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Partial differential equations permeate our world
They lay at the heart of predictive modeling
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Partial differential equations permeate our world
They lay at the heart of predictive modeling

N Fxu, Vo, .. ]

— = x,u, vV.u, ...
ot .
Physical Law

The rate of change of a quantity over time is related to

the local value of that quantity and how it changes in space.

Goal
Solve for the quantity over time and space given
its initial and boundary conditions.



Partial differential equations permeate our world
They lay at the heart of predictive modeling
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Modern numerical methods are impressive

Simulation of dynamic stall for a Blackhawk helicopter rotor in forward flight. (credit: NASA ARC).
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Simulation of ignition in a box. (credit: SpaceX in collaboration with Marc Massot of CMAP)



Challenges remain for many problems

Solution accuracy depends on mesh alignment and resolution

Water flow around circular pillar
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Friedemann Kemm, App. Math. and Comp. 320:596-613, 2018.
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Challenges remain for many problems

Solution accuracy depends on mesh alignment and resolution

Water flow around circular pillar

carbuncle é’@;\ / unphysical /
phenomenon \‘ \ steady-state \

time

Mesh must be adapted to align with critical flow structures to maintain accuracy.

Friedemann Kemm, App. Math. and Comp. 320:596-613, 2018.



Challenges remain for many problems

Mesh size (and cost) scales exponentially with dimension

Number of cells = n¢ CPU Cost o« Number of Cells
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Challenges remain for many problems

Mesh size (and cost) scales exponentially with dimension

Number of cells = n¢ CPU Cost o« Number of Cells
g Cost
n
A A

e B | el

/ \ 4

A/n' >
< > Dimension

n

Curse of dimensionality: requires multi-resolution, high-order, or other schemes to
solve complex problems in a reasonable amount of time.



Can we remove the mesh completely?



Can we remove the mesh completely?

Conventional Discretization Methods

Problem converted to large system
of ordinary differential equations
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Can we remove the mesh completely?

Conventional Discretization Methods Deep Learning Approach

Problem converted to large system Problem converted to optimization
of ordinary differential equations of neural network parameters.
ou, _ ou(0)
i F,,...,uy) min )’ — F[u(0)]
ot 0 -y ot



Networks
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(Artificial) Neural Networks

Frank Rosenblatt developed first perceptron
iIn 1958 to model the decision making of a fly.

F. Rosenblatt, Psychological Review 65(6):386-408, 1958.
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(Artificial) Neural Networks

Frank Rosenblatt developed first perceptron
in 1958 to model the decision making of a fly.
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Multilayer Neural Networks

Input
layer

Hidden Output
layer layer

Credit: https://github.com/PetarV-
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Multilayer Neural Networks

Input Hidden Output
layer layer layer

Credit: https://github.com/PetarV-

Universal Approximation Theorem: A standard multilayer feedforward network with
a locally bounded piecewise continuous activation function can approximate any
continuous function to any degree of accuracy...

Leshno et al., Stern School of Business Working Paper Series STERN 1S-92-13, 1992. 11



Modern networks leverage complex structure

Automatic image captioning

Vision Language
Deep CNN Generating RNN
.\ q A group of people
/.\ \ shopping at an outdoor
.\ /. market.
—> o —_—> —
o e
~ There are many
/. vegetables at the
® fruit stand.

A dog is standing on a hardwood floor. A stop sign is on a road with a
mountain in the background

—— By
=
= =
Y ‘

A little girl sitting on a bed with a teddy bear. A group of people sitting on a boat in the water. A giraffe standing in a forest with
trees in the background.

e e

LeCun, Bengio, Hinton. Nature 25:436-444, 2015. 12



Learning

A network is said to learn if its weights are optimized against some objective
function. In practice, this typically means that a cost function is minimized.

Type of Learning

Supervised
Learning

Develop predictive
model based on both
input and output data

Machine
Learning

Unsupervised
Learning

Categories of Algorithms

Discover an internal
representation from
input data only

Support Discriminant
g - - Nearest
. Naive Bayes

Classification MZf;ﬁt.ﬁZ . Analysis y Neighbor

Linear e

- - SVR, Ensemble Decision Neural
Regression Reg(;ishzlon GPR Methods Trees Networks

kMeans, kmedoids Hierarchical Gaussian
Clustering Fuzzy C-Means Mixture

Hidden Markov

Networks Model

Neural ]
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Learning

A network is said to learn if its weights are optimized against some objective
function. In practice, this typically means that a cost function is minimized.

Type of Learning

Supervised
Learning

Develop predictive
model based on both
input and output data

Machine
Learning

Unsupervised
Learning

Categories of Algorithms

Discover an internal
representation from
input data only

Support Discriminant
-g- - - Nearest
. Naive Bayes
Classification M\;ict:‘tlﬁz . Analysis y Neighbor
Linear s
- : SVR, Ensemble Decision Neural
Regresswn Reg(;ishzlon GPR Methods Trees Networks
kMeans, kmedoids Hierarchical Gaussian
Clustering Fuzzy C-Means Mixture
Neural Hidden Markov
Networks Model

Deep Learning refers to training an ANN with many hidden layers,

the network is deep.
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(Stochastic) Gradient Descent
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Given training data: D,={Xp, YD, ... (X Y}
Define neural network: fX;:0)~Y
Define a cost function: F==Yl==) Hf(Xi; 0) - Y,
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Minimize cost function: 0* = argmin &
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Algorithm:

1. Initialize weights 0° = N (0, p)

2. Update based on gradient Ot =0k - )V, &
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(Stochastic) Gradient Descent

Given training data: D,={Xp, YD, ... (X Y}
Define neural network: fX;:0)~Y

. . 1 ¢ 1 ¢ 2
Define a cost function: F==Yl==) Hf(Xi; 0) - Y,

A A 2
Minimize cost function: 0* = argmin &
0

Algorithm:

1. Initialize weights 0° = N (0, p)

2. Update based on gradient Ot =0k - )V, &

3. Repeat until convergence lim 0" = 0%

Convergence is guaranteed if cost function is convex. (and normally if it isn’t)

14



(Stochastic) Gradient Descent

Given training data:

2. ={X, Yy, ... ,X,,Y,))

Define neural network: fX;:0)~Y
1 n
Define a cost function: L = —Z R Z Hf(X" 0)—Y ’
n = |=7| 2
Minimize cost function: 0* = argmin &
0
Algorithm:
1. Initialize weights = (0, )
2. Update based on gradient Ot =0k - )V, &
3. Repeat until convergence lim 0" = 0%

Convergence is guaranteed if cost function is convex. (and normally if it isn’t)



How do we get the gradient?

Consider the computational graph for the simple function

f — maX(Hlxl + (92)62, X3)

®o-00c

forward
evaluation
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How do we get the gradient?

Consider the computational graph for the simple function

f — maX(lel + (92)62, X3)

@ Gradient calculation
—> -— — through recursive uses of
the chain rule.

forward
evaluation

backprop

Modern deep learning libraries implement NNs as computational graphs and provide
functions to compute their gradients analytically with respect to any node in the
graph, using back-propagation.
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So how do we learn equations?
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So how do we learn equations?

Consider the following general nonlinear PDE:

0, u,Vu,Veu,...) =0, Plus boundary
u=ulx), x¢e&L conditions...

Approximate the solution of the PDE with an ANN (still untrained)
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Boundary Conditions

d€2

2 approaches in general...

Sux)] =0, xel

Glux)] = gx), xe€dQ
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Boundary Conditions

Sux)] =0, xel

Glux)] = gx), xe€dQ

dQ
2 approaches in general...
e ., o Constrained optimization
. u(x) = N(x; 0)
LI ZO) = Y NFA@OE+ Y, IS (x5 0)] — g3
* e HEQ xEdQ

Unconstrained optimization

ux) =Ax) + Bx) A (x;0), G[AX)] = gx), B(x) =0, x € dQ

Z0O)= ) IFIA® + BN (x: 0]l

x,€Q

17



Discrete Time Methods
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Discrete Time Methods

Consider an unsteady PDE of the form

du+Ful=0, (tx) €[0,T]xQeR?
u(0,x) = g(x), x € Q,
u(t,x) = h(x), (,x) €[0,7T]xdC
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Discrete Time Methods

Consider an unsteady PDE of the form

ou+Ful =0, (x)€[0,T]xQeR?
u(0,x) = g(x), x € Q, s
u(t,x) = h(x), (,x) €[0,7T]xdC

0.75
0.50
0.25
0.00
—0.25
—0.50
—0.75

t=0.90

v

v

1
—1

General formula for Runge-Kutta time integration o0
1.0
q 05 - 0.5
u"ix) = u'(x) — At ) apFlu"a)] .
+< 0.0 A < 0.0
j=1 - —0.5
—0.5
1 q + —1.0 4 , , ,
W (%) = u'(x) — Atz b [u™(x)] M 1
.]=1 X Data == Exact

Put a neural network prior on discrete solutions

[ (%), ..., u" (X)), " (x)] = ¥ (x;0)

Inserting network into RK scheme yields desired minimization
problem based on known solution at time level n

Enables very high-order schemes!

M. Raissi et al. arXiv:1711.10561v1, 2017.
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Proven on simple problems

Burgers equation with smooth opposing waves

up + uuy — (0.01/mug, =0, xe|-1,1], te€]|0,1]
u(0, x) = — sin(mx),
u(t,—1) = u(t,1) = 0.

tr=0 025 05

1.0
1.00
Continuous , constrained 0.75
0.8 0i 10000
-------- T 0.50 -
, 100
06 0.25
" = 0.00 1
0.4 —0.25 -
—=— DL Solution
09071 —— Exact*
0.2
—0.75 -
—1.00 -
OO I I I I I I
~1.0 —0.5 0.0 0.5 1.0 ~1.0 —0.5 0.0 0.5 1.0
D¢ X

*M. Raissi et al. arXiv:1711.10561v1,2017.



Probing for weakness on hyperbolic systems

Entropic solution of inviscid Burgers equation

1
ou+ deuz =vo . u, u=u(ltx), Lxe€R, XR, v—->0

u(0,x) = u(x)

20



Probing for weakness on hyperbolic systems

Entropic solution of inviscid Burgers equation

1
ou+ deuz =vo . u, u=u(ltx), Lxe€R, XR, v—->0

u(0,x) = u(x)

Shock Expansion Small Hat
3 _7 3 . .
’ _/ 2 -
) ) 77
0 0 |
1 1 - 1
&5 &5 =B
s = s
0 0 0
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Representation of solutions with ANNs

Parametric regression study with dense, feed-forward networks

Hidden Layers

Best Solution (5x10)
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5 6.2 6.06.0 6.0 -
6.06.3 6.1 6.0
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5.4 5.7 5.7 57575757
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Best Solution (25x4)

Hidden Layers

N &~ O

20
18
16
14
12
10

=
e}
1

o
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1
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1

e
W
1
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1

0.0
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4.04.6 4.2 3.9 3.9 3.6 3.4 3.5
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4.14.54245424.03.73.5
4848444242404.144

4.24.6454.746434.044
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4.6 4.8 4.7
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Solutions with 7 hidden layers of 20 nodes

v=>_0 v = 0.001 v =0.01

—— e 25 unique solutions

e 3 viscosities

e Solution envelopes

Shock Solution
o
(@)
S

d

- F
s
\

‘

0.00 ™ \
\Il

training extrapolated
domain solution

* Good generalization
outside of training
domain

Expansion Solution

* More accurate/
certain solution with
Increasing viscosity

=
o
S

o
~
(@)}

Small Hat Solution
o o
) 33
=)

<
o
S




Projected loss surtfaces provide a clue

v=20 v = 0.001 v =0.01

Shock

Expansion

Small Hat

Li, Xu, Taylor, Studer, Goldstein. arXiv:1712.09913 [cs.LG], 2018.
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Treating viscosity as another dimension

v =0.01

1.00

Shock Solution

0.00

Expansion Solution
o
(@)
=)

1.00 -

Small Hat Solution

0.00

0.75

0.50

0.25 A

0.75

0.50

0.25 A

v = 0.001

training extrapolated

domain solution

vy

e Better generalization
for low viscosity

e Smaller variance

 Closer to entropic
solution for inviscid
case

* Possible that network

expressibility
reached
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Concluding Remarks

Introduction to deep learning techniques for solving PDEs

- ANNs may help us overcome issues related to classical discretization schemes
* Break free from the curse of dimensionality

- Deep NNs have proven to be very successful at representing complex functions
- Inserting a NN in the PDE and BCs with colocation yields optimization problem

- Variety of ways to treat boundary conditions, time integration, sampling, ...

Irregular/discontinuous solutions are difficult to train with current techniques

- Viscous Burgers equation is easier to solve with increasing viscosity (dissipation)
* Inviscid solutions have more variance and lower accuracy

- Generalizing the solution on a range of viscosities seems to improve the situation

Promising, but there is a lot of work left to be done!

 Next talks look at the approximation capacity of DNNs as well as an alternative
method based on LS-SVM, stick around!

25



Solving Partial Differential Equations with Deep Learning
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