Reduced-Precision Acceleration of Radio-Astronomical Imaging on Reconfigurable Hardware

Stefano Corda

stefano.corda@epfl.ch

07-07-2022

Scientific Computing Accelerated on FPGAs, Maison de la Simulation (Saclay)

SKAO

SKAO Mission and Vision

Our mission

Our mission is at the core of what we are here to deliver as an organisation. It outlines our deliverables, while setting a bold ambition for us to achieve with regards to our impact in the world.

"The SKAO's mission is to build and operate cutting-edge radio telescopes to transform our understanding of the Universe, and deliver benefits to society through global collaboration and innovation."

The SKA Observatory Convention defines the purpose of the SKAO as to facilitate and promote a global collaboration in radio astronomy with a view to the delivery of transformational science.

Our vision

"The SKAO is one observatory, with two telescopes, on three continents; a 21st century observatory and an inter-governmental organisation with sustainability and respect to all our communities at its heart, driven by a commitment to fundamental science and technology."

Slide /

Nick Rees, Overview of the SKAO and the SKA project, Onboarding Program, 24-01-2022

SKAO

SKAO Key Science Drivers

- The Cradle of Life & Astrobiology
 - How do planets form? Are we alone?
- Strong-field Tests of Gravity with Pulsars and Black Holes
 - Was Einstein right with General Relativity?
- The Origin and Evolution of Cosmic Magnetism
 - What is the role of magnetism in galaxy evolution and the structure of the cosmic web?
- Galaxy Evolution probed by Neutral Hydrogen
 - How do normal galaxies form and grow?
- The Transient Radio Sky
 - What are Fast Radio Bursts? What haven't we discovered?
- Galaxy Evolution probed in the Radio Continuum
 - What is the star-formation history of normal galaxies?
- Cosmology & Dark Energy
 - What is dark matter? What is the large-scale structure of the Universe?
- Cosmic Dawn and the Epoch of Reionization
 - How and when did the first stars and galaxies form?

5 Slide /

Nick Rees, Overview of the SKAO and the SKA project, Onboarding Program, 24-01-2022

Reduced-Precision Acceleration of Radio-Astronomical Imaging on Reconfigurable Hardware

<u>Stefano Corda</u>, Bram Veenboer, Ahsan Javed Awan, John Romein, Roel Jordans, Akash Kumar, Albert-Jan Boonstra, Henk Corporaal

Square Kilometre Array Challenge

SKA (Square Kilometre Array) requirements (per Science Data Processor (SDP) site):

■ ~ 260 PFlop/s

■ ~ 157 TB/s

•~5 MW

https://netherlands.skatelescope.org/2016/11/03/ogen-gericht-op-de-toekomst-tijdens-staatsbezoek-australie/

B. Veenboer et al., "Image-Domain Gridding on Graphics Processors" IPDPS 2017

the survey

speed

more

better

resolution

HPC and FPGAs

Rank	System	Rpeak (PFLOP/s)	Power (MW)	HPCG %
1	Frontier	1685.65	21.10	N. A.
2	Fugaku	537.21	29.90	3.62
3	LUMI	214.35	2.94	1.27
4	Summit	200.79	10.10	1.97
5	Sierra	125.71	7.44	1.90

"When a large-scale HPC system wastes only 1% to 10% of its computing cycles, it wastes energy that could support a small city."

Why FPGAs?:

- Floating-point support.
- Custom HW for domainspecific applications.
- High-level synthesis tools (reduced programming effort).

https://www.top500.org/

A. Eleliemy et al., "RCA: A Resourceful Coordination Approach for Multilevel Scheduling", 2021

Outline

- Problem statement and contributions
- Background
- Methodology
- Application analysis
- Accelerator architecture
- Architecture evaluation and discussion
- Related work
- Conclusions and future work

Problem Statement

- High-Performance requirements (SDP \rightarrow almost ExaFlop/s).
- Image-Domain Gridding (IDG) is highly efficient in single-precision on GPUs.
- FPGA technology and toolchain improvement.
- Reduced precision for noise-tolerant applications.

Challenges:

• Is reduced precision applicable to the radio-astronomical imaging domain?

Can we profit from low precision using FPGAs for radio-astronomical imaging?

R. V. van Nieuwpoort et al., "Correlating radio astronomy signals with many-core hardware", IJPP 2010

R. Jongerius et al., "An end-to-end computing model for the square kilometre array", Computer 2014

B. Veenboer et al., "Radio-astronomical imaging on graphics processor", ASCOM 2020

Intel, "Enabling High-Performance Floating-Point Designs," https://www:intel:com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01267-fpgas-enable-high-performance- floating-point:pdf

S. Cherubin et al., "Tools for Reduced Precision Computation: A Survey", ACM Comput. Surv. 2020

Contributions

- An in-depth analysis to determine the precision requirements for Image-Domain Gridding, included in the state-of-the-art imager WSClean.
- The first custom floating-point Gridding accelerator on reconfigurable hardware.
- An in-depth performance evaluation of out accelerator prototypes and stateof-the-art architectures with similar features (peak performance, thermal design power (TDP) and lithography technology).

Interferometry

U. Rau et al., "Advances in Calibration and Imaging Techniques in Radio Interferometry", Proceedings of the IEEE 2009

Radio-astronomical imaging

S. Van der Tol et al., "Image Domain Gridding: a fast method for convolutional resampling of visibilities", A&A 2018 A. R. Offringa et al., "An optimized algorithm for multiscale wideband deconvolution of radio astronomical images", MNRAS 2017

Gridding algorithm

S Van der Tol et al., "Image Domain Gridding: a fast method for convolutional resampling of visibilities", A&A 2018

- B. Veenboer et al., "Radio-astronomical imaging on graphics processor", ASCOM 2020
- B. Veenboer et al., "Radio-Astronomical Imaging: FPGAs vs GPUs", EuroPar19
- A. R. Offringa et al., "Precision requirements for interferometric gridding in the analysis of a 21 cm power spectrum", A&A 2019

Reduced-precision

Software and hardware technique consisting in employing smaller data types to improve performance.

State-of-the-art:

- Automated/assisted precision tuning tools.
- Reduced-precision emulation libraries.
- Reduced-precision HLS libraries.

Methodology

Application profiling & precision auto-tuning

8

Structural Similarity Index Measure (SSIM) to assess image quality

Name	Description
Central Frequency	120.1172-125.7812 MHz
Channels per subband	4
Channel width	$48828.125\mathrm{Hz}$
Declination	50.9410-54.8590
Duration	$7199\mathrm{s}$
Integration interval	$2.00278\mathrm{s}$
Right Ascension	311.2500-318.7500

Datasets (LOFARSCHOOL) parameters

Software	Version
boost	1.68
OpenBLAS	3.9
python	3.8
wcslib	6.3
cfitsio	3.450
casacore [62]	3.3.0
dysco [63]	1.2
IDG [64]	master 011dfb1
WSClean [65]	master 2680c6a

SW versions

Parameter	Value	Description (unit)
size scale use-idg	6000 6000 5 asec active	output x and y dimensions (pixels) scale of a pixel (degrees) -
auto-threshold niter mgain weight taper	3 50000 0.85 briggs 0 gaussian 2amin	CLEAN stop condition (sigma) number of minor CLEAN iterations gain per major CLEAN iteration weighting mode and robustness

Imager parameters

Methodology

Accelerator design

Xilinx Vitis 2020.2:

- Host code with OpenCL API.
- Accelerator (Kernel) code with HLS pragmas.
- THLS (templatised soft floatingpoint for high-level synthesis) to map custom floating-point on FPGA.

Xilinx Vitis tool flow

HLS pragmas

OpenCL API

src

Methodology

Evaluation

.....

Intel i9 9900k	8 cores, 2 threads per core, 4.0 GHz all cores, 16 MB L3 Cache, 64 GB DDR4 3600 MHz
NVIDIA GTX 750	512 CUDA cores, 1.14 GHz, 2 MB L2 Cache, 2 GB GDDR5
AMD RX 550	8 compute units, 1.09 GHz, 512 KB L2 Cache, 4 GB GDDR5
Xilinx Alveo U50	872 K LUTs, 1743 K Registers, 5952 DSPs, 8 GB HBM2

Performance evaluation:

- Libpowersensor: GPUs and FPGAs power
- Perf: CPU power, FLOP and DRAM traffic
- NVIDIA nvprof: NVIDIA GPU FLOP and DRAM traffic
- AMD CodeXL: AMD GPU FLOP and DRAM traffic

NVIDIA GTX 1050/1050ti has defective power measurement counters

E. Calore et al.	, "Performance assessme	ent of FPGAs as HPC	caccelerators using the	FPGA Empirical Roofline,	FPL 2021
------------------	-------------------------	---------------------	-------------------------	--------------------------	----------

Architecture	Peak Performance	Bandwidth	TDP	Energy efficiency	Process
Intel i9 9900k	$1.024\mathrm{TFLOP/s}$	$57.60\mathrm{GB/s}$	$95\mathrm{W}$	$10.79\mathrm{GFLOP/W}$	14 nm Intel
NVIDIA GTX 1050 Ti	$2.138\mathrm{TFLOP/s}$	$112.1\mathrm{GB/s}$	$75\mathrm{W}$	28 50 GFLOP/W	14 nm Samsung [80]
NVIDIA GTX 750	$1.164\mathrm{TFLOP/s}$	$80.19\mathrm{GB/s}$	$38\mathrm{W}$	$30.63\mathrm{GFLOP/W}$	28 nm TSMC [81]
AMD RX 550	$1.097\mathrm{TFLOP/s}$	$96.00\mathrm{GB/s}$	$35\mathrm{W}$	$31.34\mathrm{GFLOP/W}$	14 nm GlobalFoundries [82]
Xilinx Alveo U50	Peak Performance	Bandwidth	TDP	Energy efficiency	Process
Xilinx Alveo U50Theoretical (724 MHz)	Peak Performance	Bandwidth 316 GB/s	TDP 75 W	Energy efficiency 19.77 GFLOP/W	Process 16 nm TSMC
Xilinx Alveo U50 Theoretical (724 MHz) Theoretical (300 MHz)	Peak Performance 1.547 TFLOP/s 0.641 TFLOP/s	Bandwidth 316 GB/s 316 GB/s	TDP 75 W 75 W	Energy efficiency 19.77 GFLOP/W 8.55 GFLOP/W	Process 16 nm TSMC 16 nm TSMC
Xilinx Alveo U50 Theoretical (724 MHz) Theoretical (300 MHz) Empirical (292 MHz)	Peak Performance 1.547 TFLOP/s 0.641 TFLOP/s 0.535 TFLOP/s	Bandwidth 316 GB/s 316 GB/s 316 GB/s	TDP 75 W 75 W 75 W	Energy efficiency19.77 GFLOP/W8.55 GFLOP/W6.84 GFLOP/W	Process 16 nm TSMC 16 nm TSMC 16 nm TSMC

Similar peak performance

GPUs should be more energy-efficient

Similar lithography technology

Out-of-the-box TDP is

lower than advertised

Bottleneck analysis

Inversion is the main bottleneck and Gridding is the largest kernel

Precision auto-tuning evaluation

(b) Clean images.

Precision auto-tuning evaluation

Accelerator architecture

- Initiation interval
- Parallelism

Accelerator architecture

A	lgorithm 1 Subgrid Computation HLS Pseudocode	
Ι	Input: visibilities, wavenumbers, uvw, uvw_offset, 1mn	
F	Result: subgrids	
1 S	subgrids $\leftarrow 0$;	
2 f	or s in subgrids_per_cu do	
3	for t in timesteps do	
4	for c in channels do	
5	#pragma unroll factor = UNROLL_CHANNELS	
6	for p in pixels do	Data access
7	#pragma unroll factor = UNROLL_PIXELS	
8	complex <float> pixel[pol]</float>	Initiation interva
9	float lmn [3] \leftarrow lmn[p]	
10	float phase_offset	Parallelism
11	float phase_index \leftarrow compute_phase_index(uvw, lmn)	
12	float phase \leftarrow compute_phase(phase_index, phase_offset, wavenumbers)	
13	float phasor [2] \leftarrow cosisin(phase)	
14	for pol in polarizations do	
15	#pragma unroll	
16	complex <float> pixel[pol] += visibilities[t][c][pol] * phasor</float>	
17	end	
18	end	
19	end	
20	end	
21 e	end	

Subgrid computation: unrolling factors

- Similar performance with different unrolling factor combinations
- Unroll over channels \rightarrow more BRAMs
- Unroll over pixels \rightarrow more DSPs (more cosine/sine computations
- 4_4 is a good trade-off for a balanced use of BRAMs and DSPs

Accelerator architecture

- Cosine/sine
- Reduced precision

Device specific considerations

Resources type	Total	Dynamic region	Available (%)
LUTs	872 K	731 K	83.83%
REGs	1743 K	1462 K	83.88%
DSPs	5952	5340	89.72%
BRAMs	1344	1128	83.93%
URAMs	640	608	95.00%

Dynamic Region

Mapping

Static region

- Super Logic Regions (SLRs) and intra-gap
- Xilinx Vitis/Vivado strategy and pblock placement
- HBM channels

Frequency

Performance evaluation

- NVIDIA has special units (SFU) for sine/cosine.
- AMD sine/cosine ¼ time compared to e.g. multiplication.
- Throughput vs HW utilization.

Area, throughput and energy efficiency

Version	LUTs	FFs	DSPs	BRAMs	Frequency
FP32	434 k (49.88%)	604 k (34.72%)	4114 (69.12%)	454 (33.74%)	300 MHz
FP32_OC	435 k (49.99%)	640 k (36.78%)	4114 (69.12%)	454 (33.74%)	346 MHz
FP32_LT	649 k (74.58%)	614 k (35.29%)	3142 (52.71%)	1045 (77.75%)	296 MHz
FPX_6_11	642 k (74.81%)	754 k (43.33%)	1956 (32.81%)	818 (60.86%)	300 MHz
FPX_6_12	656 k (75.39%)	767 k (44.10%)	1956 (32.81%)	818 (60.86%)	300 MHz

Power limit FP32 & timing closure issues.

Lookup-table (+50% computation) & reduced precision (+100% computation).

Xilinx Alveo U50 outperforms Intel i9 9900k (up to 2.12x in throughput and 3.46x in energy efficiciency) ad has a comparable throughput wrt. To AMD RX 550 (~11% slower).

•GPUs are more efficient (GTX 750 highest energy efficiency \rightarrow scaling technology with DeepscaleTool).

S. Sarangi, "DeepScaleTool: A Tool for the Accurate Estimation of Technology Scaling in the Deep-Submicron Era", ISCAS 2021

Related work

Work	Date	Application	Platform	Optimization
Offringa [20, 35]	2014-2017	W-Stacking, CLEAN (Högbom, Cotton-Schwab, Multiscale)	CPU	Optimized full imager (WSClean)
Veenboer [6, 98]	2017-2020	Image-Domain Gridding	CPU/GPU	code optimization (added to WSClean)
Grel [99]	2018	Högbom CLEAN	FPGA	Custom accelerator of Högbom CLEAN formulated as a Compressive Sensing problem
Veenboer [11]	2019	Image-Domain Gridding	FPGA	custom accelerator
Seznec [15]	2019	Generic deconvolution	GPU	half-precision deconvolution
Hou [100]	2020	W-Projection	FPGA	custom accelerator
Corda [4]	2020	Large 2D FFT	FPGA	NMC acceleration

What is new?

- Reduced-precision evaluation for radio-astronomical imaging.
- Porting of the Image-Domain Gridding Algorithm on a Xilinx FPGA.
- Reduced-precision Image-Domain Gridding algorithm.

Conclusions

Summary:

- An in-depth analysis to determine the precision requirements for Image-Domain Gridding (IDG), included in the state-of-the-art imager WSClean.
- The first custom floating-point Gridding accelerator on reconfigurable hardware.
- An in-depth performance evaluation of our accelerator prototypes and state-of-the-art architectures with similar features: peak performance, thermal design power (TDP), and lithography technology.

Lessons learned:

- Reduced precision suitability for radio-astronomical imaging.
- Benefits of reduced precision in the radio-astronomical imaging application domain.
- FPGAs vs CPUs vs GPUs.
- Xilinx Alveo U50.

Current and Future work

- CLEAN study and acceleration on FPGA/GPU.
- AI HW, e.g. NVIDIA tensor cores for imaging pipeline.
- HW/SW co-design for SKA:
 - HPC benchmarking: SKA-SDP Benchmark Suite: <u>https://gitlab.com/ska-telescope/sdp/ska-sdp-benchmark-tests</u>
 - Porting Image-Domain Gridding with HIP: <u>https://gitlab.com/ska-telescope/sdp/ska-sdp-idg-bench</u>
 - Evaluation and SW optimization of upcoming HW (Intel Ponte Vecchio, NVIDIA Grace Hopper, ARM CPUs, AMD CDNA2/3, FPGAs...)

Reduced-Precision Acceleration of Radio-Astronomical Imaging on Reconfigurable Hardware

Thanks!

Stefano Corda

stefano.corda@epfl.ch

07-07-2022

Scientific Computing Accelerated on FPGAs, Maison de la Simulation (Saclay)

