FPGA-Specific
Arguments

Link Options

Fmulation Does my code give me the

correct answers?

Seconds of Compilation

Quickly generate code that runs on the x86 host to emulate the FPGA
Developers can:
= Verify functionality of design through CPU compile and emulation.

= [dentify quickly syntax and pointer implementation errors for
iterative design/algorithm development.

» Enable deep, system-wide debug with Intel® Distribution for GDB.
» Functional debug of SYCL code with FPGA extensions.

Copyright © 2022 Intel Corporation intel. «

Emulation Command

#ifdef FPGA_EMULATOR
intel: :fpga emulator selector device selector;
#else

intel: :fpga selector device selector;
#endif Include this construct in
your code

dpcpp -fintelfpga <source file>.cpp -DFPGA EMULATOR

mycode.cpp

. /mycode .emu

Copyright © 2022 Intel Corporation intel. 42

RepOrt Generation Where are the bottlenecks?

Minutes of Compilation

Quickly generate a report to guide optimization efforts

Developers can:

» [dentify any memory, performance, data-flow bottlenecks in their
design.

= Receive suggestions for optimization techniques to resolve said
bottlenecks.

» Get area and timing estimates of their designs for the desired FPGA.

Copyright © 2022 Intel Corporation intel.

Command to Produce an Optimization Report

Two Step Method:
dpcpp -fintelfpga<source file>.cpp -c -o <file name>.o

dpcpp -fintelfpga<file name>.o

-fsycl-1link

One Step Method:/

-Xshardware

The default value for —fsycl-link is -fsycl-link=early
which produces an early image object file and
report

dpcpp -fintelfpga<source file>.cpp/|-fsycl-1link|-Xshardware

= A report showing optimization, area, and architectural information
will be produced in <file_name>.prj/reports/

Copyright © 2022 Intel Corporation

intel. 4

Bitstream Compilation

Runs Intel Quartus Prime Software “under the hood”
(no licensing required)

Developers can:

= Compile FPGA bitstream for their design and run it on an FPGA.
= Attain automated timing closure.

* Obtain in-hardware verification.

» Take advantage of Intel® VTune™ Profiler for real-time analysis of
design.

Copyright © 2022 Intel Corporation intel.

Compile to FPGA Executable with Profiler

Two Step Method:
dpcpp -fintelfpga<source file>.cpp -c -0 <file name>.o
dpcpp -fintelfpga<file name>.o -Xshardware -Xsprofile

One Step Method:
dpcpp -fintelfpga<source_file>.cpp -Xshardware -Xsprofile

The profiler will be instrumented within the image and you will be able to run
the executable to return information to import into Intel® Vtune Amplifier.

To compile to FPGA executable without profiler, leave off —Xsprofile.

Copyright © 2022 Intel Corporation intel. 4

Compiling FPGA Device Separately and Linking

" |[n the default case, the DPC++ Compiler handles generating the host
executable, device image, and final executable

" [t is sometimes desirable to compile the host and device separately
so changes in the host code do not trigger a long compile

This is the long

Partition code

compile

Then run this command to compile the FPGA image:

has_kernel.cpp
dpcpp -fintelfpga has_kernel.cpp -fsycl-link=image -0 has_kernel.a -Xshardware

This command to produce an object file out of the host only code:
dpcpp -fintelfpga host only.cpp -c -0 host only.o

host only.c . . : :
—ONY-cPp This command to put the object files together into an executable:
dpcpp -fintelfpga has_kernel.a host only.o -o executable.fpga

Copyright © 2022 Intel Corporation intel. «

Porting OpenCL code to oneAP!

= Same programming flow => easy porting

= Migration guidelines available at

https://www.intel.com/content/www/us/en/develop/documentation/migrate-opencl-fpga-
designs-to-dpcpp/top.html

OpenCL ONeAPI
Kernel uses C99 Kernel uses DPC++

Buffers with clEnqueueWriteBuffer or USM buffers Buffers and accessors controlled by SYCL runtime or USM
pointers

Copyright © 2022 Intel Corporation intel. <

https://www.intel.com/content/www/us/en/develop/documentation/migrate-opencl-fpga-designs-to-dpcpp/top.html

Intel® VTune™

Start

= Add —Xsprofile to the set of flags in Makefile of hardware compile
= Start VTune with root rights and configure analysis CPU/FPGA

e Launch Application ~

Specify and configure your analysis target: an application or a script to execute.

Application:

Idata_ficfaerber/H2020/Aggregation/aggregation.fpga @E|
Application parameters:

100000000 E|

Use application directory as working directory

Advanced >

Copyright © 2022 Intel Corporation

CPUIFPGA Interaction ~

Analyze CPU/FPGA interaction issues through these ways: 1. Focus on the kernels running on the FPGA. 2. Identify the most
time-consuming kernels. 3. Look at the corresponding metrics on the device side (like Occupancy or Stalls). 4. Correlate with
CPU and platform profiling data. Learn more

CPU sampling interval, ms
5

Collect stacks
FPGA profiling data source
AOCL Profiler

Path to .aocx or host binary file

FPGA readback period
v]

FPGA no temporal

FPGA no memory transfers

Details >

intel.

49

Intel® VTune™

» Kernel schedule
IN respect to host

= FPGA utilization
= PCle BW
= DRAM BW

Copyright © 2022 Intel Corporation

Platform
p: + - W | 1700ms 1750ms 1800ms 1850ms 1900ms 1950ms
PR TSI T NN H SR R PR R SR SN N SR AU I ST S R

@
§ pac_s10 usm L]
oy
=]
=
5
=
@ (sep) (TID: 106957)
=

(sep) (TID: 106965)
8
B| ¥ paralieladdKernel
@] -
e
3| v_global_read (aggrega.. W
o

Compute Unit 0

¥ __global_write ("aggregati...

Compute Unit 0 W'
[|
| |
Compute Unit 0 I |
|]
CPU Time
= 19007.754 |
5 19007.754 |
| p package 0
@
= 20583 |
E » package 1
g 20,583 |
| p package 0
= e s S s e S
<
o
=]

GPU Computing Queue
[Computing Task
[[]1GPU Computing Q...

[Thread v
[Running
Context Switches
[_] Preemption
[_] Synchronization
i CPU Time
== Computing Task

FPGA Utilization
Computing Task Count
s Unknown

| Computing Task / Modi v
~ Total Global Bandw...
<~ Global Bandwidth, ...
~ Stalls (%)
<= Occupaney (%6)
~ Idle (%)
~~ Activity (30)

CPU Time
s CPU Time

PCle Bandwidth
Average Bandwidth, ...
1 Read
i Write
~ Total, MB/sec
DRAM Bandwidth
Average Bandwidth, ...
1 Read
s Write
~~ Total, GBlsec

intel.

50

Intel® VTune™ e s e

i Device Metrics
2] [=] [»] 2] Data Transferred
Source Line & Source Stalls (%) Occupancy (%) Idle (%) Activity (%) ® ®
Data Transfer Size Average Bandwidth, GB/s
o subnit([8) (handLers h) { — T
694 h.single_ task<paralleladdKernel>([=]() [[intel::kernel args_restrict]] {
695
696 host_ptr<int> in(in_host);
m P e rfo rmance o7 host ptrain out(cut osiT;
698
699 int i_cnt = 8;
L] [} 700
701 // Init regs to zero
C O u n e rS I n S I e 702 [[intel::fpga register]] std::array<int, 16> raw data;
703 #pragma unroll
704 for (int i = 8; 1 < 16; i++) { raw data[i] = 8; }
705
e r n e 706 [[intel::fpga register]] std::array<int, 8> add data;
707 #pragma unroll
708 for (int i = 8; 1 < 8; i++) { add data[i] = @; }
709
. . 710
= Bottleneck
I n S I e 712 // Run over all CLs
713 while(i_cnt < iterations) { 0.0% 60.4% 0.0% 0.0% 0B 0.000
714
" " 715 // Load complete CL in one clock cycle, (same for PCIe and DDR4)
ernel visible
717 for (uint idx = 0; idx < 16; idx++) {
718 {
719 raw data[idx] = in[idx + i cnt*16]; 13.5% 61.8% 31.9% 61.8% 799.9 MB 12.647
. . . 720 1
= Utilization of |
722
723 add data[0] = raw data[@] + raw data[8];
724 add data[l] = raw data[l] + raw data[9];
725 add_data[2] = raw data[2] + raw data[le];
re S O u rce S a ﬂ 726 add data[3] = raw data[3] + raw data[11];
727 add_data[4] = raw data[4] + raw data[12];
728 add data[5] = raw data[5] + raw data[13];
729 add data[6] = raw data[6] + raw data[14];
th rO u h ut Of e aC h 730 add data[7] = raw data[7] + raw data[15];
731
732 //Write results back with half CL, as we can write and read a CL p
- 733 #pragma unroll
734 for (uint idx = 0; idx < 8; idx++) {
O0p IN Kerne {
736 out[idx + i cnt*8] = add data[idx]; 6.8% 61.8% 35.1% 61.8% 400.2 MB 6.327
737 }
738 }
220

Copyright © 2022 Intel Corporation intel. =

Use of RTL Libraries for FPGA in oneAPI

= Create a static library file using RTL

* fpga_crossgen: rtl -> object

Library Toolchain Creation Process

» fpga_libtool: objects -> library Compilation Object Linking

CPU
Representation Packaging

(fpga libtool)

Files needed:

Input source Preparation
files

(fpga crossgen)

* RTL wrapper

« XML description

* Emulation model file (SYCL-based)
RTL design constraints:

* RTL module must have a clock port, a resetn port, and Avalon® streaming interface input and output ports
* Asingle pair of ready and valid logic must control all the inputs

* Declare the RTL module as stall-free if possible

» |[nclude library file to use the functions inside your SYCL* kernels.

dpcpp -fintelfpga main.cpp lib.a

Copyright © 2022 Intel Corporation

Library

intel.

52

FPGA Hardware for oneAP]

Department or EventName ~ Intel Conf idential |nte|. e

FPGA Boards and Board Support Packages

To interface with computers, FPGAs must be mounted
onto boards

Boards provide:

| XEON'

inside”

power and thermal management
memory

physical interfaces between the FPGA and other devices

Board Support Packages (BSPs) => interface between
boards and the Intel oneAPI compiler

A BSP consists of;

software layers (card drivers, card management code)

a precompiled FPGA hardware design implementing memory
O and phySiCal interfaces and card management logiC

The FPGA design implementing the kernel(s) is stitched
by the compiler into the framework provided by the BSP

Copyright © 2022 Intel Corporation intel. >

Intel® FPGA Cards Available for use with oneAPI

QICEY: @3

Copyright © 2022 Intel Corporation

Intel® Programmable MAC ID PROM FLASH USB
Acceleration Card with v

Intel® Arria® 10 GX FPGA

BMC -+
usB
Hub
CPLD ===
QSFP+ 4x 10Gb DDR4
Networking Interface
S
i 8x PCle*
v
Intel® FPGA Programmable Intel Enpirion® uSB
Acceleration Card D5005 Power Solutions !
BMC __ UusB
Intel MAX*® 10 Hub
FPGA

QSFP28 4x 25Gb
Networking Interface | DDR4 w/ECC

QSFP28 4x 25Gb
Networking Interface

A
b
i 16x PCle*
v

intel.

55

Example of Intel® Agilex® FPGA Card with oneAPI

TOMHz Clk

ween

IA-800 | Frca

BittWare

- | Intel Agilex
AGF027

-
=
<

g
S

e

Bittware®: 1A-840F

Copyright © 2022 Intel Corporation intel. s

-PGA supported Technologies
-PGA Advantages

Intel® S10DX

» UPI (coming soon: CXL)

 Cache-coherent, high bandwidth
and low latency interface

* Memory extension with DDR4/DDR-T
» High Bandwidth Memory
* In package 16GB HBM2, up to 512GB/s

Stratix 10

= |[KL — FPGA to FPGA connection N
= Network interfaces

Copyright © 2022 Intel Corporation intel.

Introduction to ntel® DevCloud

Department or EventName ~ Intel Conf idential |nte|. 2

Intel® DevCloud

» Free cloud environment for learning and project prototyping

» Complimentary access to a wide range of Intel® architectures
(including FPGAS)

» Pre-installed Intel® optimized frameworks, tools, and libraries

Copyright © 2022 Intel Corporation

intel. =

Intel® DevCloud

= Sign up here:

* https://software.intel.com/devcloud

Create an Intel® DevCloud Account

Sign up for immediate access to the latest Intel technology without downloads or hardware setup.
[] A< ‘ O l | I I t fo r 1 2 O d ayS Intel Employee? Create account here

All fields are required except any fields specifically marked as optional.

* Intel® oneAPI environment pre- Basc Contutfomaton
installed and ready for use =

* Nodes with cards installed in the -
group fpga_runtime

* Nodes with extra memory for full At
FPGA compiles in the group Tarms nd Condions
fpga_compile

Copyright © 2022 Intel Corporation intel. o

https://software.intel.com/devcloud

Use the Intel® DevCloud

= SSH to gateway

= Or Jupyter Notebooks
via browser

= Job queue for compile and run
» Job outputinto log file

= Access to single node also
possible

= Session time limit:
default : 6hrs
max : 24hrs

= Many samples and tutorials in Git
repo

https://github.com/oneapi-src/oneAPI-
samples/tree/master/DirectProgrammin

g/DPC%2B%2BFPGA

Copyright © 2022 Intel Corporation

).

~ Jupyter Notebooks

File Edit View Run Kernel Tabs Settings Help Log Out
+ c & Welcome.pynb X | B u92741@login-2: ~ X
Filter files t o 18 X DO » ® G » Markdwnv Python 3.8 (Intel® oneAPl) O
ilter files by name —
i / H2020 /
Mo R L Moo Welcome to Jupyter Notebooks on the Intel
i |
g —— 4 dage ago DevCloud for oneAPI Projects!
O Makefile 4 days ago)) .
This document covers the basics of the JupyterLab access to the Intel DevCloud for oneAPI Projects. It is not a
] oneAP|_example_TVL.cpp 4 days ago . .) X
tutorial on the Jupyterlab itself. Rather, we will run through a few examples of how to use the computational
&) ez e g e SCTBEEE resources available on the DevCloud beyond the notebook.
[oneAPI_example_TVL.fpga_emu 21 days ago
[optlog 21 days ago The diagram below illustrates the high-level organization of the DevCloud. This tutorial explains how to navigate
« [A] Untitled.ipynb 2 hours ago this organization.
Web Cloud
Browsers gsub .
(Firafox. HTTPS Notebook Jl| Notebook Jil Notebook | senerst
afari,
Chrome,) I NoleDooKI Notehook - servers2
= LOQin Node Computational Job I server #2
—
Internet Computational Job
Linux (Terminal)
‘Windows (PuTTY) Storage Servers:
WinSCP, FileZilla. LT3, 7D
~
Service Terms
Simple 2 3 {8 Python 3.8 (Intel® oneAPI) | Idle Saving completed Mode: Command @& Ln1,Col 1 Welcome.ipynb

intel.

61

https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/DPC%2B%2BFPGA

Intel® DevCloud — Available FPGA Hardware

» What are you trying to use the Devcloud for?

1) Arria 10 PAC - RTL AFU, OpenCL
2) Arria 10 - OneAPI, OpenVINO

3) Stratix 10 - RTL AFU, OpenCL

4) Stratix 10 — OneAP|

5) Emulation

6) Compilation (bitstream creation)

Coming soon: Agilex cards with OneAPI support

Copyright © 2022 Intel Corporation

77 a :|
OpenCL oneAPI

intel

STRATIX

10

intel
AGILEX

intel.

Summary
FPGA compute acceleration with Intel® oneAPI

» |[ntel® oneAPI enables software engineers to use easily Intel
FPGAs as compute accelerators without deep FPGA
knowledge

= Unified programming model for different device types is
making port between devices simple oneAPlL

= Modern programming language (DPC++)

= Support of industry standard debug and optimization tools =
like GDB, Intel® VTune™

* Including optimized RTL blocks as libraries n

= Test easily in Intel® DevCloud ©

» et your use case also benefit from
Intel® oneAPI FPGA compute acceleration

Copyright © 2022 Intel Corporation intel. s

Intel.

