MadNLP: nonlinear programming on GPUs
Francois Pacaud
Joint work with: Sungho Shin, Alexis Montoison, and Mihai Anitescu
CAS, Mines Paris - PSL

October 29th, 2024
Julia & Optimization Days

A5 | psL*

MINES PARIS

Who are we?

An international team looking at the future of nonlinear programming

1

20of 16

Nonlinear programming has fallen out of fashion :-(

0.0000220% -
0.0000200% —
0.0000180% =
0.0000160% —
0.0000140% -
0.0000120% — convex optimization
0.0000100% ~

0.0000080% - nonlinear programming
0.0000060% —

0.0000040% -

0.0000020% —

0.0000000%
1940 1950 1960 1970 1980 1990 2000 2010 2020

30of 16

The sad truth...

Nonlinear programming has fallen out of fashion :-(

0.0000220% -
0.0000200% —
0.0000180% =
0.0000160% —
0.0000140% -
0.0000120% — convex optimization
0.0000100% ~

0.0000080% - nonlinear programming
0.0000060% —

0.0000040% -

0.0000020% —

0.0000000%
1940 1950 1960 1970 1980 1990 2000 2010 2020

... but an open-door for new opportunity!

Can we make nonlinear programming great again using modern hardware?

-

GPU-Computing perf _ ~
1.5X per year -

1.1X per year

LR °
Single-threaded perf

Source of the figure: NVIDIA 3 of 16

MadNLP: a structure exploiting interior-point solver
Winner of the 2023 COIN-OR cup!

iz MadNLP ¢

® Written in pure Julia

1 using MadNLP, MadNLPTests ® Filter line-search (a|a |p0pt)
2 model = MadNLPTests.HS15Model()
3 solver = MadNLPSolver(model) ® Flexible & Modular

4 MadNLP.solve! (solver)

Q\

CUDA-compatible
Fork on github! v MPl-compatible

https://github.com/MadNLP/MadNLP. j1/
v Interfaced with the vectorized modeler
ExaModels.jl

V" And now interfaced with Casadi,
thanks to Tommaso Sartor!

https://github.com/exanauts/ExaModels. j1

4 of 16

https://github.com/MadNLP/MadNLP.jl/
https://github.com/exanauts/ExaModels.jl

Building extensively on the Julia ecosystem

JuliaGPU é J UMP

GPU-premium

* CUDAjl
° CUDSSjl

Optimization-premium

® JuMP.jl
® NLPModels.jl & JuliaSmoothOptimizers

50of 16

Nonlinear programming: a reminder

(per unit)

Pz

o — s &

! 2 5
@62 (per unig) ¢ T 3¢

n variables, m inequality constraints, p equality constraints

Continuous nonlinear problems

Equality cons.
v B

Objective

- g(x)=0
min f(x) subject to

HERE h(x) <0

Inequality cons.

The functions f, g, h are smooth, possibly nonconvex

® Useful framework to solve practical engineering problems
® Usually, we are interested only at finding a local optimum
® Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

J. Nocedal, SJ. Wright. Numerical optimization.

6 of 16

Nonlinear programming: a reminder

Pg (per unit)

n variables, m inequality constraints, p equality constraints

Continuous nonlinear problems

Objective

- ¥

Equality cons.
e

g(x)=0

min f(x) subject to
xERN seRM h(X)+ - - 07 s Z 0
Slack
The functions f, g, h are smooth, possibly nonconvex

® Useful framework to solve practical engineering problems
® Usually, we are interested only at finding a local optimum
® Mature solvers exist since the 2000s (Ipopt, Knitro, LOQO)

J. Nocedal, SJ. Wright. Numerical optimization.

6 of 16

Nonlinear Optimization Software: State-of-the-Art on CPU

Problem Formulation

min f(x)
x>0

s.t.c(x) =0

7 of 16

Nonlinear Optimization Software: State-of-the-Art on CPU

Problem Formulation

min f(x)
x>0

s.t.c(x) =0

® Classical nonlinear programming
® the objective and constraints are smooth
® large number of variables and constraints
® the problem is highly sparse.

Nonlinear Optimization Software: State-of-the-Art on CPU

Problem Formulation Newton's_rStep Computation Line-Search
. A X
min 7<) X%]|a3)- f;; KD = 4 anx
s.t.c(x) =0 AKFD = XK 4 AN

"KKT System" (ill-conditioned)

® Classical nonlinear programming
® the objective and constraints are smooth
® large number of variables and constraints
® the problem is highly sparse.
® |nterior-point methods
® Inequalities x > 0 replaced by smooth log-barrier functions
F(x) — 1Y, log(x[i]):
® Newton’s Step is computed by solving a “KKT system”
(large, sparse, symmetric indefinite, ill-conditioned system).
® Line-search (along with several additional heuristics) ensures global
convergence.

Nonlinear Optimization Software: State-of-the-Art on CPU

Problem Formulation Newton's_rStep Computation Line-Search
. A X
min 7<) X%]|a3)- f;; KD = 4 anx
s.t.c(x) =0 AKFD = XK 4 AN

"KKT System" (ill-conditioned)

o

Algebraic Modeling Systems

AMPL, CasADi,
JuMP, Gravity, ...

® Algebraic modeling systems provides front-end to specify models and
(often) provides derivative computation capabilities.

Nonlinear Optimization Software: State-of-the-Art on CPU

Problem Formulation Newton'sTStep Computation Line-Search
. A X
min £) X%]|a3)- f;x K90 =X+ atix
s.t.c(x) =0 AKFD = XK 4 AN

"KKT System" (ill-conditioned)

1 _—

Algebraic Modeling Systems Nonlinear Opti-
AMPL. CasADi mization Solvers
JuMP, Gravity, ... Ipopt, Knitro, MadNLP, ...

® Algebraic modeling systems provides front-end to specify models and
(often) provides derivative computation capabilities.

® Nonlinear optimization solvers apply iterations of optimization algorithms.

Nonlinear Optimization Software: State-of-the-Art on CPU

Problem Formulation Newton'sTStep Computation Line-Search
. A X
min £ EEN S ff,k} LD 0 4 e
st c(x) =0 A =3B 1 aan

"KKT System" (ill-conditioned)

[

Algebraic Modeling Systems Nonlinear Opti- Sparse Linear Solvers
AMPL, CasADi, iz 2l HSL (ma27, mas7,
JuMP, Gravity, ... Ipopt, Knitro, MadNLP,), Pardiso, ...

® Algebraic modeling systems provides front-end to specify models and
(often) provides derivative computation capabilities.

® Nonlinear optimization solvers apply iterations of optimization algorithms.

® Sparse linear solvers solves KKT systems using sparse matrix
factorization.

Nonlinear Optimization Software: State-of-the-Art on CPU

Problem Formulation Newton's_rStep Computation Line-Search
. A X
min 7<) X%]|a3)- f;; KD = 4 anx
s.t.c(x) =0 AKFD = XK 4 AN

"KKT System" (ill-conditioned)

[

Algebraic Modeling Systems Nonlinear Opti- Sparse Linear Solvers
AMPL, CasADi, iz 2l HSL (ma27, mas7,
JuMP, Gravity, ... Ipopt, Knitro, MadNLP,), Pardiso, ...

® These software tools have enabled the success of nonlinear optimization
on CPUs

Nonlinear Optimization Software: State-of-the-Art on CPU

Problem Formulation Newton'sTStep Computation Line-Search
. A X
min £) X%]|a3)- f;x K90 =X+ atix
s.t.c(x) =0 AKFD = XK 4 AN

"KKT System" (ill-conditioned)

[

Algebraic Modeling Systems Nonlinear Opti- Sparse Linear Solvers
AMPL, CasADi, iz 2l HSL (ma27, mas7,
JuMP, Gravity, ... Ipopt, Knitro, MadNLP,), Pardiso, ...

® These software tools have enabled the success of nonlinear optimization
on CPUs

® Many software tools have been developed in 1990s-2000s
(heavily optimized for CPUs)

Nonlinear Optimization Software: State-of-the-Art on CPU

Problem Formulation Newton'sTStep Computation Line-Search
. A X
min £) X%]|a3)- f;x K90 =X+ atix
s.t.c(x) =0 AKFD = XK 4 AN

"KKT System" (ill-conditioned)

[

Algebraic Modeling Systems Nonlinear Opti- Sparse Linear Solvers
AMPL, CasADi, iz 2l HSL (ma27, mas7,
JuMP, Gravity, ... Ipopt, Knitro, MadNLP,), Pardiso, ...

® These software tools have enabled the success of nonlinear optimization
on CPUs

® Many software tools have been developed in 1990s-2000s
(heavily optimized for CPUs)
®* Now we need GPU-equivalent of these tools:

® Algebraic Modeling: ExaModels.jl
® Optimization solver: MadNLP.jl
® Sparse Linear Solvers: NVIDIA cuDSS (Cholesky & LDL)

Identifying the computational bottlenecks in IPM

1. Evaluate derivatives VF,

® Sparse Automatic differentiation
® Algebraic modeling systems (AMPL, JuMP, Casadi,...)

2. Solve KKT system VF,d* = —F;

® Symmetric indefinite system
® Efficient sparse linear solvers exist (HSL ma27/ma57, Pardiso, Mumps,...)

8 of 16

First step: Sparse automatic differentiation on GPU with ExaModels.jl

® |arge-scale optimization problems almost always have repetitive

patterns
; N (x- p" ;
Xb?JQXnZZ 2 (x; p;7) (SIMD abstraction)
= el el
subject to [g("')(x; qj)]je[Jm] + Z Z A (x; s£")) =0, Vme[M]

n€[Nm] ke[Kn]

® Repeated patterns are made available by always specifying the models as
iterable objects

constraint(c, 3 * x[i+1]°3 + 2 * sin(x[i+2]) for i = 1:N-2)

® For each repeatitive pattern, the derivative evaluation kernel is
constructed & compiled, and executed in parallel over multiple data

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of i pr ms and cond. d-space interior-point me

Second step: Solving the KKT system on the GPU

AN

W

Figure: Matrix factorization using a direct solver

Linear solve: Solve the KKT system VF,dix = —F«
- Usually require factorizing VF,, (symmetric indefinite: LBL)
- KKT system is highly ill-conditioned — numerical pivoting

Challenge: solving the sparse linear system on the GPU

® |ll-conditioning of the KKT system
= iterative solvers are often not practical)

® Direct solver requires numerical pivoting for stability
(= difficult to parallelize)

. 10 of 16
B. Tasseff, C. Coffrin, A. Wachter, C. Laird. "Exploring benefits of linear solver parallelism on modern nonlinear optimization applications.", 2019 N

Solution : Condensation of the linear system

Solution: Condensation

® Reduce the KKT system to a sparse positive definite matrix

® Sparse Cholesky is stable without numerical pivoting
— runs in parallel on the GPU (cuDSS)

S. Shin, F. Pacaud, and M. Anitescu. Accelerating optimal power flow with GPUs: SIMD abstraction of i and c e il i TT.OF me
S. Regev et al., "HyKKT: a hybrid direct-iterative method for solving KKT linear systems." Optimization Methods and Software 38, no. 2 (2023)

Application: AC-OPF problem

® We use the newly released cuDSS solver (sparse Cholesky and LDL)
® Up to 10x speed-up compared to Ipopt

HSL MA27 LiftedKKT+cuDSS HyKKT+cuDSS
Case it init lin total it init lin total it init lin total
13659_pegase 63 0.45 7.21 10.14 | 75 083 1.05 296 | 62 0284 093 247
19402_goc 69 0.63 3171 3692 | 73 142 228 538 | 69 144 193 431
20758_epigrids | 51 0.63 14.27 18.21 53 134 105 357 | 51 135 155 3.1
78484 _epigrids | 102 257 179.29 207.79 | 101 5.94 562 18.03 | 104 6.29 9.01 18.90

Table: OPF benchmark, solved by MadNLP with a tolerance tol=1e-6. (A100 GPU)

Performance profile

1.00

050

Proportion of problems

dKKT-cuDSS
—— HyKKT-cuDSS

20 2t 2 22 24
Within this factor of the best (log scale)

12 of 16

Application: Nonlinear dynamic optimization

Solving the distillation problem - CPU vs GPU

— HSL ma27
o 10:l o == HSL ma57
S Lifted-KKT
s} e HYKKT
o 0
o 10°4
=
=
=
— 10_1 E
(]
o
£
-2
= 10

102 103 104
Discretization size

Figure: Time per iteration solve the problem to optimality (in seconds).

13 of 16
Pacaud et Shin, "Condensed-space methods for nonlinear programming on GPUs" N

* A100 (80GB)
° A30 (24GB)
* A1000 (4GB)

9241pegase

Time (s)

CPU A1000 A30 A100

Benchmarking different GPUs

How expensive should be your GPU?

30000goc

04
CPU A1000 A30 A100

200

175

150

125

Time (s)

HPC ($10,000)
workstation ($5,000)
laptop

78484epigrids

CPU A1000 A30 A100

Figure: Time to solve the problem to optimality (in seconds).

14 of 16

What comes next?

® Better accuracy

- Improve accuracy of condensed-space method
- Support of multi-precision (Float128)

® Better robustness

- Degenerate problems (e.g. optimal control with state constraints)
- Complementarity problems (MPEC)

15 of 16

Want (super) fast optimization solvers?

Always looking for new collaborations!

frapac.github.io

16 of 16

frapac.github.io

