FPGA: a new kind of accelerator for
sclentific computing ?

Matthieu Haefele and Charles Prouveur

Café Calcul, June 2021 = O exazpro

EXA2PRO H2020 FET-HPC project

.
C;'C++.|'F0l.'tran Skeletons & Components
application with CPUIGPUIDFE .
implementations Scheduling

criteria
@
Fault tolerance
technigues

v Components .
medatada CPU toolchain
GPU tooclchain ()

Design phase

D‘?E’ Plug-ins DFE toolchain

-
c
@
E
=

L
=3
o

o

Technical Debt
management

Scheduling and RT management

Performance Platform
monitoring modeling

Execution

Outline

FPGA architecture and principles
The MaxJ "programming" model and toolchain

Porting MetalWalls mini-app on FPGA

Number representation and numerical accuracy
Comparison in time and energy with CPU and GPU
Trying to look into the future...

You said FPGA ?

Some acronyms

o FPGA: Field Programmable Gate Array
LUT: Look Up Table (boolean logic function)

FF: Flip-Flop (circuit to store one bit of information)
BRAM: 4KB blocks of RAM

DSP: Digital Signal Processing (versatile arithmetic unit)

But whatis it ?

e Reconfigurable logic
o Algorithm "hard wired" in the silicon
e Computations offloaded as for a GPU accelerator

FPGA S\neqg$ Processor

Processor

Core

Cache
nstructi

Data movement triggered
by instructions

Data movement programmed

Maxeler Data Flow Engine (DFE)

Data Flow Engine

FPGA —== DRAM

Maxeler accelerator node

Computing system

Dual socket AMD EPYC Maxeler accelerator node

Dual socket AMD EPYC Maxeler accelerator node

Dual socket AMD EPYC Maxeler accelerator node

Architecture comparison

Chip

Intel SkyLake NVidia Pascal

Xilinx XCVU9P

Techno.

14nm

16nm 16nm

Power

205W

300W < 50W

Freq.

AC =V

1.5GHz 0.1-0.5GHz

cache

5/MiB

18 MiB 62 MiB

HBM / MCDRAM

O

16GB O

DRAM

128-768 GB

O 48GB

"Programming'" model

Available languages

VHDL, the standard: very low level for electronic people
XilinX HLS: Pragmas for C

OpenCL: C-like offload API
SycL or Intel OneAPI: C++ framework

Maxeler MaxJ: Domain Specific Language based on Java
XilinX Vitis: Al Development Environment

Challenges

o Algorithm reformulation for a streaming implementation
e |fs and reductions are your enemies

e Significant space on silicon can be saved with smaller precision
arithmetic

Example: computing a distance

Example: computing a distance

Example: computing a distance

Example: computing a distance

Example: computing a distance

Example: computing a distance

Example: computing a distance

Example: computing a distance

Example: computing a distance

Example: computing a distance

e Thatwas computing in time: building a pipeline
e Now computing in space: replicating this pipeline

Example: computing a distance

Development workflow 1/3

e State of the chip known at each clock tick
e Spreadsheet based performance model reliable (5-10%)
e Design choices performed playing around with LibreOffice

Development workflow 2/3

Kernels written in MaxJ language: embedded DSL based on java
Eclipse IDE speeds up development and unit tests execution
Kernels called from F?0 or C/C++ with offload mechanism
Algorithm correctness performed in simulator / emulator

Development workflow 3/3

o 24-48 hours needed for kernels compilation !!
o Algorithm correctness checked on real hardware

Distance MaxJ kernel

public class distKernel extends Kernel {
public distKernel(final KernelParameters parameters) {
super (parameters);

DFEType DP_float = dfeFloat(11, 53);
DFEType distance = DP_float;
DFEType point = new DFEVectorType<DFEVar>(DP_float, 3);

DFEVar P1 = io.input("P1", point);
DFEVar P2 i10.input("P2", point);

DFEVar dx = P1[0] P2[0];
DFEVar dy = P1[1] P2[1];
DFEVar dz = P1[2] - P2[2];
DFEVar = sqrt(dx*dx + dy*dy + dz*dz);

io0.output("distance", d, distance);

Distance MaxJ manager

public class distManager extends MAX5CManager {
public distManager (EngineParameters params) {
super (params) ;

KernelBlock kernel = addKernel(
new distkKernel(makeKernelParameters('"distKernel"))

),

DFELink P1 = addStreamFromCPU("P1");
DFELink P2 = addStreamFromCPU("P2");
kernel.getInput("P1") <== P1;
kernel.getInput("P2") <== P2;

DFELink distance = addStreamToCPU("distance");
distance <== kernel.getOutput("distance");

Distance main.c 1/2

#1include "distance.max"
#1nclude "distance.h"
#define N 16

int main(int argc, char** argv)

{
double P1[3*N], P2[3*N], distance[N];
max_file_t *maxfile = distance_init();
max_engine_t *engine = max_load(maxfile, "*");

init(P1, P2);

distance_DFE(maxfile, engine, P1, P2, distance);
print(distance);

return 0,

Distance main.c 2/2

void distance_DFE(max_file_t* maxfile, max_engine_t* engine, \
double* P1, double* P2, double* distance)
{
max_actions_t* act = max_actions_init(maxfile, NULL);
max_queue_input(act, "P1", P1, 3*N*sizeof(double));
max_queue_input(act, "P2", P2, 3*N*sizeof(double));
max_queue_output(act, "distance", distance, N*sizeof(double)

max_set_ticks(act, "distKernel", N);

max_run(engine, act);
max_actions_free(act);

Distance MaxJ kernel multi-pipe

public class distKernel extends Kernel {

public distKernel(final KernelParameters parameters, int numl
super (parameters);

DFEType point = new DFEVectorType<DFEVar>(DP_float, 3*numP:
DFEVar P1 = io.input("P1", point);
DFEVar P2 = io.input("P2", point);

for(int 1=0; i< numPipe ; 1i++){
dx[1i] = P1[0O + 3*1] - P2[0 + 3*1];
dy[i] = P1[1 + 3*i] - P2[1 + 3*1i];
dz[i] = P1[2 + 3*1i] - P2[2 + 3*1i];
d[i] sqrt(dx[1]*dx[1] + dy[i]*dy[1i] + dz[i]*dz[1]);
¥

io0.output("distance", d, distance);

At compile time

Emulation

.max
Maxeler tools
for emulation

.maxj Program sources

Maxeler tools
for hardware

execution

FPGA

vhdl ————]
bitstream

Hardware XilinX tools
.maXx

At runtime

Emulation Hardware

Emulator

MaxelerOS

FPGA
bitstream

MetalWalls

e Molecular dynamics with accurate electrostatic
e Simulation of electrochemical systems
e Developed by M. Salanne (Sorbonne University)

Q =f(t)?

e Carbon electrodes (Blue), lonic liquid (red/green)
e Study of the liquid/electrode interface

Algorithm

Initialisation

For all time steps

20K lines
F90

7K lines
F90

DFE implementation

DFE porting effort

Two weeks intensive support at Maxeler

6 months learning + first implementation
\Rightarrow First results in emulation
6-8 months to get an efficient design on the hardware

Number representation

On CPU /GPU

e Double, single and half (only GPU) precision floating point
representation

e Factor 2x (resp. 4x) in performance expected when using single (resp.
half) instead of double

On FPGA

o Any floating point representation available, even fixed point
e Requires less resources (2x - 6x between SP and DP)

How could we reduce the accuracy of humber representation without
damaging the result ?

Numerical accuracy analysis

e $r {cut}$ parameter of the Ewald summation

e For agiven $r {cut}$, runs performed with QP, DP, SP and exotic
FPGA precisions

e \Rightarrow Norm of difference of result reflects number
representation error

e Runs with DP for different $r {cut}$

e \Rightarrow Norm of difference of result reflects model accuracy

40 bits are enough !

a
|
oS
)
g\
S

|
=

FPGA - 40bits

CPU - DP

CPU - SP

CPU - Model accuracy

100 150 200
of CG iterations

CADNA able to find the model accuracy without QP run.

CPU vs FPGA vs GPU

Average power requirement Performance Power efficiency

o
-
>

w
i
[N}

IS
[
=)

w

o

N)
~

ie]
=
o
Q
(]
172
£
(]
Q.
(%]
(=)
s
2
©
—
[0}
=
O
@)
H*

i

CG iterations per second per watt

0

o

| Intel Skylake (24 cores) [l XilinX XCVvU9P [l] NVidia P100

Multi-DFE implementation

—— 16-8-2@300_minPCI-X
—— 32-16-4@300_PCI-X
multi-design@300_PCI-X

©
c
(o]
|9
(O]
(2]
—_
(O]
o
w0
c
S
+d
©
—
()
=
H#

Conclusion

e DFE programming model is an appropriate level of abstraction
e Flatlearning curve and sparse documentation for HW generation
e For the MetalWalls case:

= 40 bits are enough to represent numbers in Metalwalls

m FPGA x2 slower than GPU

m FPGA x3 more power efficient than GPU

Beyond FPGA, this data flow oriented programming model focuses the
developer on data movement which is also relevant on CPU & GPU

Looking into the future

e Moore's law ending in a near future
» \Rightarrow Architecture is likely to become the driver for
more performance

e Intel bought Alterain 2015 for 16.7 B$
e AMD announced to buy XilinXin 2020 for 35 B$
= \Rightarrow CPUs will likely integrate reconfigurable logic
= \Rightarrow FPGAs are integrating more and more
specialised blocks

HPC might have to deal with this reconfigurable logic at some point

