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Problem Statements:

Forward problem

(x()ap)
o(t) = f(x(t), p)
‘_* z(0) = xg
p

Inverse problem

Y1,Y2,Y3, -+ Yn
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Overview

Dynamical Systems

@ Arise frequently in numerous applications including
mathematical modeling and control theory.

@ Numerical methods must be applied.

Existing numerical approaches

@ Provide discrete solutions (Runge Kutta, Explicit-Implicit schemes, FDM among
others).

@ Require a discretization of the domain via meshing (higher dimension can
potentially be a problem)

@ Depend on index reduction techniques for lowering the index of a DAE system.

@ Neural networks based approaches suffer from local minima solutions.
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Overview

LSSVM Constraints

e -

@ Closed form solution

@ Optimal representation of the solution
@ Potentially can be used for high dimensional PDEs

@ Does not require index reduction technique (high index DAES)
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e(.)

set of constraints

space X

Target space 7177
Feature space on X

@ RKHS

@ Gaussian process (probabilistic setting)
@ LSSVM (optimization setting)
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The primal LS-SVM: [1]

. 1
minimize —wTw + LeTe
w,be 2 2

subjectto yi =w'o(x)+b+e, i=1,..,n

The dual LS-SVM:

1o -]

where Q; = K(xi,%j) = ¢(Xi )T o(X)).-

13 A K. Suykens et al. Least Squares Support Vector Machines. World Scientific,
Singapore, 2002.
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Primal: y(z) = wlp(x) + b
dxn,(d<n)

LSSVM Model

Dual: y(x) = Z?:l K(x, ZC,) +0b

dxn,(n<d)

@ Fixed Size LSSVM [see?]
@ Fixed Size semi-supervised KSC based model [see?]

2J. A. K. Suykens et al. Least Squares Support Vector Machines. World Scientific,
Singapore, 2002.

3Siamak Mehrkanoon and Johan AK Suykens. “Large scale semi-supervised
learning using KSC based model”. In: IEEE International Joint Conference on Neural
Networks (IJCNN). 2014.
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Forward Problem: PDEs

Aim
We propose a kernel based method in the LS-SVM framework
[4]. The formulation is derived using the primal-dual setting.

@ In primal: the solution is in terms of the feature map.
@ In dual: Kernel based representation of the solution.

4siamak Mehrkanoon and Johan AK Suykens. “Learning solutions to partial
differential equations using LS-SVM". . In: Neurocomputing 159 (2015), pp. 105-116.
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Forward Problem: PDEs

One dimensional PDEs @ Y is a bounded domain,

We consider the PDE of the form: which can be e_ither
, rectangular or irregular,
Zu(x) =f(x), x e L R, @ O represents its
#u(x) =9(x), x €% boundary.

(1) @ B and . are differential

operators.

Our goal is to find ( that satisfies (1) on the given domain ¥:
minimize  ||.£0 —f||
u

, . (2)
subjectto %0 =g
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Forward Problem: PDEs

Formulation of the method

Collocation method: discretization of the
domain X into a set of collocation points de-
fined as follows:

X = {Xk }Xk :(katk)7 k:17-~~,kend}:

where X = Xg U Xg.

Formulation of the method

One can rewrite (1) as the following optimization problem:

1 1X2] 12
minifrl‘nize > > [(.Z’[ﬁ] —f)(X'@)]

i=1

3
subjectto  Bla(x L) =a(xL), i=1,..., Xzl
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Forward Problém: PDEs

Consider the case where .Z is defined as follows:

d%u

= — Jra(x,t)g—ltJ + b(x,t)u —c(x,t)—-.

ot?

subject to a Dirichlet boundary condition, i.e.

u(x) =g(x) forall x € ox.

Parameter estimation

8%u
Ox2

The approach can be summarized as follows:

Steps needed

@ Assume that a general approximate solution is of the following form:

a(x) =wTo(x) +d

where () : RI™ — RN s the feature map.

Conclusion

4)
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Forward Problem: PDEs
-

@ Solve the optimization problem:

. 1
minimize  ~wTw + ZeTe
w,d,e 2 2

subjectto  w’ [gon(x_iz) +a(x ) (xd) +bx b)p(xd)—

C&éwmuéﬂ+b0%d=ﬂ@ﬂ+&J=anM9L

wle(xi)+d=9g(t),i=1,..,|Xz|
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Forward Problem: PDEs

Linear system [°]

K+~ N | Sz | b o f
Sls Ag | 1 B =109 ®)
b7 i | o d 0

5Siamak Mehrkanoon and Johan AK Suykens. “Learning solutions to partial
differential equations using LS-SVM". . In: Neurocomputing 159 (2015), pp. 105-116.
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Forward Problem: PDEs

@ The optimal representation in dual:

[Xg] ) ) )
)= a ([Vtiz)mK](x'@,x)+a(x_'@)[vtl,0K](x'@,x)+

i=1

b(xEy) [T K] (xbp %) ~ e(x5) 7,0 K]k x) )

| X )
+ > 81 [VooK](xfgx) +d.

i=1

where [Vo oK](t,s) = ¢(t)T o(s) and [V oK](t,s) = 220 26D are the kernel
function and its derivative respectively.
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Forward Problem: PDEs

Rectangular domains

tl e—Xg oYXz,

Consider the case where . is defined as follows: N X o X,
62 9 82 ,,,,‘,,, \" \" \“ \”7:7
2=2Y a0 £ bix, tu —c(x, ) 24, T bbb
o2 ot Ox2 -6 -6 -0 %

v
'
I

And the initial conditions of the form ""X
e e e
KO ), 0<x <1 0 |t bbbk

u(x,0) + ——=
a b X

and boundary conditions at x = 0 and x = 1 of the
form: Figure:
Xg =X UXg, UAX,
u(0,t) = go(t), U(L,) =gi(x), O<L<T, o T s
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Forward Problem: PDEs

The approach can be summarized as follows:

@ Assume that ((x) = wT (x) + d, where ¢(-) : RI™ — RN,
@ Solve the optimization problem:

1
mn —wTw + ZeTe
w,de 2 2

st ow' [w(x &) FaxH)e(xH) +b(xH)e(X b)) — c(X &) ex (X &)
+b(xH)d =f(xd) +ei,i=1,...,|Xz]
w’ [cp(x!g)wt(x%) +d=h(x), i=1,...,]|Xl,

WTQO(Xgigl)er =go(ti), i=1,...,|Xzl,
WT(P(Xgigz)er =0:1(ti), i=1,...,|Xz,l,
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Forward Problem: PDEs

Linear system [©]

K+~ 1ty | S b a f
st A | 1y B =V |- (6)
bT 5| o d 0

6siamak Mehrkanoon and Johan AK Suykens. “Learning solutions to partial
differential equations using LS-SVM". . In: Neurocomputing 159 (2015), pp. 105-116.
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Parameter estimation
0000000000

Conclusion

Forward Problem: PDEs

@ The optimal representation in dual:

[Xa|

i=1

[Xe| .

S 5 [VooK + Vi 0 K] (e, x)+
i=1

[ Xz, | _

> B2 [VO,OK](X,|9317X)+

i1

[ X, | _

> /Big[vo,oK](Xlgazfx)‘

i=1

ax)=d+ > o ([qu)’oK](xi@,x) +8(x ) [Viy 0 K] (x by )+

b(x ) [Vo.0 K] (x5, ) —c(x_i@)[vxiz),OK](x_i@,xO—i—

where [V oK](t,s) = o(t)T¢(s) and [V oK](t,s) = %:“’(S)) are the kernel

function and its derivative respectively.
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Forward Problem: PDEs

Nonlinear PDEs

We assume that the nonlinear PDE has the following form:

8%u = d%u 2
m-ﬁ-y—i—f(u):g(x), X eEXeR
subject to the boundary conditions of the form

u(x) =h(x),x € 0x

where f is a nonlinear function.
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Forward Problem: PDEs
-

i 1.7 VAT T
minimize —-wW ' w —(e e
w.,d.e&.u 2 + 2( +€ E)

subjectto W [y (X 5) + (X 5) | +F(U(x ) -

—g(x)+e,i=1,...,|X|
wlhp(xh)+d=uxd)+¢&, i=1,...,]%],
wlp(xh)+d=h(xh), i=1,... Xz

Note that the second set of additional constraints is introduced
to keep the optimization problem linear in w.
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Experimental results

Example 1. cConsider the linear second order hyperbolic equation with variable
coefficients defined on a rectangular domain:

Uy + 28y + (sin?(x +t))u = (1 + x?)uxx + e~ 2 (x2+

4e'* _ sin?(t +x) — 3) sinh(x), 0 <x <1,0<t<T,

with exact solution u(x,t) = e~ sinh(x).
The number of collocation points (training points) inside and on
the boundary of the domain are as follows:

9 |Xy| = 81,

O |Xg| = [Xup,| = |Agy| = 10
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Experimental results

Figure: Tuning the kernel bandwidth (o) using validation set. The red
circle indicates the location of selected bandwidth.
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Experimental results

Table: Numerical result of the proposed method for solving Problem 1 with time
interval [0, T].

RMSE L oo
Method T Training Test Training Test
LSSVM 1 1.75x1075 194 x10-° 5.31x107° 6.71x10°°
FOM[]  ————— 074x107% —————~ —— -
LSSVM 2 3.18 x10~° 3.49 x 10~° 1.30 x 10~* 1.51 x 104
FDM - — = — 043x107% ————— —— -

"RK Mohanty. “An unconditionally stable finite difference formula for a linear
second order one space dimensional hyperbolic equation with variable coefficients”.
In: Applied Mathematics and Computation 165.1 (2005), pp. 229—-236.
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Experimental results

Table: The effect of number of training points on the approximate solution of Problem

1 with time interval [0, 1].

RMSE L oo
|Xq| o Training Test Training Test

4 225.04 1.76 x 1073 2.78 x 103 350 x 1073 1.01 x 102
25 1261 6.26 x 10~% 7.57 x 10~ 1.76 x 103 2.32 x 1073
49 5.99 2.58 x 1074 2.86 x 10~ 7.31x 1074 893 x 10~*
81 4.13 175 x 1075 1.94 x 105 531 x107° 6.71x 10°°
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Example 2. Consider elliptic equation defined on a rectangular domain:
V2u(x,y) = exp(—x)(x — 2 +y3 + 6y)
with X,y € [0, 1] and the Dirichlet boundary conditions:
u(0,y) =y®, u(1,y) = (1 +y®)exp(-1)

and
u(x,0) = xexp(—x), u(x,1)=xexp(—x)(x +1)

The exact solution is u(x,y) = e X (x +y3).

27159



Overview

000000 e00000
Experimental results

training set .
x 10 1
? :
A 0.8
i 0.6
x
o 0.4]
-1
0.2
‘ -2
05 1 OO
y
(b)

timation

test set

RS

Conclusion

X107

Figure: (b) 100 training points inside the domain [0, 1] x [0, 1] are used for training,
(c) 900 points inside the domain [0, 1] x [0, 1] are used for testing.
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Example 3. consider the linear second order elliptic PDE:
V2u(x,y) = 4x cos(x) + (5 — x2 — y2) sin(x) (8)

defined on a circular domain, i.e.
Y= {(ny)‘xz+y27lzo7 71§XS1771SyS1}

with the Dirichlet condition u(x,y) = 0 on 9X. The exact solution is given by
u(x,y) = (x2 +y? — 1)sin(x).

o |Xy| =45
0 | Xy =19
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20(x,y)

ou(x.y)

Learning solution of PDEs

L

[e

U(X,y) - O(Xay)

d0(x,y)

Au(x,y)

earning solution of DAEs

Paramet

y -1 -1 X
(b)

y -1 -1 X

(d

Conclusion
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Table: Numerical result of the proposed method for solving Problem 3

MSE L oo
Problem Method Training Test Training Test
3 LSSVM 518 x 1071 594 x 10711 191 x10° 2.71 x 10~°
GPA[}] — ———— 204x107% ————— ——_—__

8Andras Sébester, Prasanth B Nair, and Andy J Keane. “Genetic programming
approaches for solving elliptic partial differential equations”. In: |IEEE transactions on
evolutionary computation 12.4 (2008), pp. 469-478.
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Example 4. consider an example of nonlinear PDE

V2u(x,y) + u(x,y)? = sin(mx) (2 — (wy)? + t* sin(ﬂ-x)) 9)

defined on a circular domain, i.e.
Y= {(x,y)‘x2+y2—1:0, —1§x§1,—1§y§1}
with the Dirichlet condition on dX. The exact solution is given by u(x,y) = y? sin(zx).

o |Xy| =24
o ‘Xg| =109.
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Experimental results

Figure: Obtained model error for problem 4.
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Forward Problem: DAEs

DAEs:
Dynamical processes that are
constrained e.g. by:

@ conservation laws

@ balance conditions

@ geometric conditions

Known as descriptor, implicit or
singular systems.

concentrations, populations of species, or
just numbers of cells

Learning solution of DAEs
0000000000000

Conclusion

Parameter estimation

0000000000

all® s

Numerous applications in
Economical, biological or
chemical systems.
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Forward Problem: DAEs

Conclusion

A semi-explicit DAE or an ODE with constraints:

x =f(x,y,t)
0 :g(X,y,t).

@ x andy are considered as differential and algebraic
variables respectively.

@ DAEs are characterized by their index
9 If g—s is nonsingular = the index is 1
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Conclusion

Forward Problem: DAEs

A semi-explicit DAE or an ODE with constraints:

x =f(x,y,t)
0 =g(x,y,1).

@ x andy are considered as differential and algebraic
variables respectively.

@ DAEs are characterized by their index
9 If g—g is nonsingular = the index is 1
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Conclusion

Forward Problem: DAEs

A semi-explicit DAE or an ODE with constraints:

x =f(x,y,t)
0 :g(X,y,t).

@ x andy are considered as differential and algebraic
variables respectively.

@ DAEs are characterized by their index
9 If g—s is nonsingular = the index is 1
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Conclusion

Forward Problem: DAEs

A semi-explicit DAE or an ODE with constraints:

x =f(x,y,t)
0 :g(X,y,t).

@ x andy are considered as differential and algebraic
variables respectively.

@ DAEs are characterized by their index
o If g—s is nonsingular = the index is 1.
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Forward Problem: DAEs

Initial value problems (IVPSs):

Consider a linear time varying IVPs in DAEs of the form
Z ()X (t) = A()X(t) + B(t)u(t), t € [tin, t], X(tin) = Xo,

@ Z(t) is singular on [ti,, ;] with variable rank and the DAE may
have an index that is larger than one.

@ When Z(t) is nonsingular, DAE can be converted to an
equivalent explicit ODE system.
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Forward Problem: DAEs
-

Assume that an approximate solution to i-th equation:
%i(t) = w p(t) +di

where ¢(-) : R — R" is the feature map and h is the dimension of the
feature space.

Primal Problem

m
Ano ’Y ele
minimize W, W =
Wi, 2 Z e We + D) Z Ve
subject to zw V= A[WT¢+D]+G+E

WTp(ty) +D.1 = Xo
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Forward Problem: DAEs

The solution in dual form becomes:

N

20 =33 al (zve(ti)[vfiK](ti,t) - ave<ti)[v8r<]<ti,t))+

v=1i=2
Be[VK](ts,t) +dg, £=1,...,m.

@ o, f and d follow from a square linear system.
[See?]

8Siamak Mehrkanoon and Johan AK Suykens. “LS-SVM approximate solution to

linear time varying descriptor systems”. In: Automatica 48.10 (2012), pp. 2502-2511.
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Forward Problem: DAEs

Example 1 Consider the singular system of index-3

Z(t)X(t) = A(t)X(t) + B(t)u(t), t € [0,20], X(0) = Xo

0-toO -10 O
wherez=|10t|,A=| 0 -10
010 0 0 -1

and B(t) = 0 with x(0) = [0,e~, e 1].
The problem is solved on domain t € [0, 20] using N = 70.
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Forward Problem: DAEs

The exact solution is given by

x1(t) = —texp(—(t + 1)), xz(t) = xa(t) = exp(—(t + 1)).

0.0: 0.
—— Exact solution
ol —~ L;;:ﬂﬂ!gﬁﬂﬂﬁiigEﬂEJ
—0.02 \‘:/0.4 1
—0.04 >('<0 0.3 ]
4= —0.06] ey
~~o0.2 1
«— —0.08]
—0.12| ><
—0.14 ©)
o 5 o 5 11.‘0 15 20
5 —5 -5
x 10 x 10 x 10
5 1 ~T
& MWWV o o]
— ~ ™
o &, ¢
(@] 10 20 (0] 10 20 [@] 10 20
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Forward Problem: DAEs
-

Table: Numerical results of the proposed method for solving Example 1 on time
interval [0,20], with N number of collocation points.

MSEtest
N X1 X2 X3
20 133x10°° 482x10°8 473x10°7
40 138x1078 1.39x10"1° 3.14x10°°
60 4.82x10710 354x10-12 238x10°10

41/59



Overview Learning solution of PDEs Learning solution of DAEs Parameter estimation Conclusion
0000000000000 0000000080000 0000000000
000000000000

Forward Problem: DAEs

BVPs in DAEs

Consider linear time varying boundary value problem in DAEs
of the following from

Z(t)X(t) = A)X(t) + g(t), t € [tin, ],
FX (tin) + HX (t) = Xo,

42159
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Forward Problem: DAEs

Primal
1 m "Y m
. T oTe
minimize =N wiwg 4+ =
immze 5> wiwis 3 el
subjectto  ZW'W=A[W'®+D]+G+E,
FIWTo(t) + D.a] + HW T o(tn) + D.1] = Xo
Dual

K | U | —Fa G
ut | A M 8 | =1 X%Xo
—'F:)I r11- ()n1><rn [) l ()
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Forward Problem: DAEs

The model in the dual form becomes:

m N-1

ZZ@. <Zv£ )IVIK](t, t) — avg(ti)[ng](ti’t)>+
v=1 i=2

> B <[V8K](t1,t)fve - [V8K](tN,t)h\,g>+

v=1

by, £=1,....m

Here [V3K](t,s) and [VIK](t,s) are defined as previously.
o) and [, are Lagrange multipliers.
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Forward Problem: DAEs

Example 2 Consider the linear time varying index one boundary
value problem of DAE given by:

Z(t)X(t) = A(t)X(t) + g(t), t € [0,1],

1 -t t2 -1 (t+1) —(t2+2t)
whereZ =101 -t|,A=]| 0 1 1-t with
00 O 0 0 -1
g(t) = [0,0,sin(t)]" and boundary conditions

x1(0) =1, X2(1) —x3(1) =e.
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Forward Problem: DAEs

The exact solution is given by
x1(t) = e ' +tel, xp(t) =e' +tsin(t), xa(t) = sin(t).

The problem is solved on domaint € [0, 1] using N = 10.

—— Exact solution
3.5[]- - - Approximate solution

2: ngt) goe
» >(<v) 0.4

—— Exact solution
- - - Approximate solution
o 0.2 0.4 0.6 0.8 1 o 0.2 0.4 0.6 0.8 1

t t
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Parameter estimation Conclusion
Inverse Problem: ODEs
Problem Statement
We are given a dynamical system in state-space form
X(t) = F(t,X(t),0), (10)

The vector § denotes unknown model parameters which can be
either constant or time varying.
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Inverse Problem: ODEs

LSSVM Constraints
Core ODE q
Model DDE
Goal

In order to estimate the unknown parameters, the state variable
X (t) is observed at N time instants {t;}),, so that we have

Y(ti) :X(ti)+Ei, i=1,...,N,

where {E;}\\, are independent measurement errors with zero
mean.

48/59



Parameter estimation
0800000000

Inverse Problem: ODEs

LSSVM Constraints
Core ODE q
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mean.
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Inverse Problem: ODEs
Estimating the time invariant parameters
First Step
@ R(t) =w] o(t) + by = N afK(ti,t) +bg, £=1,...,m,
@ S%u(t) =w]g(t) = Tl afe(t)T¢(t) = TILy afKs(t 1), £=1,..,m.
Second Step
A 1 -
minimize = ZI: =13
. _ d & i
subjectto = = aX(ti) —F(,X(t),0), i=1,..,N.
If the system is linear in the parameters = a convex optimization problem.
o
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Inverse Problem: ODEs

Estimating the time varying parameter

Consider the first order dynamical system of the form:

?:T>t( +0()F(x(1)) = g(t), x(0) =Xo (11)

f is an arbitrary known function and 6(t) is the time varying
parameter of the system and is considered to be unknown.

The state x(t) has been measured at certain time instants {t;}, i.e.
Vi = X(ti) +e,i=1,..,N

where g;'s are i.i.d. random errors with zero mean and constant vari-
ance.
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Inverse Problem: ODEs

We assume an explicit LS-SVM model
é(t) = VTl/J(t) + by

as an approximation for the parameter 6(t).

We estimate the time-varying coefficient 6(t) by solving the following optimization prob-
lem:

i =Ty +2eTe
v,bg,e 2 2
subjectto SR (t) + [va(ti) 4 be] FR(1)) = (12)

@(ti) +ej, fori =1,...,M.
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Inverse Problem: ODEs

The solution to (12) can be obtained by solving the following dual problem [see?]

o ~ dg
DOD + Iu /v | f(%) o | _[8-% -
(T | o be 0

8Siamak Mehrkanoon, Tillmann Falck, and Johan AK Suykens. “Parameter
estimation for time varying dynamical systems using least squares support vector
machines”. In: IFAC Proceedings Volumes 45.16 (2012), pp. 1300-1305.

The model in the dual form becomes
. M
() =vTo(t) + by = > aif (R)K (8, t) + bg (14)
i=1

where K is the kernel function.
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Inverse Problem: ODEs

Example 1. Consider the following nonlinear scalar dynamical

system,

dx cos(t) 2y _

& s 12 cos(x(t)°) = cos(t), x(0)=1
The aim is to estimate the time varying coefficient
o(t) = % from measured data. For collecting the data:

@ Matlab built-in solver ode45 over the domain of [0, 20] with
sampling interval Tg = 0.1.

@ Then we have artificially introduced random noise (Gaussian
white noise with noise level n) to the true solution.



Inverse Problem: ODEs

Noise Level=0

Time

Figure: Estimation of time varying parameter of dynamical system formulated in

Example 2.

Table: The influence of noise level and number of observed data on the parameter
estimates. Parameter 7 is the std of the noise and N is the number of observed data.

Parameter estimation

0000000800

Noise Level=0.05

N n MSE

100 0.0 8.34 x 10~°
0.05 3.51x 103

200 0.0 3.06 x 108
0.05 2.01x 103
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Inverse Problem: ODEs

Example 2. Consider the forced Van der Pol’'s Oscillator:

)-(l = X2, Xl(o) = -5,

%2 = 0(1 — xZ)xa + 9x1 = sin(50t), xp(0) = —1
where 6 is the unknown parameter. In our study 6 is taken as
1.1.

@ The true solution is prepared by numerically integrating the
equation on domain [0, 10].

@ Then the model observation data, i.e y(t), is constructed
using sampling interval Ts = 0.01 as follows:

Yk = X1(tk) + €.
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00 000000000 e

--- Estimated trajectory
—— True trajectory /

Xz(t)

% -4 -2 o 2 a —6 -a -2 o 2 a

Xz(t)

~-- Estimated Output— True Output] [--- Estimated Output— True Outpu]
ts]’ tls)’

Figure: Estimation of the parameter 6 for the forced nonlinear Van der

Pol equation from data with observational noise generated using

n = 10.
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Conclusion

Conclusion & Future works

@ Overview of LS-SVM based models for learning PDEs and DAEs
solutions.

@ Overview of LS-SVM based model for solving inverse problem in
ODEs.

@ Exploring and designing new deep architectures.

@ Higher dimensional PDEs.

Demo

@ Matlab demos:
https://sites. googl e. conl vi ew si amak- mehr kanoon/ code- dat a
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