

Floating point			
 Round off errors Order of floating point operations (dynamic execution / out of order) 	PROBLEMS WIT		
Hardware (failures of hardware change)			
 Number of processors, Networking Interconnect, devices and latency Difference between architectures (regular processors, vs accelerators,) – Hybrid computing. Processor implementation or design bugs Silent/soft errors 	TERE ARE SOME Technical Reason FOR HPC NUMERICA REPEATABILITY FAILURES		
Software			
 Operating systems, compilers, Libraries, dependencies and software stack versions Parallelization techniques Virtual machines and containers (rare in HPC > bare metal) 	IN ADDITION TO POSSIBLE INDIVIDUAL ERROR AND MISCONDUCTS		

WHY DO WE (ALSO) NEED REPEATABILITY ?

- If you don't have repeatability, how do you debug ?
 And how do we repeat/reproduce the events observed in simulations ? (confirmation of Higgs discovery, etc...)
- In Digital Computer Science we are used to deterministic computing and we expect « repeatability » - it was "granted" for many years. Computer debugging and program setup is based on repeatability!
- Even when we use pseudo-random numbers for stochastic models, we are running deterministic experiments since pseudo-random number generators have been carefully designed to be repeatable (though some computer scientist often use the "reproducible" term...).

RELIABILITY & HPC AT SCALE... More Frequent Silent Errors (a.k.a. Soft errors...)

- 1. Change the system state by 'external forces'
 - Alpha particles
 - Cosmic rays (High Energy Particles from space)
 - Thermal neutrons
 - Variation in voltage, temperature, etc.
- 2. They are at the origin of ECC...to avoids bits flips in memory cells
 - There is also a rising of soft errors in arithmetic units !!!
 - The more we size down the more this problem increases.
 - Chip manufacturers spend money and silicon space to avoid this kind of errors:
 - Samsung, GlobalFoundries, and IBM introduced the world's first 5nm chip with GAAFET transistors, GAA (gate-all-around) stacked nano-sheet transistors.
- 3. Soft errors are difficult to detect **and almost impossible to reproduce** Using spare time of Supercomputers to check ? Use of Fault injection framework...

8

Experimentation on "Mare Nostrum", a Top 500 supercomputer (#5 – 2006 – Now MN5 314 PF) We provide steps to encapsulate the minimum required files and provide a lightweight, easily updated subset of essential dependencies (12.4 GB instead of 5.2 TB for the entire LHCb repository) to facilitate portability and reproducibility) – Size Optimization : 99,8 % !!!

17

(A) A	A USE C Ri	ASE QUA	antum I cibility	DISSIPATIVE DYNAMICS (QDD) AND PERFORMANCE		
	Gfortran	ifort	ifx	DINH P.M., VINCENDON M., COPPENS F., SURAUD E., REINHARD P.G., "Quantum Dissipative Dynamics (QDD): A		
About 13%	Average time (in s.) gfortran	Average time (in s.) ifort	Average time (in s.) ifx	real-time real-space approach to far-off-equilibrium dynamics in finite electron systems". Computer Physics Communications, 2022, vol. 270, p. 108155. Simulation of electron dynamics under the influence of		
more efficient	969,48	1296,91	1597,03			
	FFTW	MKL		external electromagnetic fields		
	Average time (in s.) FFTW	Average time (in s.) MKL		Computer Physics Communications		
	1373,22	1195,72	About 13% m	real-time real-space approach to far-off- equilibrium dynamics in finite electron		

systems 🖈, 🛧

Using the default settings provided, we obtain superior performance of the **gfortran** compiler (vs ifort and ifx) as well as the **MKL** library for Fourier transform (vs FFTW)

				- Person	NP1/	192	E Sec.	è
(2) SOFTWARE D EXECUTION	EV. NIGH	TMARE – L JG MODE –	IFFERENT R Again Ho	esults bi w Do Yc	etween i du Debug	NORMAL G ?!	
	1	Option: decrease	e the default level	of optimization (gfo	rtran et ifort)			
Table 7. (which li one comp	compiler flags that are based on the compiler optimization of imits compiler optimizations most significantly), while every piler optimization option.	ptions listed in Table 5. The first cor other compiler flag is derived from th	mpiler flag is the strictest one he first one through changing only	Source : LI, R., LIU, L prospective for rep Geoscientific Model	., YANG, G., et al. B roducibility and rel Development, 201	itwise identical co iability of Earth sy 16, vol. 9, no 2, p. 7	mpiling setup: stem modeling. 31-748.	
No.	Compiler flag -ffloat-store -fno-unsafe-math-optimizations -fno-associativ math -fno-ex-limited-range	e-math -fno-reciprocal-math -fno-fi	nite-math-only -fno-rounding-	Table 6. Intel compiler flags that are (which limits compiler optimization: one compiler ontimization option.	based on the compiler optimization s most significantly), while every o	on options given in Table 3. The fi ther compiler flag is derived from	rst compiler flag is the strictest one the first one through changing only	1
2	-fno-unsafe-math-optimizations -fno-associative-math -fno- limited-range	reciprocal-math -fno-finite-math-onl	ly -fno-rounding-math -fno-cx-		o. Compiler flag		_	
3	-ffloat-store -funsafe-math-optimizations -fno-associative-m -fno-cx-limited-range	ath -fno-reciprocal-math -fno-finite-	math-only -fno-rounding-math		-fn-model strict -fn-speculatio	on=strict -mp1 -no-vec -no-simd	,	
4	-ffloat-store -fno-unsafe-math-optimizations -fassociative-m -fno-cx-limited-range	ath -fno-reciprocal-math -fno-finite-	math-only -fno-rounding-math	3	 -fp-model fast -fp-speculation -fp-model source -fp-speculation 	n=strict -mp1 -no-vec -no-simd tion=strict -mp1 -no-vec -no-simd	•	
5	-ffloat-store -fno-unsafe-math-optimizations -fno-associativ -fno-cx-limited-range	e-math -freciprocal-math -fno-finite-	math-only -fno-rounding-math	5	-fp-model strict -fp-speculati -fp-model strict -fp-speculati	on=safe -mp1 -no-vec -no-simd on=fast -mp1 -no-vec -no-simd		
6	-ffloat-store -fno-unsafe-math-optimizations -fno-associativ -fno-cx-limited-range	e-math -fno-reciprocal-math -ffinite-	math-only -fno-rounding-math	78	-fp-model strict -fp-speculation -fp-model strict -fp-speculation	on=strict -no-vec -no-simd on=strict -mp1 -vec -no-simd		
7	-ffloat-store -fno-unsafe-math-optimizations -fno-associativ -fno-cx-limited-range	e-math -fno-reciprocal-math -fno-fin	ite-math-only -frounding-math		-Ip-model strict -Ip-speculation	on=strict -mp1 -no-vec -simd	_	
8	-ffloat-store -fno-unsafe-math-optimizations -fno-association math -fcx-limited-range	e-math -fno-reciprocal-math -fno-fi	nite-math-only -fno-rounding-	Comparison wit	h the times rela	ated to the basi	c optimized	
Opti	mized performances	▶ 1373,22	1195,72	the QDD packag	e: 969,48	1296,91	1597,03	
(non	repetable)	FFTW	MKL	1.29	gfortran	ifort	lfx	ľ
New	nerformances	Average time (s)	Average time (s)	to	Average time	Average time	Average time	
L.54	to 1.63 times slower	2242,23	1841,84	2.17 times slower	2105,79	1950,59	2069,72	

COLLEAGUES OBTAINED BITWISE REPEATABLE RESULTS BETWEEN THE CPU AND GPU VERSIONS OF QDD ! (J. HÉRAUD)

CPU and GPU versions of QDD are both compiled with nvfortran

- Degrade the optimization of the executable code by changing the compilation options.
- We enforce compliance with the IEEE754 standard for floating-point operations.
- Disable hardware optimization to ensure strict use of physical resources (nofma, -O0 = no extended register use, no vectorization !!!)
- Decide the way to perform a sum on the CPU so that it respects the same order of calculations (on both CPU and GPU.
- Implement a math library to use the algorithms common in this program for both the GPU and the CPU.
 - We implemented the EXP, ERF, SIN, COS, DIVISION (for complex numbers), SQRT, and CBRT functions.
- Implementation of an FFT (Cooley-Tukey algorithm) common to both GPU and CPU.
- To enable reproducible code, a preprocessor variable is added at compile time.

Price to pay: the repeatable versions on GPU are 20 times slower...

(C) MACHINE LEARNING	Patterns	CellPress OPEN ACCESS	
AND REPRODUCIBILITY ISSUES	Article Leakage and the reproducibility crisis in machine-learning-based science		
Many factors were found:	Sayash Kapoori ^{3,2} and Arvind Narayanan ¹ ¹ Department of Computer Solence and Center for Information Technology Policy, Princeton University, Princ ² and contact ¹ Comegondence: sayabil Solence and University 201001 ¹ Comegondence: Sayabil So	94	
 Henderson et al. (2018) and Gundersen et al. (2022) give for instance overviews of reproducibility problems in deep reinforcement learning. Kapoor and Narayanan recently discussed the reproducibility crisis in machine learning-based science (2023) because of data leakage. 	BUDGENERATION BUDGENERATION BUDGENERATION		
 Pham et al. (2020) and Zhuang et al. (2022) cover source methods : Initialization of pseudorandom number generators (PRNGs) is 	es of variability in deep learning one of them.		
 Multi-threading is another, but there are several others. 			

 Only setting what is commonly named 'seeds' and thread parameters will not be enough to make the result of a neural network deterministic.

Advice: Be careful, the seeds are not the states of modern generators.

GPUS ? STILL A REAL CHALLENGE FOR REPEATABILITY ! O PyTorch **CUDA-induced randomness** Difference up to 5% Reproducibility over multiGPUs is impossible until randomness of For some Apps it could be significant threads is controled, ar (iv > cs > arXiv:2410.02806 sbelharbi Soufiane Belharbi Computer Science > Computer Vision and Pattern Recognition Did anyone succeed to reproduce their code when using multiGPUs? If yes, could you share how you did it? (general idea) ted on 19 Sep 2024 Investigating the Impact of Randomness on Reproducibility in My code is totally reproducible when using one single GPU (independently of the number of Computer Vision: A Study on Applications in Civil Engineering workers >= 0); however, it loses its reproducibility when using multiple GPUs. and Medicine Randomness on samples (such as transformations) is controlled (fixed using seeds for each Bahadır Eryılmaz, Osman Alperen Koraş, Jörg Schlötterer, Christin Seifert sample) Reproducibility is essential for scientific research. However, in computer vision, achieving consistent is challenging due to various factors. One influential, yet often unrecognized, factor is CUDA-induced I use torch.nn.DataParallel to wrap the model for multiGPUs. Who to blame for this non-reproducibility in the case of multiGPUs? atomic operations (I hope randomness. Despite CUDA's advantages for accelerating algorithm execution on GPUs, if not controlled Its behavior across multiple executions remains non-deterministic. While reproducibility issues in ML being researched, the implications of CUDA-induced randomness in application are yet to be understood. Our not)? investigation focuses on this randomness across one standard benchmark dataset and two real-world Pytorch reproducibility note 27 datasets in an isolated environment. Our results show that CUDA-induced randomness can account for differences up to 4.77% in performance scores. We find that managing this variability for reproducibility may I use Pytorch 1.0.0, Python 3.7.0. entail increased runtime or reduce performance, but that disadvantages are not as significant as reported in I use standard quide to fix the seeds of the modules: previous studies

28

10 Outsiprobability distribution Outcome 0.8 Outsiprobability distribution Outcome 0.6 Details 0.4 Total completion time 0.7 Compute resource		ion Outcome • Quasipi	come 00101 uasiprobability: 0.997 Completed: Mar 04, 2024 11:44 AM Fin queue: 4.98 Running: Mar 04, 2024 11:44 AM Ojskir runtime usage: Oms Completed: Mar 04, 2024 11:44 AM		Good and results or	Good and reproducible results on different simulators	
		Sent from: test-loopAmplif-Sqbits-grover Status: Completed Instance: ibm-q/open/main Program: sampler # of shots: 1024 # of circuits: 1		Ner N	Not so good resul		
Qu	uasiprobability distribution		Details			on real quantu machines	
		Ļ	2h 33m 6.1s Total completion time ibm_brisbane Compute resource	Sent from: 2 test-loopAmplif-Sqbits-grove Status: © Completed Instance: # of shots: 1024 # of clicuits: 1	Statust Timeline Created: Mar 02, 2024 12:05 PM In queue: 2h 31m 38.44 Running: Mar 02, 2024 2:36 PM Qlabit runtime usage: 37s Completed: Mar 02, 2024 2:38 PM	Here « Kyoto 127 qubi 3,6 % on Janua	

