Using Intel” oneAP]
Toolkits with FPGAS

Copyright © 2021 Intel Corporation.

This document is intended for personal use only.

Unauthorized distribution, modification, public performance,
In e ® public display, or copying of this material via any medium is strictly prohibited.

Course Objectives

» Understand the development flow for FPGAs with the Intel® oneAPI
toolkits

* Gain an understanding of common optimization methods for FPGAs

Copyright ® 2021 Intel Corporation intel.

Course Agenda

» Using FPGASs with the Intel®
oneAP| Toolkits

* Recap: Introduction to DPC++

* What are FPGAs and Why Should |
Care About Programming Them?

* Development Flow for Using FPGAs
with the Intel® oneAPI Toolkits

 Lab: Practice the FPGA
Development Flow

Copyright © 2021 Intel Corporation

» Optimizing Your Code for
FPGAS

* Introduction to Optimizing FPGAS
with the Intel oneAPI Toolkits

* Lab: Optimizing the Hough
Transform Kernel

intel.

3

Timeline

Secton e

Slides: Using FPGAs with the Intel® oneAPI Toolkits
Lab: Practice the FPGA Development Flow

Break

Slides: Optimizing Your Code for FPGAs

Lab: Optimizing the Hough Transform Kernel

Copyright © 2021 Intel Corporation

14:00 -14:30
14:30 -15:30
15:30-16:00
16:00 -16:30
16:30-17:30

intel.

4

Sub-Topics:

O = |ntroduction to oneAPI
Section: = [ntroduction to DPC++
: : » What are FPGAs and Why
Usmg FP®GAS with Should | Care About
the Intel® oneAPI Drogramming Them?
oolkits » Development Flow for Using
FPGASs with the Intel® oneAPI
Toolkits

Copyright © 2021 Intel Corporation

intel s

A Unified Programming Model

Multiple Architectures

The oneAPI product delivers a unified programming
model to simplify development across diverse
architectures.

It guarantees:

= Common developer experience across Scalar, Vector,
Matrix and Spatial architectures (CPU, GPU, Al and
FPGA)

= Uncompromised native high-level language
performance

» |ndustry standardization and open specifications

Copyright © 2021 Intel Corporation

i

oneAPI

intel.

9

Intel® oneAP| Product

emulation and reports.
« Runtime analysis via VTune™ Profiler

» Complex hardware patterns implemented
through built-in language features: macros,
pragmas, headers

Faster
Development

« Code re-use across architectures and
vendors.

« Compatible with existing high-
performance languages.

Extensible
Code

Reduced « Leverage familiar sequential programming

Barrier of languages: improved ramp-up and debug
Entry time.

« IDE Integration: Eclipse, VS, VS Code

Copyright © 2021 Intel Corporation

« Performance tuning and timing closure through

Application Workloads Need Diverse Hardware

Middleware & Frameworks

F TensorFlow

PyTorch {@xnet

@ ﬁ:ﬁ NumPy X.. ©penVIN®

Intel® oneAPI
on;API PrOduct

Compatibility
Tool

Analysis &

Libraries SelsueTresls

Languages

Low-Level Hardware Interface

Available Now

intel.

10

software.intel.com/oneapi

Intel® FPGASs + Intel® oneAPI| Toolkits

» Data-dependent parallelism

Spatial « Streaming and graph processing
Architecture patterns

» Low and deterministic latency

« Customizable network
interfaces and protocols

» Customizable memory architecture

« Distributed, high bandwidth, on-
chip memory topology

Copyright © 2021 Intel Corporation

oneAPI Product

Direct Programming

Data Parallel C++

Analysis &
Debug Tools

intel.

13

Sub-Topics:

O = [ntroduction to oneAP|
Section: = |ntroduction to DPC++
: : » What are FPGAs and Why
Usmg FP®GAS with Should | Care About
the Intel® oneAPI Drogramming Them?
oolkits » Development Flow for Using
FPGASs with the Intel® oneAPI
Toolkits

Copyright © 2021 Intel Corporation

intel. s

Data Parallel C++ (DPC++)

» Based on C++ and SYCL = Common language meant to
* SYCL is based on OpenCL target all XPUs
* Think of it as SYCL + extensions * You do still need to “tune”

" Allows for single-source = Goal is for the language to
targeting of accelerators incorporate everything needed
* (Doesn't require multiple files) to get the best performance out

of every architecture

= Open specification

Copyright ® 2021 Intel Corporation intel.

16

DPC++: Three Scopes

= DPC++ Programs consist of 3 scopes:
» Application scope - Normal host code

« Command group scope - Submitting data
and commands that are for the accelerator

» Kernel scope — Code executed on the
accelerator

* The full capabilities of C++ are
available at application and command
group scope

= At kernel scope there are limitations in
accepted C++

« Most important is no recursive code
» See SYCL specification for complete list

Copyright © 2021 Intel Corporation

intel.

17

The “Runtime”

» The DPC++/SYCL runtime is the program running in the background
to control the execution and data passing needs of the
heterogeneous compute execution

= [t handles:

» Kernel and host execution in an order imposed by data dependency needs
(discussed later)

» Passing data back and forth between the host and device
* Querying the device
* Etc.

Copyright ® 2021 Intel Corporation intel. 18

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector
INTEL: :fpga selector selector;

// Set up a DPC++ device queue
queue g(selector);

// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue
g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

//Dispatch the kernel
h.single task<VectorAdd>([=]() {
for (int i = @; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

});

DPC++ Simple Program
Walk-Through

Step 1: Create a device selector targeting the FPGA

Copyright © 2021 Intel Corporation

intel.

28

void dpcpp_code(int* a, int* b, int* c) {

s wp e e e s DPC++ Simple Program

INTEL: :fpga_selector selector;

// Set up a DPC++ device queue Wal_k_Th rOugh

queue q(selector);

// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N)); \‘\\\\
buffer buf_c(c, range<1>(N));

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

//Submit Command group function object to the queue
g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

//Dispatch the kernel
h.single task<VectorAdd>([=]() {
for (int i = @; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

})s

Copyright ® 2021 Intel Corporation intel. 29

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector
INTEL: :fpga_selector selector;

// Set up a DPC++ device queue
queue g(selector);

// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));

buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue
g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

//Dispatch the kernel
h.single task<VectorAdd>([=]() {
for (int i = @; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

});

DPC++ Simple Program
Walk-Through

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Copyright © 2021 Intel Corporation

intel.

30

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector
INTEL: :fpga_selector selector;

// Set up a DPC++ device queue
queue g(selector);

// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue
g.submit([&](handler &h){

I

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

//Dispatch the kernel
h.single task<VectorAdd>([=]() {
for (int i = @; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

});

Copyright © 2021 Intel Corporation

DPC++ Simple Program
Walk-Through

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector

Step 3: Create buffers

Step 4: Submit a command group for execution

intel.

31

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector
INTEL: :fpga_selector selector;

// Set up a DPC++ device queue
queue g(selector);

// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue
g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

DPC++ Simple Program
Walk-Through

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector
Step 3: Create buffers

Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data

//Dispatch the kernel
h.single task<VectorAdd>([=]() {
for (int i = @; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

})s

Copyright © 2021 Intel Corporation

intel.

32

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector
INTEL: :fpga_selector selector;

// Set up a DPC++ device queue
queue g(selector);

// Setup buffers for input and output vectors
buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue
g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

DPC++ Simple Program
Walk-Through

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector
Step 3: Create buffers
Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data

//Dispatch the kernel
h.single task<VectorAdd>([=]() {
for (int i = 0; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

Step 6: Send a kernel for execution

})s

Copyright © 2021 Intel Corporation

intel.

33

void dpcpp_code(int* a, int* b, int* c) {

//Set up an FPGA device selector
INTEL: :fpga_selector selector;

// Set up a DPC++ device queue
queue g(selector);

// Setup buffers for input and output vectors

buffer buf_a(a, range<1>(N));
buffer buf_b(b, range<1>(N));
buffer buf_c(c, range<1>(N));

//Submit Command group function object to the queue

g.submit([&](handler &h){

//Create device accessors to buffers
accessor a(buf_a, h, read_only);
accessor b(buf_b, h, read_only);
accessor c(buf_c, h, write_only);

//Dispatch the kernel
h.single task<VectorAdd>([=]() {
for (int i = @; i < kSize; i++) {
c[i] = a[i] + b[i];
}
})s

});

Copyright © 2021 Intel Corporation

DPC++ Simple Program
Walk-Through

Step 1: Create a device selector targeting the FPGA

Step 2: Create a device queue, using the FPGA device selector
Step 3: Create buffers

Step 4: Submit a command for execution

Step 5: Create buffer accessors so the FPGA can access the data

Step 6: Send a kernel for execution

Donel

The contents of buf c are copied to *c when the

function finishes

(because of the buffer destruction of buf ¢)

intel.

34

Sub-Topics:

O = Introduction to oneAPI
Section: = Introduction to DPC++
: : » What are FPGAs and Why
USIﬂg FP®GAS with Should | Care About
the |ﬂtel Oﬂ@APl Drogramming Them?
oolkits = Development Flow for Using
FPGASs with the Intel® oneAPI
Toolkits

Copyright © 2021 Intel Corporation

intel «

41

What is an FPGA?

FPGA stands for Field Programmable Gate Array

Gate refers to logic gates
* The basic building blocks for all the hardware on the chip

Array means there are many of them manufactured on the chip
* Many = billions
« Arranged into larger structures (more on this later)

Field Programmable means the internal components of the device and the connections
between them are programmable after deployment

Programmable = configurable

FPGA = Configurable Hardware

Copyright ® 2021 Intel Corporation intel.

41

42

Programming an FPGA

The FPGA is made up of small building
blocks of logic and other functions

Programming it means choosing:

Copyright © 2021 Intel Corporation

intel.

42

43

Programming an FPGA

The FPGA is made up of small building
blocks of logic and other functions

Programming it means choosing:

* The building blocks to use

Copyright © 2021 Intel Corporation

intel.

43

44

Programming an FPGA

The FPGA is made up of small building
blocks of logic and other functions

Programming it means choosing:
* The building blocks to use

* How to configure them

Copyright © 2021 Intel Corporation

intel.

44

45

Programming an FPGA

The FPGA is made up of small building
blocks of logic and other functions

Programming it means choosing:
* The building blocks to use
* How to configure them

* And how to connect them

Copyright © 2021 Intel Corporation

intel.

45

46

Programming an FPGA

The FPGA is made up of small building
blocks of logic and other functions

Programming it means choosing:
* The building blocks to use
* How to configure them

* And how to connect them

Programming determines the
processing architecture implemented
In the FPGA

=> what function the FPGA performs

Copyright © 2021 Intel Corporation

intel.

46

FPGA basic building blocks -ALMs

Look-up Tables
and Registers

Custom

Custom state
machine

Il I D

Custom 64-bit

bit-shuffle and encode

Copyright ® 2021 Intel Corporation intel.

FPGA basic building blocks - RAM

B
B
B
1 I
addr y i
SIglelg’Adata_out
data_in i i Larger
Small
m ries
memories ei) !
On-chip RAM

blocks

Copyright ® 2021 Intel Corporation intel.

FPGA basic building blocks - DSP blocks

DSP Blocks

Copyright © 2021 Intel Corporation

L
HEENE
E K EE
HENENRE

Custom
Math

Functions

What About Connecting to the Host?

Accelerated functions run on a
PCle attached FPGA card

The host interface is also “baked
IN" to the FPGA design.

This portion of the design is pre-
built and not dependent on your
source code.

Copyright ® 2021 Intel Corporation intel.

Program Implementation in FPGA

Pipelined hardware is implemented for:
« Computation (operators, ...)
* Memory loads and stores

« Control and scheduling (loops, conditionals, ...)

Loop
for (int 1 = @; i < LIMIT; i++) { Control
c[i] = a[i] + b[1i];

}

Custom on-chip memory structures are implemented for:

* Array variables declared within kernel scope

Data Path
Control Path

* Memory accessors with local target

Copyright ® 2021 Intel Corporation intel. 63

Program execution on FPGA

o
1 |
data input

Different from CPUs and GPUs

* No instruction fetched, decoded or executed

+ Data flow through hardware pipelines matching the operations in the
source code

all
il
|

* No control overhead (the dataflow hardware matches the software)

* In optimal implementations, a new instruction stream operating on
new data starts executing every clock cycle

* Pipeline parallelism - the deeper the pipeline, the higher the
parallelism

|l
[]
[]

opn 7

v| |
data output

Copyright © 2021 Intel Corporation

Orthogonal Implementation Approaches

CPUs/GPUs (ISA-based FPGA (spatial architecture)
architectures)

Copyright ® 2021 Intel Corporation intel.

Program => sequence of * Program => pipelined datapath

Instructions e All program instructions can

Every Execution Unit executes one execute in parallel on different data
instruction at a time (some if
superscalar)

* Flexible architecture

. . * Dedicated hardware
Fixed architecture

Shared hardware

65

FPGA parallelism

Pipeline parallelism

 All hardware components execute in parallel on different data sets

Data parallelism

» Each pipeline stage can operate on multiple data on the same clock cycle

Task parallelism

» Multiple pipelines implementing different tasks can operate in parallel in the same FPGA image

Superscalar execution

* Multiple independent instructions in pipelines execute on the same clock cycle

Copyright ® 2021 Intel Corporation intel. 66

Sub-Topics:

O = [ntroduction to oneAP|
Section: = [ntroduction to DPC++
: : » What are FPGAs and Why
Usmg FP®GAS with Should | Care About
the Intel® oneAPI Drogramming Them?
oolkits » Development Flow for Using
-PGASs with the Intel® oneAPI
Toolkits

Copyright © 2021 Intel Corporation

intel

FPGA Development Flow for oneAPI Projects

_ FPGA Development Flow
* FPGA Emulator target (Emulation)

« Compiles in seconds Coding
* Runs completely on the host Y
R i - ' : Emulation
Optlmlzatlon report generation Seconds : (Functional Valdation)
« Compiles in seconds to minutes
. ' Minutes Static
|dentify bottlenecks Reports

* FPGA bitstream compilation

Full Compile and
Hardware Profiling

« Compiles in hours Hours

* Enable profiler to get runtime analysis \

Copyright ® 2021 Intel Corporation intel. 74

Anatomy of a dpcpp Command Targeting FPGAS

dpcpp -fintelfpga *.cpp/*.o0 [device link options] [-Xs arguments]

Target Platform
Language Input Files
DPCPP = Data source or object
Parallel C++

Copyright ® 2021 Intel Corporation intel. 75

FPGA-Specific
Arguments

Link Options

Fmulation Does my code give me the

correct answers?

Seconds of Compilation

Quickly generate code that runs on the x86 host to emulate the FPGA
Developers can:
= Verity functionality of design through CPU compile and emulation.

» [dentify quickly syntax and pointer implementation errors for
iterative design/algorithm development.

* Enable deep, system-wide debug with Intel® Distribution for GDB.
» Functional debug of SYCL code with FPGA extensions.

Copyright ® 2021 Intel Corporation intel. 76

Emulation Command

#ifdef FPGA_EMULATOR
intel: :fpga emulator selector device selector;
#else

intel::fpga selector device selector;
#endif Include this construct in
your code

dpcpp -fintelfpga <source file>.cpp -DFPGA EMULATOR

mycode.cpp

. /mycode .emu

Copyright ® 2021 Intel Corporation intel. 77

RepOrt Generation Where are the bottlenecks?

Minutes of Compilation

Quickly generate a report to guide optimization efforts

Developers can:

= [dentify any memory, performance, data-flow bottlenecks in their
design.

= Receive suggestions for optimization techniques to resolve said
bottlenecks.

» Get area and timing estimates of their designs for the desired FPGA.

Copyright ® 2021 Intel Corporation intel.

Command to Produce an Optimization Report

Two Step Method:
dpcpp -fintelfpga<source file>.cpp -c -o <file name>.o

dpcpp -fintelfpga<file name>.o

-fsycl-1link

One Step Method:/

-Xshardware

The default value for —fsycl-link is -fsycl-link=early
which produces an early image object file and
report

dpcpp -fintelfpga<source file>.cpp/|-fsycl-1link|-Xshardware

= A report showing optimization, area, and architectural information
will be produced in <file_name>.prj/reports/

* We will discuss more about the report later

Copyright © 2021 Intel Corporation

intel.

Bitstream Compilation

Runs Intel Quartus Prime Software “under the hood”
(no licensing required)

Developers can:

» Compile FPGA bitstream for their design and run it on an FPGA.
= Attain automated timing closure.

= Obtain In-hardware verification.

» Take advantage of Intel® VTune™ Profiler for real-time analysis of
design.

Copyright ® 2021 Intel Corporation intel.

Compile to FPGA Executable with Profiler

Two Step Method:
dpcpp -fintelfpga<source file>.cpp -c -0 <file name>.o
dpcpp -fintelfpga<file name>.o -Xshardware -Xsprofile

One Step Method:
dpcpp -fintelfpga<source_ file>.cpp -Xshardware -Xsprofile

The profiler will be instrumented within the image and you will be able to run
the executable to return information to import into Intel® Vtune Amplifier.

To compile to FPGA executable without profiler, leave off —Xsprofile.

Copyright ® 2021 Intel Corporation intel. 81

Compiling FPGA Device Separately and Linking

" |[n the default case, the DPC++ Compiler handles generating the host
executable, device image, and final executable

= [tis sometimes desirable to compile the host and device separately
so changes in the host code do not trigger a long compile

This is the long

Partition code

compile

Then run this command to compile the FPGA image:

has_kernel.cpp
dpcpp -fintelfpgahas kernel.cpp -fsycl-link=image -o has_kernel.o -Xshardware

This command to produce an object file out of the host only code:
dpcpp -fintelfpgahost only.cpp -c -0 host only.o

host only.c . : : :
—ONY-cPp This command to put the object files together into an executable:
dpcpp -fintelfpgahas _kernel.o host only.o -o a.out -Xshardware

Copyright ® 2021 Intel Corporation intel. 82

_ab:

-low

Copyright © 2021 Intel

Practice the FPGA

Corporation

Development

intel s

L ab instructions

= 7. Create a DevCloud account

« Open this link: https://devcloud.intel.com/oneapi/

e Click on the “Get Free Access” button

&« C O (ﬁ devcloud.intel.com/oneapi/

@ Home - Embedded... rmy bookmarks Intel Tech

Imported From IE

PRODUCTS SUPPORT SOLUTIONS DEVELOFERS PARTNERS

oneAP|

Software Tools DevCloud w

Intel® DevCloud for oneAPI

Overview Get Started Documentation

Forum =

Announcements VIEW ALL ANNOUNCEMENTS >
| Jung, 2021 *New* S5H Configuration Change is Required — A recent DNS change now requires users to update their SSH configuration. Please search and replace devcloud.intel.com with ssh.devcloud.intel.com in your SSH config file to aveid any connection issues.

| Mar15,2021

> Feb 1, 2021

DevCloud Maintenance on March 25, 2021 — Intel DevCloud may be unavailable from 7:00 am to 1:00 pm UTC (8:00 AM midnight to 2:00 PM Central European Summer Time) on March 25, 2021 due to network service maintenance.
Intel® Iris®* Xe MAX GPU is now available — Intel is on a journey to bring the industry a redefined discrete graphics product, read more about it here. As a result, we have released the first of these discrete GPUs into the Intel DevCloud for your use — the Intel® Iris® Xe MA...

The Intel DevCloud is a development sandbox to learn about programming cross architecture applications with OpenVino, High Level Design (HLD) tools — oneAPI, OpenCL, HLS — and RTL.

‘ Get Free Access ‘

Sionin

https://devcloud.intel.com/oneapi/

L ab instructions

= 7. Create a DevCloud account

Enter required information

Read and accept terms of use

Check your email for the verification link and click on it

Signin
Click on “Working with oneAP!”

Provision your account, read and accept T&C for oneAP|

Copyright ® 2021 Intel Corporation intel. 85

L ab instructions

= |n a different browser page navigate to
nttps://github.com/intel/fpga-training/tree/main/fpga_oneapi_lab

» Follow the instructions at the bottom of the page

Copyright ® 2021 Intel Corporation intel.

https://github.com/intel/fpga-training/tree/main/fpga_oneapi_lab

L ab instructions

= [f the Jupyter notebook errors out:
“‘dpcpp: command not found”

* Download the two provided files “bashrc” and “bash_profile” to your

DevCloud home directory

C ﬂ' 8 jupyter.oneapi.devcloud.intel.com/user/ul158567/lab/tree/fpga-training/fpga_oneapi_lab/fpga_dev_flow.ipynb

Home - Embedded... my bookmarks Intel Tech Imported From IE

6

5]

: File Edit Viell™ Run Qemel Tabs Settings Help

o n o A welcome.ipynb X | (A fpga_dev_flow.ipynb
Eilter files by Q,

o

B + X0 M » = c » Markdown
lter files by name

I / fpga-training / fpga_oneapi_lab / .

. _ I Lab: Practice the FPGA Development Floy
— ame - Last Modified
T m Assets 28 minutes ago

Copyright © 2021 Intel Corporation

intel.

87

L ab instructions

* Rename the two files to .bashrc and .bash_profile (can be done in a
terminal)

» Log out from the Jupyter server

" | 0g In again

Copyright © 2021 Intel Corporation

intel. =8

Section:
Introduction to
Optimizing FPGAS
with the Intel oneAPI
Toolkits

Copyright © 2021 Intel Corporation

Sub-Topics:

= Code to Hardware:; An
ntroduction

= L oop Optimization

= Memory Optimization

" Reports

= Other Optimization
Techniques

intel. s

| n te |.® I: P G AS Host Link /0 Memory Interface

Pre-Compiled BSP

"|mplementing Optimized
Custom Compute
Pipelines (CCPs)
synthesized from
compiled code

Custom Compute Pipeline

Copyright ® 2021 Intel Corporation intel. 20

How Is a Pipeline Built?

sHardware is added for
« Computation
* Memory Loads and Stores

Loop
Control

e Control and scheduling

* Loops & Conditionals

for (int i=0; i<LIMIT; i++) {
c[i] = a[i] + b[i];
}

Data Path
Control Path

Copyright ® 2021 Intel Corporation intel. o1

Connecting the Pipeline Together

» Handshaking signals for variable
latency paths

* Operations with a fixed latency
are clustered together

* Fixed latency operations
Improve

* Area: no handshaking signals
required

» Performance: no potential stalling
due to variable latencies

Copyright © 2021 Intel Corporation

/

"| |

intel.

92

Simultaneous Independent Operations

* The compiler automatically
identifies independent operations

* Simultaneous hardware is built to
iIncrease performance

* This achieves data parallelismin a
manner similar to a superscalar
processor

 Number of independent operations
only bounded by the amount of
hardware

Copyright © 2021 Intel Corporation

intel.

93

On-Chip Memories Built for Kernel Variables

//kernel scope

cgh.single task<>([=]() {
« Custom on-chip memory 3 ETRLECPE
structures are built for the

variables declared with the
kernel scope

arr[i] = ..; //store to memory

.. = arr[j] //load from memory

} //end kernel scope

. 32-bits
 Or, for memory accessors with a : ~
target of local

Pipeline

e | oad and store units to the on-

: On-chip
' memory
chip memory will be built within ' structure [RGP
: : for array
the pipeline .

arr

Copyright © 2021 Intel Corporation

intel.

94

Pipeline Parallelism for Single Work-ltem

Kernels
handle.single task<>([=]() {

_ _ .. //accessor setup
* Single work-item kernels almost for (int i=0; i<LIMIT; i++) {

always contain an outer loop c[i] += a[i] + b[i];

}

» Work executing in multiple stages
of the pipeline is called “pipeline
parallelism”

* Pipelines from real-world code
are normally hundreds of stages
long

*Your job is to keep the
data flowing efficiently

Copyright ® 2021 Intel Corporation intel. 95

' Tday Key Concept
D_e pe 4 d ENCIES Wlth N th c Custom built-in dependencies
Slﬂgle \/\/O rk—ltem Ke rr‘]el_ make FPGAs powerful for
many algorithms

When a dependency in a single
work-item kernel can be resolved by
creating a path within the pipeline,
the compiler will build that in.

handle.single task<>([=]() {
int b = 0;
for (int i=0; i<LIMIT; i++) A
b += a[i];

} \
1)

intel. s

Copyright © 2021 Intel Corporation

How Do | Use Tasks and Still Get Data
Parallelism?

The most common technique is to unroll your loops

handle.single task<>([=]() {

#pragma unroll !
2
c[i] += a[i] + b[i];
} Iteration Fm* Fm* Fm>
3
Time

})s

Copyright ® 2021 Intel Corporation intel. 97

Unrolled Loops Still
Get Pipelined

The compiler will still pipeline an
unrolled loop, combining the two
technigues

A fully unrolled loop will not be pipelined
since all iterations will kick off at once

handle.single task<>([=]() {
. //accessor setup
#pragma unroll 3
for (int i=1; i<=9; i++) {
c[i] += a[i] + b[i];
}
1)

Copyright © 2021 Intel Corporation

Iteration
1

2

Iteration
3

Iteratlon

Iteratlon
6

Iteratlon

Iteratlon

Iteratlon

9
—

Time

intel.

98

What About Task Parallelism?

s FPGAS can run more than one Representqtion of Gzip FPGA example |
_ included with the Intel oneAPI Base Toolkit
kernel at a time

* The limit to how many independent kernels CRC
can run is the amount of resources available

to build the kernels
LZ77

Kernelto kernel pipe

* Data can be passed between
kernels using pipes

* Another great FPGA feature explained in the _
Intel® oneAPI DPC++ FPGA Optimization time
Guide

Copyright ® 2021 Intel Corporation intel. 99

So, Can We Build These? Parallel Kernels

» Kernels launched using parallel for() or
parallel for work group()

Yes,
..//application scope but, single_tasks

queue.submit([&] (handler &cgh) { are recommended

auto A = A buf.get_access<access::mode: :read>(cgh); for FPGAs.
auto B = B _buf.get access<access::mode::read>(cgh);
auto C = C _buf.get access<access::mode::write>(cgh); Also Warning' the
cgh.parallel for<class VectorAdd>(num_items, [=](id<1> wiID) { Ioop Optimizations
c[wiID] = a[wiID] + b[wiID]; we talk about do
b3 not all apply for
1); parallel kernels

..//application scope

Copyright ® 2021 Intel Corporation intel. o

Section:
Introduction to
Optimizing FPGAS
with the Intel oneAPI
Toolkits

Copyright © 2021 Intel Corporation

Sub-Topics:

= Code to Hardware: An
ntroduction

= Loop Optimization

= Memory Optimization

" Reports

= Other Optimization
Techniques

intel °

Single Work-Item Kernels

= Single work items kernels are /IR EISO SEE
kernels that contain no ool Lt e fiereler Segi) {
. auto A =
reference to the work item ID A buf.get_access<access::mode::read>(cgh);
auto B =
N Usua“y launched with the B_bzf.get_access<access::mode::read>(cgh);
auto C =
8rOUp haﬂdl_er member functiOﬂ C_buf.get _access<access::mode: :write>(cgh);
Siﬂgle_taSk() cgh.single task<class swi_add>([=]() {
_ _ for (unsigned i = @; i < 128; i++) {
* Or, launched with other functions c[i] = a[i] + b[i];
without a reference to the work }§;
item ID (implying a work group size ;
of 1) P

..//application scope

= Contain an outer loop

Copyright ® 2021 Intel Corporation intel. 2

Understanding Initiation Interval

* dpcpp will infer pipelined parallel
execution across loop iterations

 Different stages of pipeline will ideally
contain different loop iterations

» Best case is that a new piece of data
enters the pipeline each clock cycle

cgh.single_task<class swi_add>([=]() {
for (unsigned i = 0; i < 128; i++) {
c[i] = a[i] + b[i];

¥

1) .
- Iteration number

Copyright © 2021 Intel Corporation II‘\tel® 104

store C

Understanding Initiation Interval

* dpcpp will infer pipelined parallel
execution across loop iterations

 Different stages of pipeline will ideally
contain different loop iterations

» Best case is that a new piece of data
enters the pipeline each clock cycle

cgh.single_task<class swi_add>([=]() {
for (unsigned i = 0; i < 128; i++) {
c[i] = a[i] + b[i];

¥

1) .
- Iteration number

Copyright © 2021 Intel Corporation II‘\tel® 105

store C

Understanding Initiation Interval

* dpcpp will infer pipelined parallel
execution across loop iterations

 Different stages of pipeline will ideally
contain different loop iterations

» Best case is that a new piece of data
enters the pipeline each clock cycle

cgh.single_task<class swi_add>([=]() {
for (unsigned i = 0; i < 128; i++) {
c[i] = a[i] + b[i];

¥

1) .
- Iteration number

Copyright © 2021 Intel Corporation II‘\tel® 106

store C

Loop Pipelining vs Serial Execution

Serial execution is the worst case. One loop iteration needs to
complete fully before a new piece of data enters the pipeline.

Worst Case Best Case

i1 For Begin

it

10

Copyright ® 2021 Intel Corporation intel. o

INn-Between Scenario

= Sometimes you must wait more
than one clock cycle to input
more data

* Because dependencies can't
resolve fast enough

* How long you have to wait is
called Initiation Interval or

= Total number of cycles to run
kernel is about (loop iterations)*ll

* (neglects initial latency)
= Minimizing Il is key to
performance

Copyright © 2021 Intel Corporation

Il =6

6 cycles later,

next iteration

enter the loop
body

intel.

108

Why Could This Happen?

* Memory Dependency

e Kernel cannot retrieve
data fast enough from
memory

Report: fpga_970fa3 - Mozilla Firefox
b+

@ Report: fpga_970fa3

« c @ (@ file:///home/student/DevConFPGALab/original/fpga.prj/reports/report.html#view: see w iIn O ®

Reports l Summary ” Throughput Analysis ~ ” Area Analysis ~ ” System Viewers ~

_accumulators[(THETAS*(rho+RHOS))+theta] += increment; — = }

Value must be retrieved from global
memory and incremented

Copyright © 2021 Intel Corporation

Loops Analysis Show fully unrolled loops hough_transform.cpp :I X
91 auto _-ST\H-_tEh].E = sin_table_buf.get_access<sycl::access: :mode
Pipelined 1} Speculated iterations Details ::read=(cgh);
P P 92 auto _cos_table = cos_table_buf.get_access<sycl::access::mode
::read={cgh);
Kernel: constzHough_transform_kernel (hough_transfo.. Single work-it... = aute :?:;’;g?lglk:;giir;t:Eggﬁ}?tnrs_buf.get_access:sycl: jaccess
94
95 Jjcall the kernel
constzHough_transform_kernelB1 {hough_transfor... Yes ==1 a Serial exe: Me... 96 ~ cgh.single_task<class Hough_transform_kernel=({[=]() {
97 - for (uint y=0; y<HEIGHT; y=+) {
08 ~ for (uint x=8; x<WIDTH; =++){
constzHough_transform_kernelB3 (hough_tran... Yes ==1 o Serial exe: Me... 99 unsigned shert int increment = @;
1688 ~ if {_pixels[(WIDTH*y)+x] != 8) {
181 increment = 1;
const:Hough_transform_kernelB5 (hough .. Yes ~339 1 Memory dep... 162 - Telse {
- - - 183 increment = @;
1684 1
185 - for (int theta=8; theta<THETAS; thetas+){
1686 int rho = x*_cos_table[theta] = y*_sin_table[theta];
iy | _accumulators[(THETAS* (rho+RHOS))+theta] += increment
168 1 ’
118 1
111
112 1
Details X

const::Hough_transform_kernel.B5:

+ Compiler failed to schedule this loop with smaller Il due to memory dependency:
* From: Load Operation (hough_transform.cpp: 107)
+ To: Store Operation (hough_transform.cpp: 107)

+ Compiler failed to schedule this loop with smaller Il due to memory dependency:
* From: Load Operation (hough_transform.cpp: 106 > accessor.hpp: 928)

intel.

109

What Can You Do? Use Local Memory

» Transfer global memory
contents to local memory
before operating on the data

constexpr int N = 128;
queue.submit([&](handler &cgh) {
auto A =

A buf.get access<access::mode::read write>(cgh);

cgh.single_task<class unoptimized>([=]() {
for (unsigned i = @; i < N; i++)
A[N-i] = A[i];

}
1
1; Non-optimized

Copyright © 2021 Intel Corporation

constexpr int N = 128;
queue.submit([&](handler &cgh) {
auto A =

A buf.get access<access::mode::read write>(cgh);

cgh.single task<class optimized>([=]() {
int B[N];

for (unsigned i
B[1] = A[1i];

O; 1 < N; i++)

for (unsigned i
B[N-i] = B[i];

O; i < N; i++)

for (unsigned i
A[i] = B[1];
1)

O; i < N; i++)

intel.

What Can You Do? Tell the Compiler About
Independence

" [[1ntelfpga::1vdep]]
* Dependencies ignored for all accesses to memory arrays

[[intelfpga::ivdep]]
for (unsigned i = 1; i < N; i++) {

A[i] = AL - X[4]1; Dependency ignored for A and B array
B[i] = B[i - Y[i]];

)
" [[intelfpga::ivdep (array name)]]
* Dependency ignored for only array name accesses
[[intelfpga::ivdep(A)]]

for (unsigned 1 = 1; 1 <N; i++) { Dependency ignored for A array
A[i] = A[i - X[1]]; _
B[i] = B[i - Y[i]]; Dependency for B still enforced

}

Copyright © 2021 Intel Corporation

intel.

111

Why Else Could This Happen?

* Data Dependency

e Kernel cannot

complete a calculation

fast enough

r_int[k] = ((a_int[k] / b_int[k]) / a_int[1]) / r_int[k-1];
Difficult double precision floating point

operation must be completed

Copyright © 2021 Intel Corporation

Report: fpga_0cbd30 - Mozilla Firefox

@ Report:fpga_Ochd3o x &

<« ¢ @ @ File:///home/student/sandbox_oneAPI/fpga_compile/bad_multiply/fpga.prj/reports/re see w n o ® =
Reports Summary l Throughput Analysis ~ H Area Analysis ~ H System Viewers ¥ l
Loops Analysis Show fully unrolled loops memory_dep.cpp :I X
63 -7 -
64
Pipelined [} Speculated iterations Details P // Kernel
66 cgh.singleﬁ!:ask:class Simpleadd=([=1() {
Kernel: SimpleAdd [memory_dep cpp:66) Single work-item.. g; gg:ﬂ: a_:;tE;SE:_EEH:
69 double r_int[ARRAY_SIZE];
78
SimpleAdd.B2 (memory_dep.cpp:7 1) Yes ~1 3 71~ for (int 1i=8; 1<ARRAY_SIZE; is+) {
72 a_int[i] = a[il;
73 b_int[i] = b[il;
SimpleAdd.B3 (memory_dep.cpp:76) Yes 38 3 Data dependency 74 1
75

L L
SimpleAdd B4 (memory_dep.cpp:80) Yes ~1 3 [a_int[1]) / r_int[k-1]; I

for (int i=B; L<ARRAY_SIZE; i++) {
r[i] = r_int[i];

B2 }

83 DH

B4 H

BS

B& deviceQueue->throw_asynchronous();
BT

BB~ } catch (cl::sycl::exception constf e) {
Details x

SimpleAdd.B3:

* Most critical loop feedback path during scheduling:
» 36.00 clock cycles 64-bit Double-precision Floating-point Divide Operation (memory_dep.cpp: 77)
* Hyper-Optimized loop structure: nfa
« Stallable instruction: None
+ Maximum concurrent iterations: Capacity of loop

intel.

112

What Can You Do?

= Do a simpler calculation

» Pre-calculate some of the operations on the host
=Use a simpler type

» Use floating point optimizations (discussed later)

» Advanced technigue: Increase time (pipeline stages)
between start of calculation and when you use answer

* See the "Relax Loop-Carried Dependency” in the Optimization
Guide for more information

Copyright ® 2021 Intel Corporation intel.

How Else to Optimize a
Loop? Loop Unrolling

* The compiler will still pipeline
an unrolled loop, combining the
two techniques

» Afully unrolled loop will not be pipelined
since all iterations will kick off at once

handle.single task<>([=]() {
. //accessor setup
#pragma unroll 3
for (int i=1; i<9; i++) {
c[i] += a[i] + b[i];
}
})s

Copyright © 2021 Intel Corporation

Iteration
1

2

Iteration
3

Iteratlon

Iteratlon

Iteratlon
6

Iteratlon

Iteratlon

Iteratlon

9
—

Time

intel.

114

Maximum Clock Frequency (Fmax)

* The clock frequency the FPGA will be clocked at depends on what
hardware your kernel compiles into

* More complicated hardware cannot run as fast

= The whole kernel will have one clock

= The compiler’s heuristic is to get a lower Il, sacrificing a higher Fmax

A slow operation can slow down your entire kernel by lowering the
clock frequency

Copyright © 2021 Intel Corporation

intel. s

How Can You Tell This Is a Problem?

= Optimization report
tells you the target
frequency for each Tagetl Scheduled MAX Blockll Latency Max Interlaving Heraions
loop in your code Kemetexample (Taget Fmas: Mot specfied i) masicpp23)

Cgh .S i ngle_ta S k< example > ([—] () { Block: example.BO Not specified 240.0 1 2 1
1 nt res = N ; Block: example.B2 Not specified 240.0 1 6 1
#pragma unroll 8
'FO r (i n't i = @; i < N; i++) { Loop: example.B1 (fmaxii.cpp:26)

Block: example.B1 Not specified 106.5 2 7 1
res += 1;
res = 1i;

}
acc_data[9] res;
1)

Copyright ® 2021 Intel Corporation intel. e

What Can You Do?

s Make the calculation simpler

= Tell the compiler you'd like to change the trade off
between |l and Fmax

* Attribute placed on the line before the loop

* Set to a higher Il than what the loop currently has
[[intelfpga::ii(n)]]

Copyright © 2021 Intel Corporation

intel.

Area

* The compiler sacrifices area in order to improve loop performance.
What if you would like to save on the area in some parts of your
design?

* Give up Il for less area

* Set the Il higher than what compiler result is

[[intelfpga::ii(n)]]

* Give up loop throughput for area

« Compiler increases loop concurrency to achieve greater throughput

» Set the max_concurrency value lower than what the compiler result is

[[intelfpga: :max_concurrency(n)]]

Copyright ® 2021 Intel Corporation intel. s

Section:
Introduction to
Optimizing FPGAS
with the Intel oneAPI
Toolkits

Copyright © 2021 Intel Corporation

Sub-Topics:

= Code to Hardware: An
Introduction

= L oop Optimization
= Memory Optimization
= Reports

= Other Optimization
Techniques

intel. ¢

Understanding Board Memory Resources

Memory Type Physical Latency Throughput Capacity
Implementation | for random access (GB/s) (MB)
(clock cycles)
Global DDR 34.133 8000
On-chip RAM ~8000 66
Local _
Registers ~240 0.2

Key takeaway: many times, the solution for a bottleneck caused by slow
memory access will be to use local memory instead of global

Copyright © 2021 Intel Corporation inteL 120

Global Memory Access is Slow — What to Do?

= We've seen this before... This constexpr int N - 128;
_ queue.submit([&](handler &cgh) {
will appear as a memory auto A =

A_buf.get_access<access::mode::read_write>(cgh);
dependency problem

cgh.single task<class optimized>([=]() {

[int B[N];

constexpr int N = 128;

queue.submit([&](handler &cgh) { for (unsigned i = @; i < N; i++)
auto A = B[1] = A[i];

A buf.get access<access::mode::read write>(cgh);
for (unsigned i = 0; i < N; i++)

B[N-i] = B[i];

cgh.single_task<class unoptimized>([=]() {
for (unsigned i = @; i < N; i++)
A[N-i] = A[i];

) .
OF b

for (unsigned i = @; i < N; i++)
A[i] = B[1i];

D

Copyright ® 2021 Intel Corporation intel.

Local Memory Bottlenecks ® e

e
. (w)

=" |[f more load and store points want |
to access the local memory than ©
there are ports available, arbiters 1 ®)
will be added & —
= These can stall, so are a potential @<_ ®
bottleneck \ W)
=" Show up in red in the Memory ® ()
Viewer section of the optimization @

report

Copyright ® 2021 Intel Corporation intel. 22

Local Memory Bottlenecks

T o Local Memory Interconnect o

Natively, the memory architecture has 2 ports

The compiler uses optimizations to minimize arbitration

Your job is to write code the compiler can optimize

Copyright © 2021 Intel Corporation il‘\tel® 123

Double-Pumped Memory Example

array
Bank O

= |[ncrease the clock rate to 2x

= Compiler can automatically
implement double-pumped memory

//kernel scope

int array[1024];

array[indl] = val;

array[ind1+1] = val;

|
® & ®

calc =|array[ind2] array[ind2+1];

Copyright ® 2021 Intel Corporation intel. 2

Local Memo ry Rep lication Exam 9 le helenihaiofniy

Humber of write ports per bank: 1

Total replication: 3

//kernel scope

LD R

int array[1024]; 5 -
int res = 0;
(:) array[indl] = val; o R
#pragma unroll
for (int i=0; 1< 9; i++) LD R
res += array[ind2+i]; ~ R
calc = res; 5 -
Turn 4 ports of double-pumped memory to unlimited ports 5 .

7]

T Ly

Drawbacks: logic resources, stores must go to each replication

Copyright © 2021 Intel Corporation |nte|® 125

Coalescing

//kernel scope

local int array[1024];
int res = 0;

#pragma unroll
for (int 1 = 0; i < 4;

Width: 128 bits
Type: Pipelined
stall-free: Yes
Loads from: array

start-Cycle: 2
Latency: 3

array[indl1*4 + 1]

#pragma unroll
for (int i = 0;

i< 4;

res += array[ind2*4 + i];

calc = res;

Copyright © 2021 Intel Corporation

i++)
= Vaj_; LD

it++)
ST

Continuous addresses can be
coalesced into wider accesses

I T

Width: 128 bits
Type: Pipelined
Stall-free: Yes

intel.

126

Banking

array
* Divide the memory into independent fractional Bank 0

pieces (banks)

//kernel scope

@ ®
& ®

Ent array[1024][2];

|array[ind1][@] = valil; |
array[ind2][1] = val2; Bank 1

LD —
calc = |(array[ind21[0] +f///, <:>

array[ind1][11);

®

©
=)

ST

Copyright ® 2021 Intel Corporation intel. =

Attributes for Local Memory Optimization

Note: Let the compiler try on it's own first.
It's very good at inferring an optimal structurel!

numbanks
bankwidth
singlepump
doublepump
max_replicates

simple_dual_port

[intelfpga::singlepump]

[intelfpga::numbanks(N)].
[intelfpga::bankwidth(N)].

[[intelfpga::doublepump

[intelfpga::max_replicates(N)].

[intelfpga::simple_dual_po

Note: This is not a comprehensive list. Consult the Optimization Guide for more.

Copyright © 2021 Intel Corporation

]

rt]]

intel.

Pipes — Element the Need for Some Memory

Create custom direct point-to-point communication
between CCPs with Pipes

Global Memory
Q
o

CCP 1 | Pipe CCP 2 Pipe CCP 3

Copyright ® 2021 Intel Corporation intel. 20

Task Parallelism By Using Pipes

* Launch separate kernels simultaneously

» Achieve synchronization and data sharing using pipes

= Make better use of your hardware

Kernel 1
fordi=D. .N) {

mypipe: :write (x);

Kernel 2

for(i1=0..N) {

}

» YV = mypipe::read();

Copyright © 2021 Intel Corporation

intel.

130

Section:
Introduction to
Optimizing FPGAS
with the Intel oneAPI
Toolkits

Copyright © 2021 Intel Corporation

Sub-Topics:

= Code to Hardware: An
ntroduction

= L oop Optimization

= Memory Optimization

= Reports

= Other Optimization
Techniques

intel 7

HTML Optimization Report

= Static report showing optimization, area, and architectural
information

* Automatically generated with the object file

e Located in <file_name>.prj\reports\report.html

* Dynamic reference information to original source code

Copyright ® 2021 Intel Corporation intel. =

Optimization Report — Throughput Analysis

* L oops Analysis and Fmax |l
sections

= Actionable feedback on
pipeline status of loops

= Show estimated Fmax of each
loop

Copyright © 2021 Intel Corporation

hough_transform.cpp

= Reporc: rpga_vruras x
= ¢ @ @ File:///home/student/DevConFPGALab/original/f
Reports —
Loops Analysis Show fully unrolled loops
Pipelined Il Specu g; .
99
160 ~
Kernel: constz=Hough_transform_kernel (hough_transf... 101
102 -
103
const=Hough_transform_kernelB1 (hough_transfor... Yes >=1 0 164
165 -
const=Hough_transform_kernelB3 (hough_tran.. Yes >=1 0 166
107
const-Hough_transform_kernelBS (hough... Yes ~339 1 108
109
118

Details

const::Hough_transform_kernel.B3:

S 4 In @ ®

Hough_transform_kernel>([=]() {
for (uint y=0; y<HEIGHT; y++) {
for (uint x=0; x<WIDTH; x++){
unsigned short int increment = @;
if (_pixels[(WIDTH*y)+x] != @) {
increment = 1;
} else {
increment = 0;

for (int theta=8; theta<THETAS;
theta++){
int rho = x*_cos_table[theta] +
y*_sin_table[theta];
_accumulators[(THETAS* (rho+RHOS
))+theta] += increment;

« |teration executed serially across const::Hough_transform_kemnel.B5. Only a single loop iteration will execute

inside this region due to memory dependency:

* From: Load Operation (hough_transform.cpp: 107)

» To: Store Operation (hough_transform.cpp: 107)

« |teration executed serially across const::Hough_transform_kernel.B5. Only a single loop iteration will execute

|

intel.

133

Optimization Report — Area Analysis

Report: fpga_970fa3 - Mozilla Firefox

& Report: fpga_970fa3 b+

- G e N e rat e d etal l e d eStI m ate d (« e & @ file;///home/student/DevConFPGALab/original/fpga. =+ © ¥ m o e® =

tilizati tof kernel | ™ ~
p Area Analysis of System hough_transform.cpp j X
(area utilization values are estimated) E 98 ~ for (uint x=0; x<WIDTH; x++){
S C O p e C O e Notation fileX > file:Y indicates a function call on line X was inlined using code on line Y. 99 unsigned short int increment = 8;
160 ~ if (_pixels[(WIDTH*y)+x] != @) {
161 increment = 1;
ALUTs FFs 102 ~ } else {
103 increment = 0;
Y D t I l d b kd f b Function overhead 1338 24am :g;v | : for (int theta=e; theta<THETAS;
e aI e rea OWn O reSO u rceS y 186 m:h:r::-;)ft' cos_table[theta] + y
Private Varlable: 27 43 107 acc;iigzsz}?ggglérhu-RHOS :
Syste I I I b lOC kS At Posgh_Emnctonm.pecAcS) e ; T))+theta] += increment;
it !
. . . Private Variable: B - ::; "
* Provides architectural details of HW | __ .

Private Variable: - 'theta’ (hough_transform.cpp:105):

* Suggestions to resolve inefficiencies

* Type: Register
» 1 register of width 9 and depth 342 (depth was increased by a factor of 339 due to a loop initiation interval of 339.)
» 1 register of width 32 and depth 342 (depth was increased by a factor of 339 due to a loop initiation interval of 339.)

Copyright ® 2021 Intel Corporation intel. =

Optimization Report — Graph Viewer

* The system view of the
Graph Viewer shows
following types of
connections

e Control

* Memory, if your design has
global or local memory

* Pipes, if your design uses
pipes

Copyright © 2021 Intel Corporation

Keport: SimpleKernel - Mozilla Firerox

2 Report: SimpleKernel % | +

= cC @ @ file:///home/student/fpga_trn/OCL_19_1/SimpleKernel/reports/report. htmidvie o O

Summary Throughput Analysis~ Area Analysis~ System Viewers~

Reports

System Viewer Reset Zoom Clear Selection ¥ Control (¥ Memory SimpleKemnel.cl

1 //ACL Kernel

N @

2 kernel
3 void SimpleKernel(__global const float * restrict in,
__global const float * restrict in2, _ global
float * restrict out, uint N)
4- {
5 //Perform the Math Operation
6 for (uint index = @; index < N; index++)
7 out[index] = in[index] *
8 }
~{Glgbal Mamory
»a«:lr: ooa[y
r—
Details
Store:
Width 32 bits
Type Burst-coalesced
Stall-free No
Start Cycle 14
Latency 2

intel.

135

Optimization Report — Schedule Viewer

Schedule in clock
cycles for different
blocks in your
code

Copyright © 2021 Intel Corporation

Reports l Summary H Throughput Analysis ¥ “ Area Analysis ¥ H System Viewers

Schedule List
(alpha)

+ @ system
+ @ _zrszzamai
E const::Hot
B const::Hot
B const:Hot
2 B const:Hot
i} Cluster
E const::Hot
4 E const::Hot
8 Cluster
E const::Hot

4 E const::Hot
ﬂ Claetar

Details

Schedule Viewer (alpha)

t]e]a]e]

...Comp. -

Xor -

Cluster instruction schedule cycle

Absolute clock cycle

hough_transform.cpp :| X

1 pinclude <vector>

2 #include <CL/sycl.hpp>

3 #include <CL/sycl/intel/fpga_extensions.hpp>

4 #include <chrono>

5

6 [/ This file defines the sin and cos values for each degree up to 180
7 #include "sin_cos_values.h”

8

9 #define WIDTH 180

10 #define HEIGHT 120

11 #define IMAGE_SIZE WIDTH*HEIGHT

12 #define THETAS 188

13 #define RHOS 217 //Size of the image diagonally: (sqrt(188°2+120°2))
14 #define NS (1000000000.8) // number of nanoseconds in a second

15

16 using namespace std;

17 using namespace cl;

18

19 // This function reads in a bitmap and outputs an array of pixels
20 void read_image(char *image_array);
21
22 class Hough_Transform_kernel;
23
24~ int main() {
25

[/Declare arrays

intel.

136

HTML Kernel Memory Viewer

- I_l e l pS yo U Id e ntlfy d ata Reports | Summar y H Throughput Analysis ~ H Area Analysis H System Viewers J
m O\/e m e nt b Ott l e n e C kS I n yO u r jd;m:r:::t Lo Memory Viewer Reset Zoom‘Clear Selection‘ Ogug:;:—r;
kernel design. Illustrates: P o {
e =0 .
* Memory replication & O iF
i @ ol ..

3 1d Gnlines L ig usi
« Banking D e - -

21
9] MemRang 22 cl:
£ MemRang 3
24~ int

* Implemented arbitration — £

w

©,
-
o
-~
~

Details

» Read/write capabilities of each
Requested size 156240 bytes
m e m O ry p O rt Implemented size 256 kilobytes = 2¢eilog2(Rec
Number of banks 1
Bank width (word size) 16 bits
Bank depth 131072 words

Copyright ® 2021 Intel Corporation intel. ¥

Section:
Introduction to
Optimizing FPGAS
with the Intel oneAPI
Toolkits

Copyright © 2021 Intel Corporation

Sub-Topics:

= Code to Hardware: An
ntroduction

= L oop Optimization

= Memory Optimization

" Reports

= Other Optimization
Techniques

intel ¢

Avoid Expensive Functions

=Expensive functions take a lot of hardware and run
slow

"Examples

* Integer division and modulo (remainder) operators

* Most floating-point operations except addition,
multiplication, absolution, and comparison

 Atomic functions

Copyright ® 2021 Intel Corporation intel. =

Inexpensive Functions

» Use instead of expensive functions whenever possible
* Minimal effects on kernel performance

e Consumes minimal hardware

» Examples
* Binary logic operations such as AND, NAND, OR, NOR, XOR, and XNOR
* Logical operations with one constant argument
* Shift by constant
* Integer multiplication and division by a constant that is to the power of 2
* Bit swapping (Endian adjustment)

Copyright ® 2021 Intel Corporation intel. o

Use Least-"Expensive” Data Type

» Understand cost of each data type in latency and logic usage
* Logic usage may be > 4x for double vs. float operations

 Latency may be much larger for float and double operations compared to
fixed point types

* Measure or restrict the range and precision (if possible)
* Be familiar with the width, range and precision of data types
« Use half or single precision instead of double (default)
» Use fixed point instead of floating point

e Don't use float if shortis sufficient

Copyright ® 2021 Intel Corporation intel.

Floating-Point Optimizations

» Appliesto half, float and double data types

= Optimizations will cause small differences in floating-point results
* Not IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008) compliant

» Floating-point optimizations:
* Tree Balancing

* Reducing Rounding Operations

Copyright ® 2021 Intel Corporation intel.

Tree-Balancing

» Floating-point operations are not associative
* Rounding after each operation affects the outcome
e i.e. ((a+tb) + ¢) I= (a+(b+q))

» By default the compiler doesn’t reorder floating-point operations
* May creates an imbalance in a pipeline, costs latency and possibly area

* Manually enable compiler to balance operations

* For example, create a tree of floating-point additions in SGEMM, rather than
a chain

» Use -Xsfp-relaxed=true flag when calling dpcpp

Copyright ® 2021 Intel Corporation intel.

Rounding Operations

» For a series of floating-point operations, IEEE 754 require multiple
rounding operation

» Rounding can require significant amount of hardware resources

» Fused floating-point operation

» Perform only one round at the end of the tree of the floating-point
operations

» Other processor architectures support certain fused instructions such as
fused multiply and accumulate (FMAC)

* Any combination of floating-point operators can be fused
» Use dpcpp compiler switch -Xsfpc

Copyright ® 2021 Intel Corporation intel. 4

References and Resources

= 14
Copyright © 2021 Intel Corporat ion |nte|. 5

References and Resources

= Website hub for using FPGAs with oneAP|

* https://software.intel.com/content/www/us/en/develop/tools/oneapi/compo
nents/fpga.html

" Intel® oneAPI Programming Guide

 https://software.intel.com/content/www/us/en/develop/download/intel-
oneapi-programming-guide.html

" Intel® oneAPI DPC++ FPGA Optimization Guide

* https://software.intel.com/content/www/us/en/develop/download/oneapi-
fpga-optimization-guide.html

= FPGA Tutorials GitHub
e https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials

Copyright ® 2021 Intel Corporation intel.

https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/fpga.html
https://software.intel.com/content/www/us/en/develop/download/intel-oneapi-programming-guide.html
https://software.intel.com/content/www/us/en/develop/download/oneapi-fpga-optimization-guide.html
https://github.com/intel/BaseKit-code-samples/tree/master/FPGATutorials

_ab: Optimizing the Hough Transform
Kernel

= 14
Copyright © 2021 Intel Corporat ion |nte|. 7

L ab instructions

* Download to DevCloud the provided event labs.zip file
* Open a terminal in your Jupyter server

= Unzip the file

* In the Jupyter server, navigate to labs/lab3

» Open Hough transform lab.pdf and follow the instructions

Copyright ® 2021 Intel Corporation intel.

Legal Disclaimers/Acknowledgements

= Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

» Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results to vary. You should consult other
information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of
that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

» Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates.
See backup for configuration details. No product or component can be absolutely secure.

» Your costs and results may vary.

» |ntel technologies may require enabled hardware, software or service activation
= No product or component can be absolutely secure

= Your costs and results may vary

» |ntel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may
be claimed as the property of others

» OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

= *QOther names and brands may be claimed as the property of others

Copyright ® 2021 Intel Corporation intel.

Copyright © 2021 Intel Corporation.

This document is intended for personal use only.

Unauthorized distribution, modification, public
performance, public display, or copying of this material via
any medium is strictly prohibited.

