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1. Short introduction of myself

▪ PhD student at TU Delft
▪ Electrical engineering, mathematics & computer science

▪ Algorithmics and Optimization
▪ Part of NextGenOpt project
▪ Improve scalability and accuracy of large-scale 

    energy system optimization models
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2. Optimizing storage operation

▪ Goal: Integrate renewable energy systems
▪ Problem: Production dependent on weather conditions
▪ → varying production
▪ Solution: storage
▪ Including reserves: option to upscale or downscale
▪ How to operate optimally?
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2. Optimizing storage operation

▪ MILP formulation for storage operation
▪ Charge or discharge
▪ → Binary decision variable 𝛿! ∈ {0,1}
▪ Constraints: 

▪ charging level: min and max
▪ (dis)charge: max per time period
▪ reserves: max per time period

▪ Objective: minimize operation costs (example)
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3. Why tight formulation?

Problems:
▪ Storage MILP integrated in large energy system model → very long runtime
▪ Potential solution: solve relaxed MILP
▪ But: simultaneous charging and discharging might occur

Previous research:
▪ Include pre-contingency operating costs [1]

▪ Roundtrip efficiency < 1 [2]

▪ Counterexamples show: does not work [3]

[1] Z. Li, Q. Guo, H. Sun, and J. Wang, “Sufficient conditions for exact relaxation of complementarity constraints for storage-concerned economic 
dispatch,” IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1653–1654, Mar. 2016.
[2] B. Zhao, A. J. Conejo, and R. Sioshansi, “Using electrical energy storage to mitigate natural gas-supply shortages,” IEEE Trans. Power Syst., vol. 
33, no. 6, pp. 7076–7086, Nov. 2018.
[3] J. M. Arroyo, L. Baringo, A. Baringo, R. Bolanos, N. Alguacil, and N. G. Cobos, “On the Use of a Convex Model for Bulk Storage in MIP-Based 
Power System Operation and Planning,” IEEE Transactions on Power Systems, vol. 35, no. 6, pp. 4964–4967, Nov. 2020.

Source: [3]



3. Why tight formulation?

When does simultaneous charging and discharging occur? 
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3. Why tight formulation?

▪ Tighter formulation → MILP solves faster!
▪ Convex hull: solve relaxed MILP → integer solution!

▪ → no simultaneous charging and discharging



4. Finding the convex hull using Julia (PORTA)

What is PORTA?
▪ POlyhedron Representation Transformation Algorithm 
▪ Software for analyzing polytopes and polyhedra (https://porta.zib.de/)
▪ Julia wrapper: XPORTA.jl (https://github.com/JuliaPolyhedra/XPORTA.jl) 
▪ Extra recommendation, input from audience: https://github.com/JuliaPolyhedra/Polyhedra.jl 

▪ traf function:
▪ System of linear (in)equalities → set of points
▪ Set of points → system of linear (in)equalities

https://porta.zib.de/
https://github.com/JuliaPolyhedra/XPORTA.jl
https://github.com/JuliaPolyhedra/Polyhedra.jl


4. Finding the convex hull using Julia (PORTA)

Showcase example:

𝑥!

𝑥"0 1

1 1

𝑥!

𝑥"0 1



4. Finding the convex hull using Julia (PORTA)
Finding convex hull using PORTA:
1. Write constraints of original MILP in text file (→ milp.ieq)

▪ For specific format: see guidelines
2.  traf milp.ieq (→ milp.ieq.poi)

▪ Open this file and remove non-integer points
3. traf milp.ieq.poi (→ milp.ieq.poi.ieq)

milp.ieq.poimilp.ieq
milp.ieq.poi.ieq



4. Finding the convex hull using Julia (PORTA)

Note: method only works if…
▪ Problem size/complexity is limited
▪ Parameter values are known

▪ If not known: try for many different values & combinations…



5. Proving the convex hull

Sketch of proof:
1. Write disjunctive set of constraints
2. Write convex hull of these sets (𝑥" = 0	& 𝑥# = 1) [4]

3. Reduce dimensionality by Fourier-Motzkin elimination
▪ Proof that all other constraints are redundant 1. 

2. 3. 𝑥!
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[4] E. Balas, “Disjunctive Programming and a Hierarchy of Relaxations for  Discrete Optimization Problems,” SIAM. J. on Algebraic and Discrete  Methods, vol. 6, no. 3, 
pp. 466–486, Jul. 1985.



6. Results

Basic formulation of 8 constraints
 (same as original MILP)

10 extra constraints for some parameter values
→ Tried many parameter combinations in PORTA…

Proven redundancy 76 times…

2 case studies in JuMP → it works!

If a ≤ 𝑏:
𝑥 ≤ 𝑏 redundant by 𝑥 ≤ 𝑎
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Convex hull for storage operation: (1 time period)



7. Conclusions

▪ PORTA can be very useful tool!
▪ But can be hard to get into…

▪ Proof involves much hardcore mathematics
▪ Especially proving redundancy…
▪ PORTA can help here!

▪ Paper on the way... incl. full proof!
▪ m.b.elgersma@tudelft.nl
▪ Mailing list

▪ Model will be implemented to speed up large-scale model
▪ Come see my poster!

mailto:m.b.elgersma@tudelft.nl


Questions?
Maaike B. Elgersma

▪
m.b.elgersma@tudelft.nl



Bonus slide

Code example using XPORTA.jl:




