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Spontaneous periodic orbits of the Navier-Stokes equations

I Consider the Navier-Stokes equations on the torus{
∂tu + (u · ∇)u − ν∆u +∇p = f on R× T3

∇ · u = 0 on R× T3

with a Taylor-Green type of forcing

f =


−1

2 sin(x) cos(y)
1
2 cos(x) sin(y)

0

 .

I In this case, there exists a steady state with an explicit formula:

u∗ = 1
2ν f , p∗ = 1

64ν2 (cos(2x) + cos(2y)).

I This steady state is stable if the fluid is viscous enough. When ν de-
creases, it becomes unstable and the dynamics becomes more and more
complex.
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A few references

I In the presence of a periodic external influence, periodic motions in fluids
have been studied extensively, and are relatively well understood [Serrin
’59; Kaniel & Shinbrot ’67; Takeshita ’69; Maremonti ’91; Kozono &
Nakao ’96; Yamazaki ’00; Galdi & Sohr ’04; etc.].

I In the absence of a periodic external influence, periodic motions in fluids
are much harder to study, and the existing results are typically of pertur-
bative nature [Iudovich ’71; Iooss ’72; Joseph & Sattinger ’72; Melcher,
Schneider & Uecker ’08; Galdi ’16].
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A numerical periodic solution

Contour lines of the vertical vortic-
ity ω(z), for ν = 0.286.

Can we say anything rigorous about this specific “solution”?
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A general problem

I Assume that we are given a function F defined on a Banach space,
together with an approximate zero x̄ of F :

F(x̄) ≈ 0.

We want to prove there exists a zero of F in a neighborhood of x̄

Find r > 0 such that, F(x) = 0 for some x satisfying ‖x − x̄‖ ≤ r .

I We want an a posteriori error bound, but without knowing a priori that
the true zero exists.
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Main ingredients

What do we need, to get a theorem out of a numerical simulation?

A control of discretization/truncation errors
I Mathematical estimates

Combine everything into a fixed point theorem

Maxime Breden Navier-Stokes PAO CANUM 2020



Main ingredients

What do we need, to get a theorem out of a numerical simulation?

A good numerical solution

A control of discretization/truncation errors
I Mathematical estimates

Combine everything into a fixed point theorem

Maxime Breden Navier-Stokes PAO CANUM 2020



Main ingredients

What do we need, to get a theorem out of a numerical simulation?

A good numerical solution

A control of discretization/truncation errors
I Mathematical estimates

Combine everything into a fixed point theorem

Maxime Breden Navier-Stokes PAO CANUM 2020



Main ingredients

What do we need, to get a theorem out of a numerical simulation?

A good numerical solution

A control of discretization/truncation errors
I Mathematical estimates

A control of rounding errors (only for some a posteriori estimates)
I Interval arithmetic

Combine everything into a fixed point theorem

Maxime Breden Navier-Stokes PAO CANUM 2020



Main ingredients

What do we need, to get a theorem out of a numerical simulation?

A good numerical solution

A control of discretization/truncation errors
I Mathematical estimates

A control of rounding errors (only for some a posteriori estimates)
I Interval arithmetic

Combine everything into a fixed point theorem

Maxime Breden Navier-Stokes PAO CANUM 2020



Main ingredients

What do we need, to get a theorem out of a numerical simulation?

A good numerical solution

A control of discretization/truncation errors
I Mathematical estimates

A control of rounding errors (only for some a posteriori estimates)
I Interval arithmetic

Combine everything into a fixed point theorem

Maxime Breden Navier-Stokes PAO CANUM 2020



A Newton-Kantorovich type of theorem

Let X ,Y be Banach spaces, F : X → Y a C1 function. Let x̄ ∈ X and
assume we have the following estimates:

‖F (x̄)‖Y ≤ ε∥∥∥DF (x̄)−1
∥∥∥
L(Y,X )

≤ κ

‖DF (x)− DF (x̄)‖L(X ,Y) ≤ γ (‖x − x̄‖X ) .

If there exists r > 0 such that
κε+ κγ(r)r < r ,

then F has a unique zero x satisfying ‖x − x̄‖X ≤ r .

Proof.
The operator T : x 7→ x − DF (x̄)−1F (x) is a contraction on B(x̄ , r).
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A Newton-Kantorovich type of theorem, version 2

Let X ,Y be Banach spaces, F : X → Y a C1 function. Let x̄ ∈ X ,
A ∈ L(Y,X ) injective, and assume we have the following estimates:

‖F (x̄)‖Y ≤ ε
‖A‖L(Y,X ) ≤ κ

‖I − ADF (x̄)‖L(X ,X ) ≤ δ < 1
‖DF (x)− DF (x̄)‖L(X ,Y) ≤ γ (‖x − x̄‖X ) .

If there exists r > 0 such that
κε+ (δ + κγ(r)) r < r ,

then F has a unique zero x satisfying ‖x − x̄‖X ≤ r .

Proof.
The operator T : x 7→ x − AF (x) is a contraction on B(x̄ , r).
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Back to the Navier-Stokes equations

I We want to use this procedure to study periodic orbits of the Navier-
Stokes equations.

I The first step is to find an appropriate F = 0 formulation, on a well-
chosen Banach space.
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Reformulation using the vorticity

{
∂tu + (u · ∇)u − ν∆u +∇p = f
∇ · u = 0

I We consider ω = ∇× u, g = ∇× f , and apply the curl to NS{
∂tω + (u · ∇)ω − (ω · ∇) u − ν∆ω = g
∇ · u = 0

I Thanks to the continuity equation, we can express u as a function of ω

u = −∆−1∇× ω,

which yields

∂tω − ((∆−1∇× ω) · ∇)ω + (ω · ∇) (∆−1∇× ω)− ν∆ω = g .

Maxime Breden Navier-Stokes PAO CANUM 2020



Reformulation using the vorticity

{
∂tu + (u · ∇)u − ν∆u +∇p = f
∇ · u = 0

I We consider ω = ∇× u, g = ∇× f , and apply the curl to NS{
∂tω + (u · ∇)ω − (ω · ∇) u − ν∆ω = g
∇ · u = 0

I Thanks to the continuity equation, we can express u as a function of ω

u = −∆−1∇× ω,

which yields

∂tω − ((∆−1∇× ω) · ∇)ω + (ω · ∇) (∆−1∇× ω)− ν∆ω = g .

Maxime Breden Navier-Stokes PAO CANUM 2020



Reformulation using the vorticity

{
∂tu + (u · ∇)u − ν∆u +∇p = f
∇ · u = 0

I We consider ω = ∇× u, g = ∇× f , and apply the curl to NS{
∂tω + (u · ∇)ω − (ω · ∇) u − ν∆ω = g
∇ · u = 0

I Thanks to the continuity equation, we can express u as a function of ω

u = −∆−1∇× ω,

which yields

∂tω − ((∆−1∇× ω) · ∇)ω + (ω · ∇) (∆−1∇× ω)− ν∆ω = g .

Maxime Breden Navier-Stokes PAO CANUM 2020



Looking for periodic solutions

I We are looking for periodic solutions of the vorticity equation

∂tω − ν∆ω − ((∆−1∇× ω) · ∇)ω + (ω · ∇) (∆−1∇× ω) = g .

I We call Ω the (unknown) frequency of the solution, and write

ω(t, x) =
∑

n=(nt ,ñ)∈Z4

ωnei(nt Ωt+ñ·x)

with ñ = (nx , ny , nz) the space indices and nt the time index.

I Denoting W =
(

Ω, (ωn)n∈Z4

)
and Fourier-transforming the vorticity

equation, we obtain the problem F (W ) = (Fn(W ))n∈Z4 = 0 with

Fn(W ) =
(
iΩnt + νñ2

)
ωn + nonlinear terms− gn

I We add a phase condition to isolate the solution.
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Banach space and first estimates

W =
(

Ω, (ωn)n∈Z4

)
, Fn(W ) =

(
iΩnt + νñ2

)
ωn + nonlinear terms− gn

I We use a weighted `1 space:

‖W ‖η := |Ω|+
3∑

l=1

∑
n∈Z4

∣∣∣ω(l)
n

∣∣∣ η|n|1 , η > 1.

Corresponds to smooth (analytic) functions
Banach algebra (for the components of ω)

I We consider an approximate solution of the form W̄ =
(

Ω̄, (ω̄n)n∈J

)
J is taken as a finite subset of Z4

Hence, Fn(W̄ ) is nonzero for only finitely many n, and
∥∥F (W̄ )

∥∥ can be
computed explicitly (using interval arithmetic)

I The computation of γ satisfying∥∥∥DF (W )− DF (W̄ )
∥∥∥ ≤ γ (‖W − W̄ ‖

)
is rather straightforward (Banach algebra property).
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The key estimate :
∥∥∥I − ADF (W̄ )

∥∥∥ < 1

I The asymptotically dominant terms in DF (W̄ ) are given by the eigen-
values of the heat operator:

λn = iΩ̄nt + ν(n2
x + n2

y + n2
z ).

I We therefore take A as “finite block + diagonal tail”, with 1
λn

terms in
the tail.

I Roughly speaking, we fix N and keep in the finite block of A only the
modes n such that |λn| ≤ N. The estimate which controls the quality of
the approximate inverse A is then of the form

∥∥∥I − ADF (W̄ )
∥∥∥ ≤

√
3
νN ‖ω̄‖ .

I In practice, it is crucial to reduce as much as possible the dimension
of the finite-dimensional space that we keep for the validation (which
drastically increases with N).
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DF (W̄ ) =

The eigenvalues of the heat operator: λn = iΩ̄nt + ν(n2
x + n2

y + n2
z )
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A :=

The inverse eigenvalues: λ−1
n =

(
iΩ̄nt + ν(n2

x + n2
y + n2

z )
)−1
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General strategy for choosing A

I Two criteria:
A must be a good enough approximate inverse of DF (x̄)
We must be able to bound ‖A‖ explicitly

I Assume the problem we want to solve is of the form
F (x) := Lx + N(x) = 0,

L an isomorphism, which we understand well enough,
L−1DN(x) compact.

I Using these assumptions, and
L−1DF (x̄) = L−1 (L + DN(x̄))

= I + L−1DN(x̄),
we see that (

L−1 + finite dim. pert.
)

︸ ︷︷ ︸
A

DF (x̄) ≈ I.

I The finite dimensional part can be obtained by inverting some finite
dimensional projection of DF (x̄).
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The key estimate :
∥∥∥I − ADF (W̄ )

∥∥∥ < 1

I The asymptotically dominant terms in DF (W̄ ) are given by the eigen-
values of the heat operator:

λn = iΩ̄nt + ν(n2
x + n2

y + n2
z ).

I We therefore take A as “finite block + diagonal tail”, with 1
λn

terms in
the tail.

I Roughly speaking, we fix some threshold m and keep in the finite block
of A only the modes n such that |λn| ≤ m.The estimate which controls
the quality of the approximate inverse A is then of the form

∥∥∥I − ADF (W̄ )
∥∥∥ ≤

√
3
νm ‖ω̄‖ .

I In practice, it is crucial to reduce as much as possible the dimension
of the finite-dimensional space that we keep for the validation (which
drastically increases with m).
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Taking advantage of the symmetries

I The periodic orbits that we find numerically seem to satisfy several sym-
metries.

I These symmetries can first be used to reduce the number of Fourier
modes used for the numerical simulations.

I By deriving a posteriori estimates that are compatible with the symme-
tries, we can also reduce the number of modes used for the validation
(and in particular to reduce the size of the finite block used in A).

I It turns out that the first branch of periodic orbits that we obtain after
the bifurcation do not depend on z (the solutions are essentially 2D),
which we also use to reduce the number of modes.
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A 2D validated solution

Contour lines of the vertical vortic-
ity ω(z). ν = 0.286.

Theorem [B., Lessard, van den Berg & van Veen ’21]
There exists a periodic solution of NS at a distance of at most 10−5 (in C0

norm) of this numerical solution.
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