
Jens-Dominik Müller
Queen Mary Univ. London

collaborators

Kumar Mohanamuraly (CERFACS)

Orest Mykhaskiv (QMUL)

Shenren Xu (NWPU)

Andrea Walther (UPB)

Mladen Banovic (UPB)

Salvatore Auriemma (OCCT)

Shape optimisation using AD
of complete CFD workflows
including CAD geometry

IPGP, Paris, 24 January 2019 7 December 2018

How to optimise with CFD?

• Stochastic or meta-modelling methods can be used with

standard simulation tools such as CFD, CAD to find optima.

• The computational cost is of the order of 100s or 1000s of

evaluations of the flow, depending on the size of number of

design variables.

• Gradient-based methods are much more effective in

finding the optimum, as only a 1-D path through the design

space needs to be traced.

• ”One-shot” methods can find the optimum in 5 times the

number of the cost of a function evaluation (CFD and

adjoint run).

• But we need gradients for all components of the

computational chain.

2 / 99

How to optimise with CFD?

• Stochastic or meta-modelling methods can be used with

standard simulation tools such as CFD, CAD to find optima.

• The computational cost is of the order of 100s or 1000s of

evaluations of the flow, depending on the size of number of

design variables.

• Gradient-based methods are much more effective in

finding the optimum, as only a 1-D path through the design

space needs to be traced.

• ”One-shot” methods can find the optimum in 5 times the

number of the cost of a function evaluation (CFD and

adjoint run).

• But we need gradients for all components of the

computational chain.

2 / 99

How to optimise with CFD?

• Stochastic or meta-modelling methods can be used with

standard simulation tools such as CFD, CAD to find optima.

• The computational cost is of the order of 100s or 1000s of

evaluations of the flow, depending on the size of number of

design variables.

• Gradient-based methods are much more effective in

finding the optimum, as only a 1-D path through the design

space needs to be traced.

• ”One-shot” methods can find the optimum in 5 times the

number of the cost of a function evaluation (CFD and

adjoint run).

• But we need gradients for all components of the

computational chain.

2 / 99

How to optimise with CFD?

• Stochastic or meta-modelling methods can be used with

standard simulation tools such as CFD, CAD to find optima.

• The computational cost is of the order of 100s or 1000s of

evaluations of the flow, depending on the size of number of

design variables.

• Gradient-based methods are much more effective in

finding the optimum, as only a 1-D path through the design

space needs to be traced.

• ”One-shot” methods can find the optimum in 5 times the

number of the cost of a function evaluation (CFD and

adjoint run).

• But we need gradients for all components of the

computational chain.

2 / 99

How to optimise with CFD?

• Stochastic or meta-modelling methods can be used with

standard simulation tools such as CFD, CAD to find optima.

• The computational cost is of the order of 100s or 1000s of

evaluations of the flow, depending on the size of number of

design variables.

• Gradient-based methods are much more effective in

finding the optimum, as only a 1-D path through the design

space needs to be traced.

• ”One-shot” methods can find the optimum in 5 times the

number of the cost of a function evaluation (CFD and

adjoint run).

• But we need gradients for all components of the

computational chain.

2 / 99

Simulation with Optimisation

We have

• Gradient-based methods, that are very efficient, but limited

in maturity and only for CFD.

• A wide range of parametrisations, but not a mature and

efficient optimisation workflow with CAD in the loop.

• Multi-disciplinary optimisation using black-box methods

without gradients.

We want

• gradient methods that offer sensitivities for

multi-disciplinary problems,

• automatic and multi-level parametrisations with sensitivities

and CAD,

• to be able to quantify uncertainties and include the in

robust optimisation.

3 / 99

Simulation with Optimisation

We have

• Gradient-based methods, that are very efficient, but limited

in maturity and only for CFD.

• A wide range of parametrisations, but not a mature and

efficient optimisation workflow with CAD in the loop.

• Multi-disciplinary optimisation using black-box methods

without gradients.

We want

• gradient methods that offer sensitivities for

multi-disciplinary problems,

• automatic and multi-level parametrisations with sensitivities

and CAD,

• to be able to quantify uncertainties and include the in

robust optimisation.

3 / 99

Other uses of sensitivity information

Mesh adaptation Goal-oriented mesh refinement: weigh a local

error estimate with the sensitivity of the objective.

Multi-level approaches that use adaptively select the

appropriate level of fidelity as the design space is

explored.

Model calibration Determine constants of a constitutive model

to best fit observations.

4 / 99

Automatic Differentiation

• If we have the source code of a program, we can

differentiate each statement exactly, and assemble the

complete derivative using the chain rule of calculus.

• This can be done systematically and automatically with a

software tool.

• If there are fewer outputs than inputs, can assemble the

transpose of the matrix of derivatives, the adjoint or

reverse mode, which is much more efficient.

5 / 99

Automatic Differentiation

• If we have the source code of a program, we can

differentiate each statement exactly, and assemble the

complete derivative using the chain rule of calculus.

• This can be done systematically and automatically with a

software tool.

• If there are fewer outputs than inputs, can assemble the

transpose of the matrix of derivatives, the adjoint or

reverse mode, which is much more efficient.

5 / 99

Automatic Differentiation

• If we have the source code of a program, we can

differentiate each statement exactly, and assemble the

complete derivative using the chain rule of calculus.

• This can be done systematically and automatically with a

software tool.

• If there are fewer outputs than inputs, can assemble the

transpose of the matrix of derivatives, the adjoint or

reverse mode, which is much more efficient.

5 / 99

Outline

The adjoint method

Introduction to Algorithmic Differentiation

STAMPS - Source-Transformation Adjoint Multi-Purpose Solver

CAD-based shape optimisation

Uncertainty Quantification

Summary

6 / 99

Outline

The adjoint method

Introduction to Algorithmic Differentiation

STAMPS - Source-Transformation Adjoint Multi-Purpose Solver

CAD-based shape optimisation

Uncertainty Quantification

Summary

6 / 99

Outline

The adjoint method

Introduction to Algorithmic Differentiation

STAMPS - Source-Transformation Adjoint Multi-Purpose Solver

CAD-based shape optimisation

Uncertainty Quantification

Summary

6 / 99

Outline

The adjoint method

Introduction to Algorithmic Differentiation

STAMPS - Source-Transformation Adjoint Multi-Purpose Solver

CAD-based shape optimisation

Uncertainty Quantification

Summary

6 / 99

Outline

The adjoint method

Introduction to Algorithmic Differentiation

STAMPS - Source-Transformation Adjoint Multi-Purpose Solver

CAD-based shape optimisation

Uncertainty Quantification

Summary

6 / 99

Outline

The adjoint method

Introduction to Algorithmic Differentiation

STAMPS - Source-Transformation Adjoint Multi-Purpose Solver

CAD-based shape optimisation

Uncertainty Quantification

Summary

6 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Outline

The adjoint method

Introduction to Algorithmic Differentiation

STAMPS - Source-Transformation Adjoint Multi-Purpose Solver

CAD-based shape optimisation

Uncertainty Quantification

Summary

7 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Physical meaning of the adjoint equations
The flow equations ask

the question: “Where does

a perturbation travel to?”

If we have N sticks, we

need to ask N times

What if we could ask the question:

“Where does a perturbation come

from?”

If we have M observation spots, we

need to ask M times

8 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Physical meaning of the adjoint equations
The flow equations ask

the question: “Where does

a perturbation travel to?”

If we have N sticks, we

need to ask N times

What if we could ask the question:

“Where does a perturbation come

from?”

If we have M observation spots, we

need to ask M times

8 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Physical meaning of the adjoint equations
The flow equations ask

the question: “Where does

a perturbation travel to?”

If we have N sticks, we

need to ask N times

What if we could ask the question:

“Where does a perturbation come

from?”

If we have M observation spots, we

need to ask M times

8 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Physical meaning of the adjoint equations
The flow equations ask

the question: “Where does

a perturbation travel to?”

If we have N sticks, we

need to ask N times

What if we could ask the question:

“Where does a perturbation come

from?”

If we have M observation spots, we

need to ask M times

8 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Physical meaning of the adjoint equations
The flow equations ask

the question: “Where does

a perturbation travel to?”

If we have N sticks, we

need to ask N times

What if we could ask the question:

“Where does a perturbation come

from?”

If we have M observation spots, we

need to ask M times

8 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Physical meaning of the adjoint equations
The flow equations ask

the question: “Where does

a perturbation travel to?”

If we have N sticks, we

need to ask N times

What if we could ask the question:

“Where does a perturbation come

from?”

If we have M observation spots, we

need to ask M times

8 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Physical meaning of the adjoint equations
The flow equations ask

the question: “Where does

a perturbation travel to?”

If we have N sticks, we

need to ask N times

What if we could ask the question:

“Where does a perturbation come

from?”

If we have M observation spots, we

need to ask M times

8 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Adjoint equations: the galactic view

Forward approach:

send a perturbation out

Reverse, adjoint approach:

trace back an incoming

perturbation

9 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Adjoint equations: the galactic view

Forward approach:

send a perturbation out

Reverse, adjoint approach:

trace back an incoming

perturbation

9 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Adjoint equations: the galactic view

Forward approach:

send a perturbation out

Reverse, adjoint approach:

trace back an incoming

perturbation

9 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Adjoint equations: the galactic view

Forward approach:

send a perturbation out

Reverse, adjoint approach:

trace back an incoming

perturbation

9 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Adjoint equations: the galactic view

Forward approach:

send a perturbation out

Reverse, adjoint approach:

trace back an incoming

perturbation

Use the Force!

9 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Adjoint equations: the galactic view

Forward approach:

send a perturbation out

Reverse, adjoint approach:

trace back an incoming

perturbation

Use the Force of the adjoint approach.

9 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Physical meaning of the adjoint

• The adjoint asks: where

does a perturbation

come from.

• This reverses all

time-like directions, or

’transposes’ the system

matrix.

• The adjoint solution

quantifies the effect on

the objective function

brought by a unit

source term in the

conservation equations.

Adjoint solution for objective function

of pressure in a point in supersonic

flow in a channel from left to right.

10 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Physical meaning of the adjoint

• The adjoint asks: where

does a perturbation

come from.

• This reverses all

time-like directions, or

’transposes’ the system

matrix.

• The adjoint solution

quantifies the effect on

the objective function

brought by a unit

source term in the

conservation equations.

Adjoint solution for objective function

of pressure in a point in supersonic

flow in a channel from left to right.

10 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Applications of adjoint solutions

Work out the product of adjoint and a source term arising from

e.g. normal surface displacement of each mesh point:

to reduce drag: red: push in, blue: pull out

11 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Applications of adjoint solutions

Work out the product of adjoint and a source term arising from

e.g. normal surface displacement of each mesh point:

to reduce drag: red: push in, blue: pull out

(Adjoint OpenFOAM, Courtesy of Volkswagen)
11 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Applications of adjoint solutions

Work out the product of adjoint and a source term arising from

e.g. normal surface displacement of each mesh point:

to reduce drag: red: push in, blue: pull out

(Adjoint OpenFOAM, Courtesy of Volkswagen)

11 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Finite difference derivative

Approximate the derivative as a forward difference

∂f (x)

∂xk
=

f (x + εδk)− f (x)

ε
+ O(ε)

with ε a small perturbation size and δk a vector of the same

length as x with zeros every where, but one in position k .

Similarly with a central difference

∂f (x)

∂xk
=

f (x + εδk)− f (x − εδk)

2ε
+ O(ε2)

Can we let ε→ 0 to make the truncation error vanish?

12 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Finite difference derivative

Approximate the derivative as a forward difference

∂f (x)

∂xk
=

f (x + εδk)− f (x)

ε
+ O(ε)

with ε a small perturbation size and δk a vector of the same

length as x with zeros every where, but one in position k .

Similarly with a central difference

∂f (x)

∂xk
=

f (x + εδk)− f (x − εδk)

2ε
+ O(ε2)

Can we let ε→ 0 to make the truncation error vanish?

12 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Finite difference derivative

Approximate the derivative as a forward difference

∂f (x)

∂xk
=

f (x + εδk)− f (x)

ε
+ O(ε)

with ε a small perturbation size and δk a vector of the same

length as x with zeros every where, but one in position k .

Similarly with a central difference

∂f (x)

∂xk
=

f (x + εδk)− f (x − εδk)

2ε
+ O(ε2)

Can we let ε→ 0 to make the truncation error vanish?

12 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Errors of finite differences

−20 −10 0
−12.

−8.

−4.

0.0

log ε

log
gradient

error

Forward difference error dependence on ε (CFD case)
13 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Finite differences for gradient computation

• Needs no knowledge of the equations or implementation,

can call f (x) as black-box.

• Needs careful setting of the stepsize ε:

• If ε is too large, there is a large truncation error.

• T.E. is ∝ O(ε) for forward or backward differences, one

additional evaluation per design variable.

• T.E. is ∝ O(ε2) for the central difference, but costs two

additional evaluations per design variable.

• If ε is too small, there is a large round-off error.

• For N design variables, we need to compute the objective

N times!

14 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Finite differences for gradient computation

• Needs no knowledge of the equations or implementation,

can call f (x) as black-box.

• Needs careful setting of the stepsize ε:

• If ε is too large, there is a large truncation error.

• T.E. is ∝ O(ε) for forward or backward differences, one

additional evaluation per design variable.

• T.E. is ∝ O(ε2) for the central difference, but costs two

additional evaluations per design variable.

• If ε is too small, there is a large round-off error.

• For N design variables, we need to compute the objective

N times!

14 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Finite differences for gradient computation

• Needs no knowledge of the equations or implementation,

can call f (x) as black-box.

• Needs careful setting of the stepsize ε:

• If ε is too large, there is a large truncation error.

• T.E. is ∝ O(ε) for forward or backward differences, one

additional evaluation per design variable.

• T.E. is ∝ O(ε2) for the central difference, but costs two

additional evaluations per design variable.

• If ε is too small, there is a large round-off error.

• For N design variables, we need to compute the objective

N times!

14 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Finite differences for gradient computation

• Needs no knowledge of the equations or implementation,

can call f (x) as black-box.

• Needs careful setting of the stepsize ε:

• If ε is too large, there is a large truncation error.

• T.E. is ∝ O(ε) for forward or backward differences, one

additional evaluation per design variable.

• T.E. is ∝ O(ε2) for the central difference, but costs two

additional evaluations per design variable.

• If ε is too small, there is a large round-off error.

• For N design variables, we need to compute the objective

N times!

14 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Finite differences for gradient computation

• Needs no knowledge of the equations or implementation,

can call f (x) as black-box.

• Needs careful setting of the stepsize ε:

• If ε is too large, there is a large truncation error.

• T.E. is ∝ O(ε) for forward or backward differences, one

additional evaluation per design variable.

• T.E. is ∝ O(ε2) for the central difference, but costs two

additional evaluations per design variable.

• If ε is too small, there is a large round-off error.

• For N design variables, we need to compute the objective

N times!

14 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Finite differences for gradient computation

• Needs no knowledge of the equations or implementation,

can call f (x) as black-box.

• Needs careful setting of the stepsize ε:

• If ε is too large, there is a large truncation error.

• T.E. is ∝ O(ε) for forward or backward differences, one

additional evaluation per design variable.

• T.E. is ∝ O(ε2) for the central difference, but costs two

additional evaluations per design variable.

• If ε is too small, there is a large round-off error.

• For N design variables, we need to compute the objective

N times!

14 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Finite differences for gradient computation

• Needs no knowledge of the equations or implementation,

can call f (x) as black-box.

• Needs careful setting of the stepsize ε:

• If ε is too large, there is a large truncation error.

• T.E. is ∝ O(ε) for forward or backward differences, one

additional evaluation per design variable.

• T.E. is ∝ O(ε2) for the central difference, but costs two

additional evaluations per design variable.

• If ε is too small, there is a large round-off error.

• For N design variables, we need to compute the objective

N times!

14 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Background on Adjoint PDE Sensitivities

Navier Stokes equations, fixed-point iteration to steady state:

R(U(α), α) = 0

Linearisation with respect to a design (control) variable α

∂R

∂U

∂U

∂α
= −∂R

∂α
,

Au = f .

Sensitivity of an objective function L with respect to α

dL

dα
=

∂L

∂α
+

∂L

∂U

∂U

∂α
=

∂L

∂α
+ gTu =

∂L

∂α
+ gT A−1f

∂L
∂α

is directly computable, gTu requires an expensive solve for

the perturbation flow field u for each αi .

15 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Background on Adjoint PDE Sensitivities

Navier Stokes equations, fixed-point iteration to steady state:

R(U(α), α) = 0

Linearisation with respect to a design (control) variable α

∂R

∂U

∂U

∂α
= −∂R

∂α
,

Au = f .

Sensitivity of an objective function L with respect to α

dL

dα
=

∂L

∂α
+

∂L

∂U

∂U

∂α
=

∂L

∂α
+ gTu =

∂L

∂α
+ gT A−1f

∂L
∂α

is directly computable, gTu requires an expensive solve for

the perturbation flow field u for each αi .

15 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Background on Adjoint PDE Sensitivities

Navier Stokes equations, fixed-point iteration to steady state:

R(U(α), α) = 0

Linearisation with respect to a design (control) variable α

∂R

∂U

∂U

∂α
= −∂R

∂α
,

Au = f .

Sensitivity of an objective function L with respect to α

dL

dα
=

∂L

∂α
+

∂L

∂U

∂U

∂α
=

∂L

∂α
+ gTu =

∂L

∂α
+ gT A−1f

∂L
∂α

is directly computable, gTu requires an expensive solve for

the perturbation flow field u for each αi .

15 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Background on Adjoint PDE Sensitivities

Navier Stokes equations, fixed-point iteration to steady state:

R(U(α), α) = 0

Linearisation with respect to a design (control) variable α

∂R

∂U

∂U

∂α
= −∂R

∂α
,

Au = f .

Sensitivity of an objective function L with respect to α

dL

dα
=

∂L

∂α
+

∂L

∂U

∂U

∂α
=

∂L

∂α
+ gTu =

∂L

∂α
+ gT A−1f

∂L
∂α

is directly computable, gTu requires an expensive solve for

the perturbation flow field u for each αi .

15 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Background on Adjoint PDE Sensitivities

Navier Stokes equations, fixed-point iteration to steady state:

R(U(α), α) = 0

Linearisation with respect to a design (control) variable α

∂R

∂U

∂U

∂α
= −∂R

∂α
,

Au = f .

Sensitivity of an objective function L with respect to α

dL

dα
=

∂L

∂α
+

∂L

∂U

∂U

∂α
=

∂L

∂α
+ gTu =

∂L

∂α
+ gT A−1f

∂L
∂α

is directly computable, gTu requires an expensive solve for

the perturbation flow field u for each αi .

15 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The Adjoint Equations

Regroup the terms in the sensitivity computation:

dL

dα
=

∂L

∂α
+ gT A−1f =

∂L

∂α
+
(

A−T g
)T

f =
∂L

∂α
+ vT f

leads to the definition of the adjoint equation:

A−T g = v , i.e. ATv = g
(
∂L

∂R

∂R

∂U

)T

=

(
∂R

∂U

)T ∂L

∂R

T

=

(
∂L

∂U

)T

.

From this follows the Adjoint Equivalence

gTu = (ATv)T u = vTAu = vTf

Using vTf , needs a single solve of ATv = g and the evaluation

of fi for each αi .

16 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The Adjoint Equations

Regroup the terms in the sensitivity computation:

dL

dα
=

∂L

∂α
+ gT A−1f =

∂L

∂α
+
(

A−T g
)T

f =
∂L

∂α
+ vT f

leads to the definition of the adjoint equation:

A−T g = v , i.e. ATv = g
(
∂L

∂R

∂R

∂U

)T

=

(
∂R

∂U

)T ∂L

∂R

T

=

(
∂L

∂U

)T

.

From this follows the Adjoint Equivalence

gTu = (ATv)T u = vTAu = vTf

Using vTf , needs a single solve of ATv = g and the evaluation

of fi for each αi .

16 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The Adjoint Equations

Regroup the terms in the sensitivity computation:

dL

dα
=

∂L

∂α
+ gT A−1f =

∂L

∂α
+
(

A−T g
)T

f =
∂L

∂α
+ vT f

leads to the definition of the adjoint equation:

A−T g = v , i.e. ATv = g
(
∂L

∂R

∂R

∂U

)T

=

(
∂R

∂U

)T ∂L

∂R

T

=

(
∂L

∂U

)T

.

From this follows the Adjoint Equivalence

gTu = (ATv)T u = vTAu = vTf

Using vTf , needs a single solve of ATv = g and the evaluation

of fi for each αi .

16 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The Adjoint Equations

Regroup the terms in the sensitivity computation:

dL

dα
=

∂L

∂α
+ gT A−1f =

∂L

∂α
+
(

A−T g
)T

f =
∂L

∂α
+ vT f

leads to the definition of the adjoint equation:

A−T g = v , i.e. ATv = g
(
∂L

∂R

∂R

∂U

)T

=

(
∂R

∂U

)T ∂L

∂R

T

=

(
∂L

∂U

)T

.

From this follows the Adjoint Equivalence

gTu = (ATv)T u = vTAu = vTf

Using vTf , needs a single solve of ATv = g and the evaluation

of fi for each αi .

16 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The Adjoint Equations

Regroup the terms in the sensitivity computation:

dL

dα
=

∂L

∂α
+ gT A−1f =

∂L

∂α
+
(

A−T g
)T

f =
∂L

∂α
+ vT f

leads to the definition of the adjoint equation:

A−T g = v , i.e. ATv = g
(
∂L

∂R

∂R

∂U

)T

=

(
∂R

∂U

)T ∂L

∂R

T

=

(
∂L

∂U

)T

.

From this follows the Adjoint Equivalence

gTu = (ATv)T u = vTAu = vTf

Using vTf , needs a single solve of ATv = g and the evaluation

of fi for each αi .

16 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The Adjoint Equations

Regroup the terms in the sensitivity computation:

dL

dα
=

∂L

∂α
+ gT A−1f =

∂L

∂α
+
(

A−T g
)T

f =
∂L

∂α
+ vT f

leads to the definition of the adjoint equation:

A−T g = v , i.e. ATv = g
(
∂L

∂R

∂R

∂U

)T

=

(
∂R

∂U

)T ∂L

∂R

T

=

(
∂L

∂U

)T

.

From this follows the Adjoint Equivalence

gTu = (ATv)T u = vTAu = vTf

Using vTf , needs a single solve of ATv = g and the evaluation

of fi for each αi .

16 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The Adjoint Equations

Regroup the terms in the sensitivity computation:

dL

dα
=

∂L

∂α
+ gT A−1f =

∂L

∂α
+
(

A−T g
)T

f =
∂L

∂α
+ vT f

leads to the definition of the adjoint equation:

A−T g = v , i.e. ATv = g
(
∂L

∂R

∂R

∂U

)T

=

(
∂R

∂U

)T ∂L

∂R

T

=

(
∂L

∂U

)T

.

From this follows the Adjoint Equivalence

gTu = (ATv)T u = vTAu = vTf

Using vTf , needs a single solve of ATv = g and the evaluation

of fi for each αi .

16 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The Adjoint Equations

Regroup the terms in the sensitivity computation:

dL

dα
=

∂L

∂α
+ gT A−1f =

∂L

∂α
+
(

A−T g
)T

f =
∂L

∂α
+ vT f

leads to the definition of the adjoint equation:

A−T g = v , i.e. ATv = g
(
∂L

∂R

∂R

∂U

)T

=

(
∂R

∂U

)T ∂L

∂R

T

=

(
∂L

∂U

)T

.

From this follows the Adjoint Equivalence

gTu = (ATv)T u = vTAu = vTf

Using vTf , needs a single solve of ATv = g and the evaluation

of fi for each αi .

16 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Advantages of adjoint sensitivities

• Each design step requires a solve for R(U) = 0.

• Gradient-based optimisation requires a gradient for each

design variable αi .

• Using gTu, each αi needs a solve of Au = f .

• Using vTf , needs a single solve of ATv = g and the

evaluation of fi for each αi .

• Roughly speaking, solving R(U) = 0, Au = f and ATv = g

incur a similar cost.

• Computing f is of the order of a single explicit sweep,

simplified boundary formulations exist.

• Using the adjoint, the cost of gradient calculations for

large design problems is essentially constant.

17 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Advantages of adjoint sensitivities

• Each design step requires a solve for R(U) = 0.

• Gradient-based optimisation requires a gradient for each

design variable αi .

• Using gTu, each αi needs a solve of Au = f .

• Using vTf , needs a single solve of ATv = g and the

evaluation of fi for each αi .

• Roughly speaking, solving R(U) = 0, Au = f and ATv = g

incur a similar cost.

• Computing f is of the order of a single explicit sweep,

simplified boundary formulations exist.

• Using the adjoint, the cost of gradient calculations for

large design problems is essentially constant.

17 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Advantages of adjoint sensitivities

• Each design step requires a solve for R(U) = 0.

• Gradient-based optimisation requires a gradient for each

design variable αi .

• Using gTu, each αi needs a solve of Au = f .

• Using vTf , needs a single solve of ATv = g and the

evaluation of fi for each αi .

• Roughly speaking, solving R(U) = 0, Au = f and ATv = g

incur a similar cost.

• Computing f is of the order of a single explicit sweep,

simplified boundary formulations exist.

• Using the adjoint, the cost of gradient calculations for

large design problems is essentially constant.

17 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Advantages of adjoint sensitivities

• Each design step requires a solve for R(U) = 0.

• Gradient-based optimisation requires a gradient for each

design variable αi .

• Using gTu, each αi needs a solve of Au = f .

• Using vTf , needs a single solve of ATv = g and the

evaluation of fi for each αi .

• Roughly speaking, solving R(U) = 0, Au = f and ATv = g

incur a similar cost.

• Computing f is of the order of a single explicit sweep,

simplified boundary formulations exist.

• Using the adjoint, the cost of gradient calculations for

large design problems is essentially constant.

17 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Advantages of adjoint sensitivities

• Each design step requires a solve for R(U) = 0.

• Gradient-based optimisation requires a gradient for each

design variable αi .

• Using gTu, each αi needs a solve of Au = f .

• Using vTf , needs a single solve of ATv = g and the

evaluation of fi for each αi .

• Roughly speaking, solving R(U) = 0, Au = f and ATv = g

incur a similar cost.

• Computing f is of the order of a single explicit sweep,

simplified boundary formulations exist.

• Using the adjoint, the cost of gradient calculations for

large design problems is essentially constant.

17 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Advantages of adjoint sensitivities

• Each design step requires a solve for R(U) = 0.

• Gradient-based optimisation requires a gradient for each

design variable αi .

• Using gTu, each αi needs a solve of Au = f .

• Using vTf , needs a single solve of ATv = g and the

evaluation of fi for each αi .

• Roughly speaking, solving R(U) = 0, Au = f and ATv = g

incur a similar cost.

• Computing f is of the order of a single explicit sweep,

simplified boundary formulations exist.

• Using the adjoint, the cost of gradient calculations for

large design problems is essentially constant.

17 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Advantages of adjoint sensitivities

• Each design step requires a solve for R(U) = 0.

• Gradient-based optimisation requires a gradient for each

design variable αi .

• Using gTu, each αi needs a solve of Au = f .

• Using vTf , needs a single solve of ATv = g and the

evaluation of fi for each αi .

• Roughly speaking, solving R(U) = 0, Au = f and ATv = g

incur a similar cost.

• Computing f is of the order of a single explicit sweep,

simplified boundary formulations exist.

• Using the adjoint, the cost of gradient calculations for

large design problems is essentially constant.

17 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Advantages of adjoint sensitivities (II)

• The forward method computes a perturbed flow field u and

then the change in functional as gTu.

• The adjoint solution directly computes the influence v of a

source term f onto the functional L.

• We then need to evaluate the source fi due to a design

perturbation αi .

• For a single design parameter, the cost of gTu and vTf are

the same.

• Using the adjoint the cost of gradient calculations for

large design problems is essentially constant.

18 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Advantages of adjoint sensitivities (II)

• The forward method computes a perturbed flow field u and

then the change in functional as gTu.

• The adjoint solution directly computes the influence v of a

source term f onto the functional L.

• We then need to evaluate the source fi due to a design

perturbation αi .

• For a single design parameter, the cost of gTu and vTf are

the same.

• Using the adjoint the cost of gradient calculations for

large design problems is essentially constant.

18 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Advantages of adjoint sensitivities (II)

• The forward method computes a perturbed flow field u and

then the change in functional as gTu.

• The adjoint solution directly computes the influence v of a

source term f onto the functional L.

• We then need to evaluate the source fi due to a design

perturbation αi .

• For a single design parameter, the cost of gTu and vTf are

the same.

• Using the adjoint the cost of gradient calculations for

large design problems is essentially constant.

18 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Advantages of adjoint sensitivities (II)

• The forward method computes a perturbed flow field u and

then the change in functional as gTu.

• The adjoint solution directly computes the influence v of a

source term f onto the functional L.

• We then need to evaluate the source fi due to a design

perturbation αi .

• For a single design parameter, the cost of gTu and vTf are

the same.

• Using the adjoint the cost of gradient calculations for

large design problems is essentially constant.

18 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Advantages of adjoint sensitivities (II)

• The forward method computes a perturbed flow field u and

then the change in functional as gTu.

• The adjoint solution directly computes the influence v of a

source term f onto the functional L.

• We then need to evaluate the source fi due to a design

perturbation αi .

• For a single design parameter, the cost of gTu and vTf are

the same.

• Using the adjoint the cost of gradient calculations for

large design problems is essentially constant.

18 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Outline

The adjoint method

Introduction to Algorithmic Differentiation

STAMPS - Source-Transformation Adjoint Multi-Purpose Solver

CAD-based shape optimisation

Uncertainty Quantification

Summary

19 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Algorithmic Differentiation (AD)
• A computer program that computes a function f (x) can be

viewed as a sequence of simple operations such as

addition, multiplication, etc:

f (x) = fn(fn−1(· · · f2(f1(x))))
• We can straightforwardly compute the derivative of each of

these operations and concatenate the derivatives using the

chain rule.

∂f (x)

∂xi
=

∂fn

∂fn−1
· ∂fn−1

∂fn−2
· · · · · ∂f2

∂f1
· ∂f1(x)

∂xi

• While f1 can only be a function of the input variables x , fn
will typically also depend on intermediate results

fn−1, fn−2,

• We can proceed to compute the derivative (automatically)

instruction by instruction.

20 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Algorithmic Differentiation (AD)
• A computer program that computes a function f (x) can be

viewed as a sequence of simple operations such as

addition, multiplication, etc:

f (x) = fn(fn−1(· · · f2(f1(x))))
• We can straightforwardly compute the derivative of each of

these operations and concatenate the derivatives using the

chain rule.

∂f (x)

∂xi
=

∂fn

∂fn−1
· ∂fn−1

∂fn−2
· · · · · ∂f2

∂f1
· ∂f1(x)

∂xi

• While f1 can only be a function of the input variables x , fn
will typically also depend on intermediate results

fn−1, fn−2,

• We can proceed to compute the derivative (automatically)

instruction by instruction.

20 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Algorithmic Differentiation (AD)
• A computer program that computes a function f (x) can be

viewed as a sequence of simple operations such as

addition, multiplication, etc:

f (x) = fn(fn−1(· · · f2(f1(x))))
• We can straightforwardly compute the derivative of each of

these operations and concatenate the derivatives using the

chain rule.

∂f (x)

∂xi
=

∂fn

∂fn−1
· ∂fn−1

∂fn−2
· · · · · ∂f2

∂f1
· ∂f1(x)

∂xi

• While f1 can only be a function of the input variables x , fn
will typically also depend on intermediate results

fn−1, fn−2,

• We can proceed to compute the derivative (automatically)

instruction by instruction.

20 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Algorithmic Differentiation (AD)
• A computer program that computes a function f (x) can be

viewed as a sequence of simple operations such as

addition, multiplication, etc:

f (x) = fn(fn−1(· · · f2(f1(x))))
• We can straightforwardly compute the derivative of each of

these operations and concatenate the derivatives using the

chain rule.

∂f (x)

∂xi
=

∂fn

∂fn−1
· ∂fn−1

∂fn−2
· · · · · ∂f2

∂f1
· ∂f1(x)

∂xi

• While f1 can only be a function of the input variables x , fn
will typically also depend on intermediate results

fn−1, fn−2,

• We can proceed to compute the derivative (automatically)

instruction by instruction.

20 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Algorithms as graphs

J

alpha

intermediate
values

Original program

• Forward: propagate influence of each alpha through

program
• Reverse: trace back every influence on result. One pass is

enough to get all derivatives.
21 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Algorithms as graphs

J

alpha

intermediate
values

Original program

Forward differentiation

• Forward: propagate influence of each alpha through

program
• Reverse: trace back every influence on result. One pass is

enough to get all derivatives.
21 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Algorithms as graphs

J

alpha

intermediate
values

Original program

Forward differentiation

• Forward: propagate influence of each alpha through

program
• Reverse: trace back every influence on result. One pass is

enough to get all derivatives.
21 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Algorithms as graphs

J

alpha

intermediate
values

Original program
Reverse

differentiation

Forward differentiation

• Forward: propagate influence of each alpha through

program
• Reverse: trace back every influence on result. One pass is

enough to get all derivatives.
21 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Algorithms as graphs

J

alpha

intermediate
values

Original program
Reverse

differentiation

Forward differentiation

• Forward: propagate influence of each alpha through

program
• Reverse: trace back every influence on result. One pass is

enough to get all derivatives.
21 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

From Algorithmic to Automatic Differentiation

• Forward-mode steps through the statements in the same

order, add a derivative computation statement before each

primal statement.

• This is a straightforward (i.e. rigorous and stupid) process,

why not have this done by software.

• The reverse-mode records all partial derivatives in each

statement, then accumulates the derivatives in reverse.

• This is a straightforward (i.e. rigorous and stupid),

potentially memory consuming process, why not have this

done by software.

There are two main options to apply automatic differentiation:

• Operator-overloading

• Source-transformation

22 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

From Algorithmic to Automatic Differentiation

• Forward-mode steps through the statements in the same

order, add a derivative computation statement before each

primal statement.

• This is a straightforward (i.e. rigorous and stupid) process,

why not have this done by software.

• The reverse-mode records all partial derivatives in each

statement, then accumulates the derivatives in reverse.

• This is a straightforward (i.e. rigorous and stupid),

potentially memory consuming process, why not have this

done by software.

There are two main options to apply automatic differentiation:

• Operator-overloading

• Source-transformation

22 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

From Algorithmic to Automatic Differentiation

• Forward-mode steps through the statements in the same

order, add a derivative computation statement before each

primal statement.

• This is a straightforward (i.e. rigorous and stupid) process,

why not have this done by software.

• The reverse-mode records all partial derivatives in each

statement, then accumulates the derivatives in reverse.

• This is a straightforward (i.e. rigorous and stupid),

potentially memory consuming process, why not have this

done by software.

There are two main options to apply automatic differentiation:

• Operator-overloading

• Source-transformation

22 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

From Algorithmic to Automatic Differentiation

• Forward-mode steps through the statements in the same

order, add a derivative computation statement before each

primal statement.

• This is a straightforward (i.e. rigorous and stupid) process,

why not have this done by software.

• The reverse-mode records all partial derivatives in each

statement, then accumulates the derivatives in reverse.

• This is a straightforward (i.e. rigorous and stupid),

potentially memory consuming process, why not have this

done by software.

There are two main options to apply automatic differentiation:

• Operator-overloading

• Source-transformation

22 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

From Algorithmic to Automatic Differentiation

• Forward-mode steps through the statements in the same

order, add a derivative computation statement before each

primal statement.

• This is a straightforward (i.e. rigorous and stupid) process,

why not have this done by software.

• The reverse-mode records all partial derivatives in each

statement, then accumulates the derivatives in reverse.

• This is a straightforward (i.e. rigorous and stupid),

potentially memory consuming process, why not have this

done by software.

There are two main options to apply automatic differentiation:

• Operator-overloading

• Source-transformation

22 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

From Algorithmic to Automatic Differentiation

• Forward-mode steps through the statements in the same

order, add a derivative computation statement before each

primal statement.

• This is a straightforward (i.e. rigorous and stupid) process,

why not have this done by software.

• The reverse-mode records all partial derivatives in each

statement, then accumulates the derivatives in reverse.

• This is a straightforward (i.e. rigorous and stupid),

potentially memory consuming process, why not have this

done by software.

There are two main options to apply automatic differentiation:

• Operator-overloading

• Source-transformation

22 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

From Algorithmic to Automatic Differentiation

• Forward-mode steps through the statements in the same

order, add a derivative computation statement before each

primal statement.

• This is a straightforward (i.e. rigorous and stupid) process,

why not have this done by software.

• The reverse-mode records all partial derivatives in each

statement, then accumulates the derivatives in reverse.

• This is a straightforward (i.e. rigorous and stupid),

potentially memory consuming process, why not have this

done by software.

There are two main options to apply automatic differentiation:

• Operator-overloading

• Source-transformation

22 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

From Algorithmic to Automatic Differentiation

• Forward-mode steps through the statements in the same

order, add a derivative computation statement before each

primal statement.

• This is a straightforward (i.e. rigorous and stupid) process,

why not have this done by software.

• The reverse-mode records all partial derivatives in each

statement, then accumulates the derivatives in reverse.

• This is a straightforward (i.e. rigorous and stupid),

potentially memory consuming process, why not have this

done by software.

There are two main options to apply automatic differentiation:

• Operator-overloading

• Source-transformation

22 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via Operator-Overloading

Principle:

• Most modern languages allow operator-overloading, i.e. to

define special data-types and then define extensions of

standard operations such as * or + for these data-types.

• E.g. we could define a derivative-enhanced double type:
struct {

double val ;

double val d ;

} double d

• An overloaded multiplication then would be:
double d operator *(double d a,double d b){
double d prod ;

prod.val d = a.val*b.val d + a.val d*b.val ;

prod.val = a.val * b.val ;

return (prod) ;

}

23 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via Operator-Overloading

Principle:

• Most modern languages allow operator-overloading, i.e. to

define special data-types and then define extensions of

standard operations such as * or + for these data-types.

• E.g. we could define a derivative-enhanced double type:
struct {

double val ;

double val d ;

} double d

• An overloaded multiplication then would be:
double d operator *(double d a,double d b){
double d prod ;

prod.val d = a.val*b.val d + a.val d*b.val ;

prod.val = a.val * b.val ;

return (prod) ;

}

23 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via Operator-Overloading

Principle:

• Most modern languages allow operator-overloading, i.e. to

define special data-types and then define extensions of

standard operations such as * or + for these data-types.

• E.g. we could define a derivative-enhanced double type:
struct {

double val ;

double val d ;

} double d

• An overloaded multiplication then would be:
double d operator *(double d a,double d b){
double d prod ;

prod.val d = a.val*b.val d + a.val d*b.val ;

prod.val = a.val * b.val ;

return (prod) ;

}

23 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via Operator-Overloading
• Operator-overloading very naturally gives rise to a

forward-mode differentiation.
• All operators need overloading, all simple data-types such

as double promoted to enhanced ones double d.
• For reverse mode we need create a tape of operations and

operands which is then run backwards at the end.

Properties of operator-overloading AD
• Works in most cases out of the box. Often easy to apply.
• High memory requirements due to large tapes.
• The tape is difficult to analyse or inspect, limited

possibilities to assemble differentiated parts in other code.
• The tape contains run-time analysis, only required code

branches are differentiated.
• All val are calculated, whether or not needed to form

val.d. Static compile-time optimisation is not possible.
• S-T AD usually outperforms O-O AD.

24 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via Operator-Overloading
• Operator-overloading very naturally gives rise to a

forward-mode differentiation.
• All operators need overloading, all simple data-types such

as double promoted to enhanced ones double d.
• For reverse mode we need create a tape of operations and

operands which is then run backwards at the end.

Properties of operator-overloading AD
• Works in most cases out of the box. Often easy to apply.
• High memory requirements due to large tapes.
• The tape is difficult to analyse or inspect, limited

possibilities to assemble differentiated parts in other code.
• The tape contains run-time analysis, only required code

branches are differentiated.
• All val are calculated, whether or not needed to form

val.d. Static compile-time optimisation is not possible.
• S-T AD usually outperforms O-O AD.

24 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via Operator-Overloading
• Operator-overloading very naturally gives rise to a

forward-mode differentiation.
• All operators need overloading, all simple data-types such

as double promoted to enhanced ones double d.
• For reverse mode we need create a tape of operations and

operands which is then run backwards at the end.

Properties of operator-overloading AD
• Works in most cases out of the box. Often easy to apply.
• High memory requirements due to large tapes.
• The tape is difficult to analyse or inspect, limited

possibilities to assemble differentiated parts in other code.
• The tape contains run-time analysis, only required code

branches are differentiated.
• All val are calculated, whether or not needed to form

val.d. Static compile-time optimisation is not possible.
• S-T AD usually outperforms O-O AD.

24 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via Operator-Overloading
• Operator-overloading very naturally gives rise to a

forward-mode differentiation.
• All operators need overloading, all simple data-types such

as double promoted to enhanced ones double d.
• For reverse mode we need create a tape of operations and

operands which is then run backwards at the end.

Properties of operator-overloading AD
• Works in most cases out of the box. Often easy to apply.
• High memory requirements due to large tapes.
• The tape is difficult to analyse or inspect, limited

possibilities to assemble differentiated parts in other code.
• The tape contains run-time analysis, only required code

branches are differentiated.
• All val are calculated, whether or not needed to form

val.d. Static compile-time optimisation is not possible.
• S-T AD usually outperforms O-O AD.

24 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via Operator-Overloading
• Operator-overloading very naturally gives rise to a

forward-mode differentiation.
• All operators need overloading, all simple data-types such

as double promoted to enhanced ones double d.
• For reverse mode we need create a tape of operations and

operands which is then run backwards at the end.

Properties of operator-overloading AD
• Works in most cases out of the box. Often easy to apply.
• High memory requirements due to large tapes.
• The tape is difficult to analyse or inspect, limited

possibilities to assemble differentiated parts in other code.
• The tape contains run-time analysis, only required code

branches are differentiated.
• All val are calculated, whether or not needed to form

val.d. Static compile-time optimisation is not possible.
• S-T AD usually outperforms O-O AD.

24 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via Operator-Overloading
• Operator-overloading very naturally gives rise to a

forward-mode differentiation.
• All operators need overloading, all simple data-types such

as double promoted to enhanced ones double d.
• For reverse mode we need create a tape of operations and

operands which is then run backwards at the end.

Properties of operator-overloading AD
• Works in most cases out of the box. Often easy to apply.
• High memory requirements due to large tapes.
• The tape is difficult to analyse or inspect, limited

possibilities to assemble differentiated parts in other code.
• The tape contains run-time analysis, only required code

branches are differentiated.
• All val are calculated, whether or not needed to form

val.d. Static compile-time optimisation is not possible.
• S-T AD usually outperforms O-O AD.

24 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via Operator-Overloading
• Operator-overloading very naturally gives rise to a

forward-mode differentiation.
• All operators need overloading, all simple data-types such

as double promoted to enhanced ones double d.
• For reverse mode we need create a tape of operations and

operands which is then run backwards at the end.

Properties of operator-overloading AD
• Works in most cases out of the box. Often easy to apply.
• High memory requirements due to large tapes.
• The tape is difficult to analyse or inspect, limited

possibilities to assemble differentiated parts in other code.
• The tape contains run-time analysis, only required code

branches are differentiated.
• All val are calculated, whether or not needed to form

val.d. Static compile-time optimisation is not possible.
• S-T AD usually outperforms O-O AD.

24 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via Operator-Overloading
• Operator-overloading very naturally gives rise to a

forward-mode differentiation.
• All operators need overloading, all simple data-types such

as double promoted to enhanced ones double d.
• For reverse mode we need create a tape of operations and

operands which is then run backwards at the end.

Properties of operator-overloading AD
• Works in most cases out of the box. Often easy to apply.
• High memory requirements due to large tapes.
• The tape is difficult to analyse or inspect, limited

possibilities to assemble differentiated parts in other code.
• The tape contains run-time analysis, only required code

branches are differentiated.
• All val are calculated, whether or not needed to form

val.d. Static compile-time optimisation is not possible.
• S-T AD usually outperforms O-O AD.

24 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via Operator-Overloading
• Operator-overloading very naturally gives rise to a

forward-mode differentiation.
• All operators need overloading, all simple data-types such

as double promoted to enhanced ones double d.
• For reverse mode we need create a tape of operations and

operands which is then run backwards at the end.

Properties of operator-overloading AD
• Works in most cases out of the box. Often easy to apply.
• High memory requirements due to large tapes.
• The tape is difficult to analyse or inspect, limited

possibilities to assemble differentiated parts in other code.
• The tape contains run-time analysis, only required code

branches are differentiated.
• All val are calculated, whether or not needed to form

val.d. Static compile-time optimisation is not possible.
• S-T AD usually outperforms O-O AD.

24 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via Operator-Overloading
• Operator-overloading very naturally gives rise to a

forward-mode differentiation.
• All operators need overloading, all simple data-types such

as double promoted to enhanced ones double d.
• For reverse mode we need create a tape of operations and

operands which is then run backwards at the end.

Properties of operator-overloading AD
• Works in most cases out of the box. Often easy to apply.
• High memory requirements due to large tapes.
• The tape is difficult to analyse or inspect, limited

possibilities to assemble differentiated parts in other code.
• The tape contains run-time analysis, only required code

branches are differentiated.
• All val are calculated, whether or not needed to form

val.d. Static compile-time optimisation is not possible.
• S-T AD usually outperforms O-O AD.

24 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via source transformation

Procedure:

• Parse the statements in the primal source code

• then add the necessary statements to produce modified

source code

• then compile the modified source code.

There are a number of source-transformation AD tools:

We use Tapenade (INRIA):

• Fortran or C. Combined mode under development.

• Forward and reverse,

• most mature and most popular tool,

• free one-year academic licenses.

25 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via source transformation

Procedure:

• Parse the statements in the primal source code

• then add the necessary statements to produce modified

source code

• then compile the modified source code.

There are a number of source-transformation AD tools:

We use Tapenade (INRIA):

• Fortran or C. Combined mode under development.

• Forward and reverse,

• most mature and most popular tool,

• free one-year academic licenses.

25 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via source transformation

Procedure:

• Parse the statements in the primal source code

• then add the necessary statements to produce modified

source code

• then compile the modified source code.

There are a number of source-transformation AD tools:

We use Tapenade (INRIA):

• Fortran or C. Combined mode under development.

• Forward and reverse,

• most mature and most popular tool,

• free one-year academic licenses.

25 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD via source transformation

Procedure:

• Parse the statements in the primal source code

• then add the necessary statements to produce modified

source code

• then compile the modified source code.

There are a number of source-transformation AD tools:

We use Tapenade (INRIA):

• Fortran or C. Combined mode under development.

• Forward and reverse,

• most mature and most popular tool,

• free one-year academic licenses.

25 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Properties of source transformation AD

Advantages/Disadvantages:

• Compile-time parsing can only take account of information

available at compile-time (i.e. information embedded in the

code structure), it is oblivious of run-time effect such as

values of pointers.

• The entire code needs differentiating, regardless whether

or not parts of the code will be used at run-time, unless

pragma-hidden.

• Compiler optimises differentiated source code.

• Diff’ed source code can be analysed, to inform a rewrite of

the primal to improve performance.

• Diff’ed source code modules can easily be assembled with

non- or hand-differentiated code to optimise memory and

runtime.

26 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Properties of source transformation AD

Advantages/Disadvantages:

• Compile-time parsing can only take account of information

available at compile-time (i.e. information embedded in the

code structure), it is oblivious of run-time effect such as

values of pointers.

• The entire code needs differentiating, regardless whether

or not parts of the code will be used at run-time, unless

pragma-hidden.

• Compiler optimises differentiated source code.

• Diff’ed source code can be analysed, to inform a rewrite of

the primal to improve performance.

• Diff’ed source code modules can easily be assembled with

non- or hand-differentiated code to optimise memory and

runtime.

26 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Properties of source transformation AD

Advantages/Disadvantages:

• Compile-time parsing can only take account of information

available at compile-time (i.e. information embedded in the

code structure), it is oblivious of run-time effect such as

values of pointers.

• The entire code needs differentiating, regardless whether

or not parts of the code will be used at run-time, unless

pragma-hidden.

• Compiler optimises differentiated source code.

• Diff’ed source code can be analysed, to inform a rewrite of

the primal to improve performance.

• Diff’ed source code modules can easily be assembled with

non- or hand-differentiated code to optimise memory and

runtime.

26 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Properties of source transformation AD

Advantages/Disadvantages:

• Compile-time parsing can only take account of information

available at compile-time (i.e. information embedded in the

code structure), it is oblivious of run-time effect such as

values of pointers.

• The entire code needs differentiating, regardless whether

or not parts of the code will be used at run-time, unless

pragma-hidden.

• Compiler optimises differentiated source code.

• Diff’ed source code can be analysed, to inform a rewrite of

the primal to improve performance.

• Diff’ed source code modules can easily be assembled with

non- or hand-differentiated code to optimise memory and

runtime.

26 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Properties of source transformation AD

Advantages/Disadvantages:

• Compile-time parsing can only take account of information

available at compile-time (i.e. information embedded in the

code structure), it is oblivious of run-time effect such as

values of pointers.

• The entire code needs differentiating, regardless whether

or not parts of the code will be used at run-time, unless

pragma-hidden.

• Compiler optimises differentiated source code.

• Diff’ed source code can be analysed, to inform a rewrite of

the primal to improve performance.

• Diff’ed source code modules can easily be assembled with

non- or hand-differentiated code to optimise memory and

runtime.

26 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Properties of source transformation AD

Advantages/Disadvantages:

• Compile-time parsing can only take account of information

available at compile-time (i.e. information embedded in the

code structure), it is oblivious of run-time effect such as

values of pointers.

• The entire code needs differentiating, regardless whether

or not parts of the code will be used at run-time, unless

pragma-hidden.

• Compiler optimises differentiated source code.

• Diff’ed source code can be analysed, to inform a rewrite of

the primal to improve performance.

• Diff’ed source code modules can easily be assembled with

non- or hand-differentiated code to optimise memory and

runtime.

26 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The need for open-source adjoint CFD solvers
Existing open-source adjoint CFD solvers:
• OpenFOAM: incompressible flow solver, continuous

adjoint. Needs substantial expertise to adjoint models, to

overcome stability issues.
• SU2: compressible flow solver, continuous adjoint. Needs

substantial expertise to adjoint models, to overcome

stability issues.
• SU2: compressible flow solver, discrete adjoint using

operator-overloading tool Codipack.
• Adjoint code is ’in tape/call stack’, not readable to the

non-expert developer.
• Memory requirements substantially improved over the

years, but still multiples of the flow solver.
• Obtaining similar performance for new models may need

substantial expertise in Codipack.

Rationale for STAMPS
• provide a run-time and memory efficient open-source

adjoint solver.
• use source-transformation AD to enable the user to work

27 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The need for open-source adjoint CFD solvers
Existing open-source adjoint CFD solvers:
• OpenFOAM: incompressible flow solver, continuous

adjoint. Needs substantial expertise to adjoint models, to

overcome stability issues.
• SU2: compressible flow solver, continuous adjoint. Needs

substantial expertise to adjoint models, to overcome

stability issues.
• SU2: compressible flow solver, discrete adjoint using

operator-overloading tool Codipack.
• Adjoint code is ’in tape/call stack’, not readable to the

non-expert developer.
• Memory requirements substantially improved over the

years, but still multiples of the flow solver.
• Obtaining similar performance for new models may need

substantial expertise in Codipack.

Rationale for STAMPS
• provide a run-time and memory efficient open-source

adjoint solver.
• use source-transformation AD to enable the user to work

27 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The need for open-source adjoint CFD solvers
Existing open-source adjoint CFD solvers:
• OpenFOAM: incompressible flow solver, continuous

adjoint. Needs substantial expertise to adjoint models, to

overcome stability issues.
• SU2: compressible flow solver, continuous adjoint. Needs

substantial expertise to adjoint models, to overcome

stability issues.
• SU2: compressible flow solver, discrete adjoint using

operator-overloading tool Codipack.
• Adjoint code is ’in tape/call stack’, not readable to the

non-expert developer.
• Memory requirements substantially improved over the

years, but still multiples of the flow solver.
• Obtaining similar performance for new models may need

substantial expertise in Codipack.

Rationale for STAMPS
• provide a run-time and memory efficient open-source

adjoint solver.
• use source-transformation AD to enable the user to work

27 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The need for open-source adjoint CFD solvers
Existing open-source adjoint CFD solvers:

• SU2: compressible flow solver, discrete adjoint using
operator-overloading tool Codipack.
• Adjoint code is ’in tape/call stack’, not readable to the

non-expert developer.
• Memory requirements substantially improved over the

years, but still multiples of the flow solver.
• Obtaining similar performance for new models may need

substantial expertise in Codipack.

Rationale for STAMPS

• provide a run-time and memory efficient open-source

adjoint solver.

• use source-transformation AD to enable the user to work

with the adjoint code at multiple levels.

• provide a framework for fully automated adjoint code

derivation of specified classes of algorithms.

27 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The need for open-source adjoint CFD solvers
Existing open-source adjoint CFD solvers:

• SU2: compressible flow solver, discrete adjoint using
operator-overloading tool Codipack.
• Adjoint code is ’in tape/call stack’, not readable to the

non-expert developer.
• Memory requirements substantially improved over the

years, but still multiples of the flow solver.
• Obtaining similar performance for new models may need

substantial expertise in Codipack.

Rationale for STAMPS

• provide a run-time and memory efficient open-source

adjoint solver.

• use source-transformation AD to enable the user to work

with the adjoint code at multiple levels.

• provide a framework for fully automated adjoint code

derivation of specified classes of algorithms.

27 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The need for open-source adjoint CFD solvers
Existing open-source adjoint CFD solvers:

• SU2: compressible flow solver, discrete adjoint using
operator-overloading tool Codipack.
• Adjoint code is ’in tape/call stack’, not readable to the

non-expert developer.
• Memory requirements substantially improved over the

years, but still multiples of the flow solver.
• Obtaining similar performance for new models may need

substantial expertise in Codipack.

Rationale for STAMPS

• provide a run-time and memory efficient open-source

adjoint solver.

• use source-transformation AD to enable the user to work

with the adjoint code at multiple levels.

• provide a framework for fully automated adjoint code

derivation of specified classes of algorithms.

27 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The need for open-source adjoint CFD solvers
Existing open-source adjoint CFD solvers:

• SU2: compressible flow solver, discrete adjoint using
operator-overloading tool Codipack.
• Adjoint code is ’in tape/call stack’, not readable to the

non-expert developer.
• Memory requirements substantially improved over the

years, but still multiples of the flow solver.
• Obtaining similar performance for new models may need

substantial expertise in Codipack.

Rationale for STAMPS

• provide a run-time and memory efficient open-source

adjoint solver.

• use source-transformation AD to enable the user to work

with the adjoint code at multiple levels.

• provide a framework for fully automated adjoint code

derivation of specified classes of algorithms.

27 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The need for open-source adjoint CFD solvers
Existing open-source adjoint CFD solvers:

• SU2: compressible flow solver, discrete adjoint using
operator-overloading tool Codipack.
• Adjoint code is ’in tape/call stack’, not readable to the

non-expert developer.
• Memory requirements substantially improved over the

years, but still multiples of the flow solver.
• Obtaining similar performance for new models may need

substantial expertise in Codipack.

Rationale for STAMPS

• provide a run-time and memory efficient open-source

adjoint solver.

• use source-transformation AD to enable the user to work

with the adjoint code at multiple levels.

• provide a framework for fully automated adjoint code

derivation of specified classes of algorithms.

27 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The need for open-source adjoint CFD solvers
Existing open-source adjoint CFD solvers:

• SU2: compressible flow solver, discrete adjoint using
operator-overloading tool Codipack.
• Adjoint code is ’in tape/call stack’, not readable to the

non-expert developer.
• Memory requirements substantially improved over the

years, but still multiples of the flow solver.
• Obtaining similar performance for new models may need

substantial expertise in Codipack.

Rationale for STAMPS

• provide a run-time and memory efficient open-source

adjoint solver.

• use source-transformation AD to enable the user to work

with the adjoint code at multiple levels.

• provide a framework for fully automated adjoint code

derivation of specified classes of algorithms.

27 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The need for open-source adjoint CFD solvers
Existing open-source adjoint CFD solvers:

• SU2: compressible flow solver, discrete adjoint using
operator-overloading tool Codipack.
• Adjoint code is ’in tape/call stack’, not readable to the

non-expert developer.
• Memory requirements substantially improved over the

years, but still multiples of the flow solver.
• Obtaining similar performance for new models may need

substantial expertise in Codipack.

Rationale for STAMPS

• provide a run-time and memory efficient open-source

adjoint solver.

• use source-transformation AD to enable the user to work

with the adjoint code at multiple levels.

• provide a framework for fully automated adjoint code

derivation of specified classes of algorithms.

27 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

The need for open-source adjoint CFD solvers
Existing open-source adjoint CFD solvers:

• SU2: compressible flow solver, discrete adjoint using
operator-overloading tool Codipack.
• Adjoint code is ’in tape/call stack’, not readable to the

non-expert developer.
• Memory requirements substantially improved over the

years, but still multiples of the flow solver.
• Obtaining similar performance for new models may need

substantial expertise in Codipack.

Rationale for STAMPS

• provide a run-time and memory efficient open-source

adjoint solver.

• use source-transformation AD to enable the user to work

with the adjoint code at multiple levels.

• provide a framework for fully automated adjoint code

derivation of specified classes of algorithms.

27 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Assembling efficient discrete adjoints

• We use a combination of AD and hand-differentiation:
• Use AD for core routines like residual, gradients, limiters,

fluxes...
• Use hand-assembly for time-stepping, geometric multigrid

and distributed-memory parallel communication

• Derivatives are a linearisation at a particular flow state. If

the flow is at a steady state, only the final converged

solution is needed to compute derivatives

• If the flow is unsteady (or the solver doesn’t find a steady

state), back-propagation of derivatives requires

intermediate flow states. This typically requires large

amount of memory, but can be reduced with

check-pointing.

• In the first instance, focus on steady-state.

28 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Assembling efficient discrete adjoints

• We use a combination of AD and hand-differentiation:
• Use AD for core routines like residual, gradients, limiters,

fluxes...
• Use hand-assembly for time-stepping, geometric multigrid

and distributed-memory parallel communication

• Derivatives are a linearisation at a particular flow state. If

the flow is at a steady state, only the final converged

solution is needed to compute derivatives

• If the flow is unsteady (or the solver doesn’t find a steady

state), back-propagation of derivatives requires

intermediate flow states. This typically requires large

amount of memory, but can be reduced with

check-pointing.

• In the first instance, focus on steady-state.

28 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Assembling efficient discrete adjoints

• We use a combination of AD and hand-differentiation:
• Use AD for core routines like residual, gradients, limiters,

fluxes...
• Use hand-assembly for time-stepping, geometric multigrid

and distributed-memory parallel communication

• Derivatives are a linearisation at a particular flow state. If

the flow is at a steady state, only the final converged

solution is needed to compute derivatives

• If the flow is unsteady (or the solver doesn’t find a steady

state), back-propagation of derivatives requires

intermediate flow states. This typically requires large

amount of memory, but can be reduced with

check-pointing.

• In the first instance, focus on steady-state.

28 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Assembling efficient discrete adjoints

• We use a combination of AD and hand-differentiation:
• Use AD for core routines like residual, gradients, limiters,

fluxes...
• Use hand-assembly for time-stepping, geometric multigrid

and distributed-memory parallel communication

• Derivatives are a linearisation at a particular flow state. If

the flow is at a steady state, only the final converged

solution is needed to compute derivatives

• If the flow is unsteady (or the solver doesn’t find a steady

state), back-propagation of derivatives requires

intermediate flow states. This typically requires large

amount of memory, but can be reduced with

check-pointing.

• In the first instance, focus on steady-state.

28 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

QMUL use of AD

Source-transformation with Fortran90 (Tapenade, INRIA)

• Application of source-transformation AD to CFD in F90:

STAMPS

• Advances with S-T AD tools (Tapenade) to improve

robustness, efficiency.

• AD-derived Jacobians used in robust and stable iterative

schemes (JT-KIRK, full Newton)

• Gradient-enabled NURBS-kernel NSPCC

• CSM solver Calculix: forward and reverse.

Operator-overloading in C++ (ADOL-C, Univ Paderborn)

• Differentiated CAD system OpenCascade, forward and

reverse

• Differentiated turbomachinery CAD tool CADO (VKI),

forward.

29 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

QMUL use of AD

Source-transformation with Fortran90 (Tapenade, INRIA)

• Application of source-transformation AD to CFD in F90:

STAMPS

• Advances with S-T AD tools (Tapenade) to improve

robustness, efficiency.

• AD-derived Jacobians used in robust and stable iterative

schemes (JT-KIRK, full Newton)

• Gradient-enabled NURBS-kernel NSPCC

• CSM solver Calculix: forward and reverse.

Operator-overloading in C++ (ADOL-C, Univ Paderborn)

• Differentiated CAD system OpenCascade, forward and

reverse

• Differentiated turbomachinery CAD tool CADO (VKI),

forward.

29 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Outline

The adjoint method

Introduction to Algorithmic Differentiation

STAMPS - Source-Transformation Adjoint Multi-Purpose Solver

CAD-based shape optimisation

Uncertainty Quantification

Summary

30 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

STAMPS: discretisation
Source-Transformation Adjoint Multi-Parametrisation, (Physics,

Parallelism) Solver

i

j

• Unstructured 3-D finite volume, vertex-centred solver.

• Physics: inviscid, laminar, RANS-turbulent ideal gas.

• Mesh-deformation coupled with a variety of geometric

parametrisations

• Interfaces for FSI, CHT.

31 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

STAMPS: discretisation

Typical finite-volume compressible flow discretisation:

• compressible formulation with Roe and AUSM+ fluxes,

MUSCL reconstruction up to second order accuracy

• node-centred discretisation, edge-based fluxes, edge- and

cell-based gradients,

• Spalart-Allmaras turbulence model,

• explicit, block-Jacobi and implicit (JT-KIRK)1. timestepping

for steady-state and unsteady flows (BDF2)

• GMRES + ILU preconditioner.

• Parallelisation with MPI.

1
Xu, Müller: JT-KIRK, JCP 2015

32 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

STAMPS: design capabilities
specifically designed as a discrete adjoint CFD solver:

• discrete adjoint solver: derivatives are consistent with the

flow solver: linear properties such as spectral radius of

Jacobian are guaranteed.

• fully differentiable with AD Tool Tapenade (Inria, France) in

tangent and adjoint mode: build of the adjoint code is

completely automated.

• uses efficient source-transformation AD: memory use is no

more than 20% larger than the primal (CFD).

• coupled with a number of design parametrisation tools:

node-based, NURBS-CAD-based and

parameter-CAD-based.

• coupling with Calculix structures solver for FSI and CHT is

currently undertaken.

• Adjoint-based mesh adaptation is currently being

developed.
33 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

STAMPS: design capabilities
specifically designed as a discrete adjoint CFD solver:

• discrete adjoint solver: derivatives are consistent with the

flow solver: linear properties such as spectral radius of

Jacobian are guaranteed.

• fully differentiable with AD Tool Tapenade (Inria, France) in

tangent and adjoint mode: build of the adjoint code is

completely automated.

• uses efficient source-transformation AD: memory use is no

more than 20% larger than the primal (CFD).

• coupled with a number of design parametrisation tools:

node-based, NURBS-CAD-based and

parameter-CAD-based.

• coupling with Calculix structures solver for FSI and CHT is

currently undertaken.

• Adjoint-based mesh adaptation is currently being

developed.
33 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

STAMPS: design capabilities
specifically designed as a discrete adjoint CFD solver:

• discrete adjoint solver: derivatives are consistent with the

flow solver: linear properties such as spectral radius of

Jacobian are guaranteed.

• fully differentiable with AD Tool Tapenade (Inria, France) in

tangent and adjoint mode: build of the adjoint code is

completely automated.

• uses efficient source-transformation AD: memory use is no

more than 20% larger than the primal (CFD).

• coupled with a number of design parametrisation tools:

node-based, NURBS-CAD-based and

parameter-CAD-based.

• coupling with Calculix structures solver for FSI and CHT is

currently undertaken.

• Adjoint-based mesh adaptation is currently being

developed.
33 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

STAMPS: design capabilities
specifically designed as a discrete adjoint CFD solver:

• discrete adjoint solver: derivatives are consistent with the

flow solver: linear properties such as spectral radius of

Jacobian are guaranteed.

• fully differentiable with AD Tool Tapenade (Inria, France) in

tangent and adjoint mode: build of the adjoint code is

completely automated.

• uses efficient source-transformation AD: memory use is no

more than 20% larger than the primal (CFD).

• coupled with a number of design parametrisation tools:

node-based, NURBS-CAD-based and

parameter-CAD-based.

• coupling with Calculix structures solver for FSI and CHT is

currently undertaken.

• Adjoint-based mesh adaptation is currently being

developed.
33 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

STAMPS: design capabilities
specifically designed as a discrete adjoint CFD solver:

• discrete adjoint solver: derivatives are consistent with the

flow solver: linear properties such as spectral radius of

Jacobian are guaranteed.

• fully differentiable with AD Tool Tapenade (Inria, France) in

tangent and adjoint mode: build of the adjoint code is

completely automated.

• uses efficient source-transformation AD: memory use is no

more than 20% larger than the primal (CFD).

• coupled with a number of design parametrisation tools:

node-based, NURBS-CAD-based and

parameter-CAD-based.

• coupling with Calculix structures solver for FSI and CHT is

currently undertaken.

• Adjoint-based mesh adaptation is currently being

developed.
33 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

STAMPS: design capabilities
specifically designed as a discrete adjoint CFD solver:

• discrete adjoint solver: derivatives are consistent with the

flow solver: linear properties such as spectral radius of

Jacobian are guaranteed.

• fully differentiable with AD Tool Tapenade (Inria, France) in

tangent and adjoint mode: build of the adjoint code is

completely automated.

• uses efficient source-transformation AD: memory use is no

more than 20% larger than the primal (CFD).

• coupled with a number of design parametrisation tools:

node-based, NURBS-CAD-based and

parameter-CAD-based.

• coupling with Calculix structures solver for FSI and CHT is

currently undertaken.

• Adjoint-based mesh adaptation is currently being

developed.
33 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Convergence of the flow solver to limit cycles
A major problem with adjoint solvers is robustness.

Turbomachinery case in off-design condition, convergence of

the CFD (left) to limit cycles, divergence of the adjoint solver

(right).

0 100 200 300 400
−9.5

−8.5

−7.5

−6.5

iteration

re
s
id

u
a
l

0 50 100 150 200
−3.5

−3

−2.5

−2

iteration

re
s
id

u
a
l

primal adjoint

34 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

New iterative schemes for stable adjoints

In collaboration with Rolls Royce the group developed the more

stable JT-KIRK time-stepping scheme2 that is

• more efficient in runtime for the flow solver

• more stable in achieving full convergence for flow and

adjiont.

• Typical cost functions such as efficiency, reaction, capacity

converge much more rapidly to steady-state.

0 500 1000
−20

−15

−10

−5

iteration

re
s
id

u
a
l

primal convergence

BLOCK−J

JT−KIRK

0 100 200 300
79.5

80

80.5

81

81.5

iteration

stage efficiency

0 100 200 300
0

0.5

1

1.5

2
stage reaction

iteration
0 100 200 300

5.8741

5.8742

5.8743

iteration

stage capacity

2S. Xu et al, “Stabilisation of discrete steady adjoint solvers”, JCP 2015
35 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Stable adjoints: essential for industrial optimisation

• Most importantly, convergence of the discrete adjoint can

be achieved even for mildly unsteady flow situations.

• This is an essential ingredient for industrial application of

gradient-based optimisation using adjoint methods.

0 200 400 600 800 1000
−20

−15

−10

−5

0

iteration

re
s
id

u
a
l

JT−KIRK adjoint

JT−KIRK primal

Convergence history of

both JT-KIRK primal and

adjoint solvers.

36 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Framework for automatic application of S-T AD
Fully automated differentiation in tangent and reverse mode for

• fully coupled residual evaluation

• transport equations

• ILU precond. using AD’ed

Jacobians

• Surface sensitivity projection

• adhering to coding templates

ensures AD’ability

• two-layer halo MPI parallelisation:

no MPI comm inside the FPI loop,

no need to differentiate through MPI

calls.

• Extensive use of Multi-Activity mode

in Tapenade to derive efficient code

for specialised derivative instances.
37 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Framework for automatic application of S-T AD
Fully automated differentiation in tangent and reverse mode for

• fully coupled residual evaluation

• transport equations

• ILU precond. using AD’ed

Jacobians

• Surface sensitivity projection

• adhering to coding templates

ensures AD’ability

• two-layer halo MPI parallelisation:

no MPI comm inside the FPI loop,

no need to differentiate through MPI

calls.

• Extensive use of Multi-Activity mode

in Tapenade to derive efficient code

for specialised derivative instances.
37 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Framework for automatic application of S-T AD
Fully automated differentiation in tangent and reverse mode for

• fully coupled residual evaluation

• transport equations

• ILU precond. using AD’ed

Jacobians

• Surface sensitivity projection

• adhering to coding templates

ensures AD’ability

• two-layer halo MPI parallelisation:

no MPI comm inside the FPI loop,

no need to differentiate through MPI

calls.

• Extensive use of Multi-Activity mode

in Tapenade to derive efficient code

for specialised derivative instances.
37 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Framework for automatic application of S-T AD
Fully automated differentiation in tangent and reverse mode for

• fully coupled residual evaluation

• transport equations

• ILU precond. using AD’ed

Jacobians

• Surface sensitivity projection

• adhering to coding templates

ensures AD’ability

• two-layer halo MPI parallelisation:

no MPI comm inside the FPI loop,

no need to differentiate through MPI

calls.

• Extensive use of Multi-Activity mode

in Tapenade to derive efficient code

for specialised derivative instances.
37 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Framework for automatic application of S-T AD
Fully automated differentiation in tangent and reverse mode for

• fully coupled residual evaluation

• transport equations

• ILU precond. using AD’ed

Jacobians

• Surface sensitivity projection

• adhering to coding templates

ensures AD’ability

• two-layer halo MPI parallelisation:

no MPI comm inside the FPI loop,

no need to differentiate through MPI

calls.

• Extensive use of Multi-Activity mode

in Tapenade to derive efficient code

for specialised derivative instances.
37 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD: ’brute-force’ iterators
Simplified compressible fixed-point iterator

call initialise flow (←U)

call metrics (→X, ←Nrm)

do nIter = 1,mIt

call residual (→U, →Nrm, ←R)

call update (→R, ⇋U)

call push to tape (→U)

end do

call cost fun (→U, →Nrm, ←J)

Adjoint iterator derived from ‘brute-force’ AD

call initialise flow (←U=0)

call cost fun (←U, ←Nrm, 1)

do nIter = mIt,-1,-1

call pop from tape (←U)

call update (←R, ⇋U)

call residual (←U, ←Nrm, →R)

end do

call metrics (←X, →Nrm)
38 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD: ’brute-force’ iterators
Simplified compressible fixed-point iterator

call initialise flow (←U)

call metrics (→X, ←Nrm)

do nIter = 1,mIt

call residual (→U, →Nrm, ←R)

call update (→R, ⇋U)

call push to tape (→U)

end do

call cost fun (→U, →Nrm, ←J)

Adjoint iterator derived from ‘brute-force’ AD

call initialise flow (←U=0)

call cost fun (←U, ←Nrm, 1)

do nIter = mIt,-1,-1

call pop from tape (←U)

call update (←R, ⇋U)

call residual (←U, ←Nrm, →R)

end do

call metrics (←X, →Nrm)
38 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD: ’brute-force’ iterators
Simplified compressible fixed-point iterator

call initialise flow (←U)

call metrics (→X, ←Nrm)

do nIter = 1,mIt

call residual (→U, →Nrm, ←R)

call update (→R, ⇋U)

call push to tape (→U)

end do

call cost fun (→U, →Nrm, ←J)

Adjoint iterator derived from ‘brute-force’ AD

call initialise flow (←U=0)

call cost fun (←U, ←Nrm, 1)

do nIter = mIt,-1,-1

call pop from tape (←U)

call update (←R, ⇋U)

call residual (←U, ←Nrm, →R)

end do

call metrics (←X, →Nrm)
38 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD: ’brute-force’ fixed-point iterators

Simplified compressible fixed-point iterator

call initialise flow (←U)

call metrics (→X, ←Nrm)

do nIter = 1,mIt

call residual (→U, →Nrm, ←R)

call update (→R, ⇋U)

end do

call cost fun (→U, →Nrm, ←J)

Adjoint iterator derived from ’steady-state’ AD

call initialise flow (←U=0)

call cost fun (←U, ←Nrm, 1)

do nIter = mIt,-1,-1

call update (←R, ⇋U)

call residual (←U, ←Nrm, →R)

end do

call metrics (←X, →Nrm)

39 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD: ’brute-force’ fixed-point iterators

Simplified compressible fixed-point iterator

call initialise flow (←U)

call metrics (→X, ←Nrm)

do nIter = 1,mIt

call residual (→U, →Nrm, ←R)

call update (→R, ⇋U)

end do

call cost fun (→U, →Nrm, ←J)

Adjoint iterator derived from ’steady-state’ AD

call initialise flow (←U=0)

call cost fun (←U, ←Nrm, 1)

do nIter = mIt,-1,-1

call update (←R, ⇋U)

call residual (←U, ←Nrm, →R)

end do

call metrics (←X, →Nrm)

39 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Adjoint fixed-point iterators with ’reverse accumulation’
Simplified compressible fixed-point iterator

call initialise flow (←U)

call metrics (→X, ←Nrm)

do nIter = 1,mIt

call residual (→U, →Nrm, ←R)

call update (→R, ⇋U)

end do

call cost fun (→U, →Nrm, ←J)

Adjoint iterator derived from the primal time-stepping (PTS)

call cost fun (←g, ←Nrm, 1)

do nIter = 1,mIt

call residual u (←R, →U)

R = R - g

call update (→R, ⇋U)

end do

call residual nrm (→U, ←Nrm)

call metrics (←X, →Nrm)

40 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Adjoint fixed-point iterators with ’reverse accumulation’
Simplified compressible fixed-point iterator

call initialise flow (←U)

call metrics (→X, ←Nrm)

do nIter = 1,mIt

call residual (→U, →Nrm, ←R)

call update (→R, ⇋U)

end do

call cost fun (→U, →Nrm, ←J)

Adjoint iterator derived from the primal time-stepping (PTS)

call cost fun (←g, ←Nrm, 1)

do nIter = 1,mIt

call residual u (←R, →U)

R = R - g

call update (→R, ⇋U)

end do

call residual nrm (→U, ←Nrm)

call metrics (←X, →Nrm)

40 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Multi-target AD

• Joint development with INRIA: create specialised

derivative code depending on context

• Example: Residual comp. differentiated wrt U in iter. loop,

and wrt Nrm via separate call upon loop exit.

0

10

20

30

40

50

60

70

ru
n

ti
m

e
(s

)

primal
general
special

other

sagradient

boundary

internal

cell
flux

lim
iter

push/pop 41 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

CPU and memory performance of multi-target AD

Runtime and memory performance of general and specialised

(multi-target) differentiation.

runtime runtime (rel.) memory memory (rel.)

primal 211.1s 1 360.93MB 1

general 328.8s 1.56 431.68MB 1.20

special 249.1s 1.18 432.62MB 1.20

change -32% 0.2%

Peak memory use (measured with valgrind/massif)

Case flow Gb adj. Gb ratio

flatPlate, 2D quad, visc 0.217 0.260 1.20

rae2822, 2D quad, inv 0.199 0.231 1.16

DeathStar, 3D unstr, inv 0.331 0.368 1.12

TUB Stator, 3D hexa, visc 5.98 6.81 1.14

42 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

CPU and memory performance of multi-target AD

Runtime and memory performance of general and specialised

(multi-target) differentiation.

runtime runtime (rel.) memory memory (rel.)

primal 211.1s 1 360.93MB 1

general 328.8s 1.56 431.68MB 1.20

special 249.1s 1.18 432.62MB 1.20

change -32% 0.2%

Peak memory use (measured with valgrind/massif)

Case flow Gb adj. Gb ratio

flatPlate, 2D quad, visc 0.217 0.260 1.20

rae2822, 2D quad, inv 0.199 0.231 1.16

DeathStar, 3D unstr, inv 0.331 0.368 1.12

TUB Stator, 3D hexa, visc 5.98 6.81 1.14

42 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Outline

The adjoint method

Introduction to Algorithmic Differentiation

STAMPS - Source-Transformation Adjoint Multi-Purpose Solver

CAD-based shape optimisation

Uncertainty Quantification

Summary

43 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

CAD parametrisation with gradient-based optimisation
To compute sensitivities of design variables α, complete with

the chain rule. In tangent mode:

∂J

∂α
=

∂J

∂R
︸︷︷︸

Tangent

∂R

∂XV
︸ ︷︷ ︸

Metrics

∂XV

∂XS
︸ ︷︷ ︸

Mesh

∂XS

∂α
︸︷︷︸

Parametrisation

Can be evaluated analytic, or with finite differences, AD,

complex ...

Since Nα << NS << NV , efficiency demands reverse

differentiation:

∂J

∂α

T

=
∂XS

∂α

T

︸ ︷︷ ︸

Parametrisation

∂XV

∂XS

T

︸ ︷︷ ︸

Mesh

∂R

∂XV

T

︸ ︷︷ ︸

Metrics

∂J

∂R

T

︸︷︷︸

Adjoint

Can be evaluated analytic, or with AD. Not with F-D, complex ..

44 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

CAD parametrisation with gradient-based optimisation
To compute sensitivities of design variables α, complete with

the chain rule. In tangent mode:

∂J

∂α
=

∂J

∂R
︸︷︷︸

Tangent

∂R

∂XV
︸ ︷︷ ︸

Metrics

∂XV

∂XS
︸ ︷︷ ︸

Mesh

∂XS

∂α
︸︷︷︸

Parametrisation

Can be evaluated analytic, or with finite differences, AD,

complex ...

Since Nα << NS << NV , efficiency demands reverse

differentiation:

∂J

∂α

T

=
∂XS

∂α

T

︸ ︷︷ ︸

Parametrisation

∂XV

∂XS

T

︸ ︷︷ ︸

Mesh

∂R

∂XV

T

︸ ︷︷ ︸

Metrics

∂J

∂R

T

︸︷︷︸

Adjoint

Can be evaluated analytic, or with AD. Not with F-D, complex ..

44 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Challenges for CAD-based optimisation

• We need to compute the gradient of surface node

movement w.r.t. design variable, ∂XS

∂α
.

• This derivative must be computed over all computational

steps, typically a long list of successive operations.

• The chain of geometric computations contain many

non-differentiable operations such as e.g. Booleans.

Analytic derivatives may be difficult to define.

• None of the commercial CAD systems compute

derivatives.

45 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Challenges for CAD-based optimisation

• We need to compute the gradient of surface node

movement w.r.t. design variable, ∂XS

∂α
.

• This derivative must be computed over all computational

steps, typically a long list of successive operations.

• The chain of geometric computations contain many

non-differentiable operations such as e.g. Booleans.

Analytic derivatives may be difficult to define.

• None of the commercial CAD systems compute

derivatives.

45 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Challenges for CAD-based optimisation

• We need to compute the gradient of surface node

movement w.r.t. design variable, ∂XS

∂α
.

• This derivative must be computed over all computational

steps, typically a long list of successive operations.

• The chain of geometric computations contain many

non-differentiable operations such as e.g. Booleans.

Analytic derivatives may be difficult to define.

• None of the commercial CAD systems compute

derivatives.

45 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Challenges for CAD-based optimisation

• We need to compute the gradient of surface node

movement w.r.t. design variable, ∂XS

∂α
.

• This derivative must be computed over all computational

steps, typically a long list of successive operations.

• The chain of geometric computations contain many

non-differentiable operations such as e.g. Booleans.

Analytic derivatives may be difficult to define.

• None of the commercial CAD systems compute

derivatives.

45 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Open Cascade Technology

Open CASCADE3 Technology (OCCT) is an open source C++

library, consisting of thousands of classes and providing

solutions in the areas of:

• Surface and solid modelling: to model any type of object,

• 3D and 2D visualisation: to display and animate objects,

• Data exchange (import and export standard CAD formats)

and tree-like data model.

46 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD on Open Cascace CAD kernel (scalar)

Joint work with Prof. A.Walther, M. Banovic, Paderborn Univ.

Automatic Differentiation by OverLoading in C++

ADOL-C uses operator overloading concept to compute first

and higher derivatives of vector functions that are written in C

or C++.

Operator overloading (Scalar mode)
1 class myadouble{

2 double value;

3 double ADvalue;

4 // multiplication ...

5 inline myadouble operator * (const myadouble& a) const {

6 myadouble tmp;

7 tmp.value = value * a.value;

8 tmp.ADvalue = ADvalue * a.value + value * a.ADvalue;

9 return tmp;

10 }

11 };

47 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

AD on Open Cascace CAD kernel (vector)
Joint work with Prof. A.Walther, M. Banovic, Paderborn Uni.

Automatic Differentiation by OverLoading in C++

ADOL-C uses operator overloading concept to compute first

and higher derivatives of vector functions that are written in C

or C++.

Operator overloading (Vector mode)
1 class myadouble{

2 double value;

3 double *ADvalue = new double[NUMBER_OF_DIRECTIONS];

4 // multiplication ...

5 inline myadouble operator * (const myadouble& a) const {

6 myadouble tmp;

7 tmp.value = value * a.value;

8 for(size_t i = 0; i < NUMBER_OF_DIRECTIONS; ++i)

9 tmp.ADvalue[i] = ADvalue[i] * a.value + value * a.

ADvalue[i];

10 return tmp;

11 }

12 };

48 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Calculating the CAD sensitivities (II)

ADOL-C vector mode

• Number of design parameters = NUMBER OF DIRECTIONS.

• Derivaties w.r.t. all design parameters are evaluated with

just one code run.

• Computational cost and memory requirements are

dependent on the NUMBER OF DIRECTIONS.

Example of sensitivities calculated using AD vector mode

49 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Explicit parametrisation for turbo-machinery U-Bend

The generic slice consists of 4 Bézier curves; it is swept

orthogonally along a planar pathline.

Last slice

Pathline

 pipe

CP1

CP12

CP11 CP6

CP5

CP4CP3CP2

CP10 CP7CP8CP9

Bezier1

Bezier3

B
e

z
ie

r2

B
e

z
ie

r4

Section/Slice Definition OCCT ThruSection AlgoPathline BSpline

• Each control point of the section is defined by a law of

evolution along a B-spline curve along the pathline.

• The 96 coordinates of its control points are the design

parameters.

50 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Gradient comparison
AD Sensitivity Magnitude

2.959e-01

0.22192

0.14795

0.73974

0.000e+00

FD Sensitivity Magnitude

2.959e-01

0.22192

0.14795

0.73975

0.000e+00

U-part shape sensitivities using AD (left), F-D (right).

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Step size (h)

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

E
rr

o
r

h
2

Taylor test (extrapolation of AD

gradients vs. undivided difference)

for eight U-bend surface point

coordinates

51 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

U-Bend optimisation: optimised shape

0 5 10 15 20 25

Number of iterations

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

N
o
rm

a
li
se

d
p
re

ss
u
re

lo
ss

(p
/
p
0
)

Optimisation algorithm:

BFGS.

Initial and final shape.

52 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

U-Bend optimisation, flowfield

u/u0

1.81

1.36

0.90

0.45

0.00

Left: Baseline and Optimised Mid-span Velocity Magnitude;

Right: Flow Streamlines in the outlet leg
53 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

U-Bend optimisation: velocity vectors at mid-turn

Baseline Optimised

54 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Computational cost: runtime and memory

0 8 16 24 32 40 48 56 64 72 80 88 96

Number of directions (p)

0

20

40

60

80

100

120

140

160

R
u
n
-t

im
e

ra
ti
o

1 + 1.5p

1 + 1p

Finite Differences

AD Traceless-Forward

AD Trace-Forward

AD Trace-Reverse

Derivative computation mode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
o
ta

l
m

em
o
ry

co
n
su

m
p
ti
o
n

[G
B

] p = 96

Finite Differences

AD Traceless-Forward

AD Trace-Forward

AD Trace-Reverse

Summary of run-time ratios (left) and total memory

requirements (right) for U-bend example

55 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Explicit Parametrisation for TUB Stator
2-D blade: camberline→ le/te radii→ pressure/suction curve

LE Radius

Camber line CP

Blade Thickness

TE Radius

d1

d2

d3

d4

d5

d6

d7

d8

LE

TE

LE

TE

d4

d5

d6

d7

d8

TE

C

A

B

C
H

A

3-D blade: loft 2-D blade using laws

of evolution along spline curves

• Design variables are CP of our

parametrised curves and laws of

evolution, 23*8=184 DoF

• We can control thickness with

bounding values

56 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Explicit Parametrisation for TUB Stator
2-D blade: camberline→ le/te radii→ pressure/suction curve

LE Radius

Camber line CP

Blade Thickness

TE Radius

d1

d2

d3

d4

d5

d6

d7

d8

LE

TE

LE

TE

d4

d5

d6

d7

d8

TE

C

A

B

C
H

A

Path-line

TE Law of

Evolution

3-D blade: loft 2-D blade using laws

of evolution along spline curves

• Design variables are CP of our

parametrised curves and laws of

evolution, 23*8=184 DoF

• We can control thickness with

bounding values

56 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Explicit Parametrisation for TUB Stator
2-D blade: camberline→ le/te radii→ pressure/suction curve

LE Radius

Camber line CP

Blade Thickness

TE Radius

d1

d2

d3

d4

d5

d6

d7

d8

LE

TE

LE

TE

d4

d5

d6

d7

d8

TE

C

A

B

C
H

A

3-D blade: loft 2-D blade using laws

of evolution along spline curves

• Design variables are CP of our

parametrised curves and laws of

evolution, 23*8=184 DoF

• We can control thickness with

bounding values

57 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Differentiating assembly constraints

Benchmark testcase requires

space for mounting bolts inside

the blade.

A smooth constraint objective is to compute the volume of the

bolt cylinder outside the blade, but the geometric algorithm is

non-robust.

58 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Differentiating assembly constraints

Benchmark testcase requires

space for mounting bolts inside

the blade.

A smooth constraint objective is to compute the volume of the

bolt cylinder outside the blade, but the geometric algorithm is

non-robust.

58 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Differentiating assembly constraints

Alternative:

evaluate a signed

distance to the

blade of sampled

points on the

cylinder

59 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Optimised blade with assembly constraints

initial optimised

60 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Node-based optimisation: mesh and velocity

magnitude
Initial S-bend Node-based optimisation

Unintuitive shape changes, how to capture this for CAD? How

to impose geometrical constraints?

61 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

CAD-based parametrisation using NURBS
To integrate num. optimisation into the design chain, the

optimised shape must exist in a CAD format.

Original NURBS

Perturbed NURBS

• NURBS-based approach: use the position of the control

points and weights of the NURBS as design variables.
• The difficulty is to maintain geometric continuity across

patch interfaces for complex CAD geometries.
• QMUL group developed the NSPCC methodology to

ensure G0 (watertight), G1 (tangency) or G2 (curvature)

continuity.

(NSPCC: NURBS-based Parametrisation with Complex Constraints)
62 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

NSPCC: NURBS-based parametrisation with complex

constraints

When using more than one or unconstrained patches, the

parametrisation needs to ensure that patches have G0

(watertight), G1 (tangency) or G2 (curvature) continuity:

• Standard methods define geometric constraints on control

point positions, e.g. first control point inside needs to be in

the tangency plane for G1.

• This is not practical for general cases.

Alternatively:

• iterate on control point positions to satisfy constraints

• evaluate constraints at test-points distributed along patch

boundaries/intersections.

63 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

NSPCC: NURBS-based parametrisation with complex

constraints

When using more than one or unconstrained patches, the

parametrisation needs to ensure that patches have G0

(watertight), G1 (tangency) or G2 (curvature) continuity:

• Standard methods define geometric constraints on control

point positions, e.g. first control point inside needs to be in

the tangency plane for G1.

• This is not practical for general cases.

Alternatively:

• iterate on control point positions to satisfy constraints

• evaluate constraints at test-points distributed along patch

boundaries/intersections.

63 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

NSPCC: NURBS-based parametrisation with complex

constraints

When using more than one or unconstrained patches, the

parametrisation needs to ensure that patches have G0

(watertight), G1 (tangency) or G2 (curvature) continuity:

• Standard methods define geometric constraints on control

point positions, e.g. first control point inside needs to be in

the tangency plane for G1.

• This is not practical for general cases.

Alternatively:

• iterate on control point positions to satisfy constraints

• evaluate constraints at test-points distributed along patch

boundaries/intersections.

63 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Continuity constraint
• Continuity is required along joint edges between patches

control point test point

• Constraint functions are evaluated at test points

G0 = (Xs)L − (Xs)R linear

G1 = (~τ)L × (~τ)R non-linear

G2 = (~k)L − (~k)R non-linear

and are required to maintain their initial values at each

design step.
64

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Continuity constraint II

Constraint functions are linearised w.r.t. control points

δG =
∂G

∂P
δP + h.o.t.

Let the perturbation δP lie in the null-space of ∂G/∂P,

δP = kerC · δα

A basis kerC for the null-space of C is computed using SVD.

G1 and G2 will only be approximately zero after perturbation,

then the range space is used to take a normal step to recover

the non-linear constraints.

65 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Continuity constraint II

Constraint functions are linearised w.r.t. control points

δG =
∂G

∂P
δP + h.o.t.

Let the perturbation δP lie in the null-space of ∂G/∂P,

δP = kerC · δα

A basis kerC for the null-space of C is computed using SVD.

G1 and G2 will only be approximately zero after perturbation,

then the range space is used to take a normal step to recover

the non-linear constraints.

65 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Continuity constraint II

Constraint functions are linearised w.r.t. control points

δG =
∂G

∂P
δP + h.o.t.

Let the perturbation δP lie in the null-space of ∂G/∂P,

δP = kerC · δα

A basis kerC for the null-space of C is computed using SVD.

G1 and G2 will only be approximately zero after perturbation,

then the range space is used to take a normal step to recover

the non-linear constraints.

65 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Continuity constraint III

• The number of non-zero singular values determines the

design space: the SVD computes an orthogonal basis,

which significantly improves convergence rate

• The cut-off value for ‘zero’ singular allows to select the size

of the design space.

! "!! #!! $!! %!! &!! '!! (!!)!! *!! "!!!

"!
!"&

"!
!"!

"!
!(

"!
!&

"!
!

E
i
g
e
n

v
a
l
u
e
s

+

+

"!

"#

"%

"'

")

#!

##

#%

#'

#)

$!

$#

10 15 20 25 30 35
570

580

590

600

610

620

630

640

650

660

Number of test points along edge

N
u
m
b
e
r

o
f

m
o
d
e
s

o
f

a
l
l
o
w
a
b
l
e

d
i
s
p
l
a
c
e
m
e
n
t

66 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Optimisation of a Volkswagen S-Bend climate duct

• 30 NURBS patches, only cranked centre section is allowed

to move. 640 control points, 1920 DoF.

• Imposing G1 continuity constraints leaves a design space

of 570 modes.

• Objective function: minimise pressure loss from inlet to

outlet.

67 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

S-Bend: Improvement in flow field

The optimisation produces strake-like features which very

effectively suppress secondary flow motion.

68 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Implicit Parametrisation in OCCT using NURBS

patches
Geometric constraints evaluated at test points

d3

Face1

Face2

C

r1C

r2C

d2C

d1C

Control Points Updates and Constraints Matrix (SVD)

C =
∂Cx

∂P
=







∂Cd1

∂P1

∂Cd2

∂P1
· · · ∂Ccr1

∂P1

∂Ccr2

∂P1
· · · ∂Ccr

∂P1
...

...
. . .

...
...

. . .
...

∂Cd1

∂PN

∂Cd2

∂PN
· · · ∂Ccr1

∂PN

∂Ccr2

∂PN
· · · ∂Ccr

∂PN







(1)

XConstraints Pn+1 = Pn + t · ker(C)
[

(∇J) ker(C)
]T

(6) 69 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

TUB Stator Optimisation results using NSPCC

parametrisation
Optimised CFD flow, block-structured mesh, 0.4M hexahedra.

velocity

Optimisation History

70 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

TUB Stator Optimisation results using NSPCC

parametrisation
Optimised CFD flow, block-structured mesh, 0.4M hexahedra.

velocity

Optimisation History

iterations

to
ta

l
P

re
s
s
u

re
L

o
s
s

2 4 6 8 10 12 14

340

345

350

355

360

365

Optimised

Original

-9%

70 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

CAD Boolean Operations and Trimmed Faces
Typical CAD Workflow: CRM

• Independent parts are trimmed after Boolean Operations

(Fuse, Common): Surface-Surface intersections
• We want to optimise geometries with trimmed patches
• We want to find places where trims should be performed

71 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Testcase: Wing-fairing intersection

Design area (orange)

NURBS Parametrisation

• Fairing design: 484 Control Points

• 169 Control Points allowed to move = 507 design variables

• Continuity with Fuselage

72 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Mesh Morphing
u

v

Intersection

(u ,v
b u ,v b b

(u ,v)
i i

b
)

(u ,v
b b

)

(u ,v)
i i

0. Mesh point inversions: Find (FaceCAD, u, v)

CAD-Mesh Movement Algorithm:

1. Change Control Points P of the fairing patch

2. Recalculate new intersection curve

3. Sample curve to define displacement (δub, δvb): 1-D

4. Updated mesh points (ui , vi) in parametric space: 2-D IDW

5. Project to Cartesian space (x , y , z) = S(u, v)

6. Propagate surface movement into volume: 3-D IDW
73 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Parametric 2-D Mesh Movement
2-D IDW on Fuselage and the wing

U

-10000 -5000 0 5000 10000

-2000

-1500

-1000

-500

0

500

1000

initial inner point
updated inner point

initial boundary point
updated boundary point

-10000 -5000 0 5000 10000

-2000

-1500

-1000

-500

0

500

1000

V
0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

V

U

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

74 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Computing CAD sensitivities for trimmed patches
3-D Mesh Movement

Algorithm Intersections Sensitivity: Move CPs, AD OCCT

intersection, mesh (1D→ 2D→ 3D)

75 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

NASA CRM Results

Non-trivial updated intersection

xoc

M
a

0.6

0.7

0.8

0.9

1

1.1

c
p

0.5

0

-0.5

-1

xoc

y = 4m

0 1 0 1

initial
optimised

initial
optimised

Result: CL

CD
: + 1.8%, CL : -4%, CD: -6%.

76 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Outline

The adjoint method

Introduction to Algorithmic Differentiation

STAMPS - Source-Transformation Adjoint Multi-Purpose Solver

CAD-based shape optimisation

Uncertainty Quantification

Summary

77 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Multi-fidelity Monte Carlo (control variate)

JCV
p = JMC

p − β
(

GMC
q − E[G]

)

JCV
p : Control variate estimator JMC

p : Monte Carlo estimator

β: Control variate parameter GMC
q : Approximate model estimator

E[G]: Mean value of G

• Run q samples of approximate or low fidelity (LF) model G

• Run p samples of high fidelity (HF) model J, (q > p)

• Use β to correct errors in G (G should be cheap to eval)

• Possible to obtain optimal sampling using a cost/accuracy

model

78 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Multi-fidelity error estimation

Estimated % reduction in RMSE (
√

MSE) = 1−
√
φ %

• 1−
√
φ < 0 cost of CV

more than MC

• Model correlation ρ > 0.3
(at least)

• Reasonably high w

necessary

• Even with ρ ≈ 0.98 and

w ≈ 50 only 70% reduction

possible!

79 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Critical requirements for low-fidelity models

To obtain an efficient multi-fidelity Monte Carlo method, we

need

• high runtime gain when switching to LF model:

w ≈ 30− 50 (setup cost + evaluation cost)

• good HF-LF model correlation:

ρ > 0.5

• when the number of uncertainties d is large:) preservation

of d-independent convergence rate of MC.

80 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Inexpensive Monte Carlo as low-fidelity model

Inexpensive Monte Carlo of Ghate and Giles

J(uδ, αδ) ≈ J(u∗

δ , αδ)− v∗T
δ R(u∗

δ , αδ) + . . .

. . .O
(

max
(

||u∗

δ − uδ||2, ||v∗

δ − vδ||2
))

• Perturbations about a mean state u → uδ and mean

parameter α→ αδ

• Adjoint error correction (of Pierce and Giles) to obtain

approximation to QoI J

D. Ghate, PhD thesis, 2013, Univ. Oxford

81 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Inexpensive Monte Carlo

J(uδ, αδ) ≈ J(u∗

δ , αδ)− v∗T
δ R(u∗

δ , αδ)

IMC 1: u∗

δ = u, v∗

δ = v

One adjoint solution at mean state

IMC 2: u∗

δ = u + du
dα(αδ − α), v∗

δ = v

IMC 1 cost + d tangent-linear solution

IMC 3: u∗

δ = u + du
dα(αδ − α), v∗

δ = v + dv
dα(αδ − α)

IMC 2 cost + Hessian solution

• Regularity of QoI and model critical to IMC 2/3

• Residual evaluation captures weak non-linearity

• Possible to obtain full pdf (unlike Moment method)

82 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Model E[x0] (% error) σ(x0) (% error) ρ(x0)

Exact 0.80728 5.28691× 10−2 -

IMC 1 0.82335 (+2%) 3.17072× 10−2 (−40%) 0.8760

IMC 2 0.78691 (−2.5%) 7.11764× 10−2 (+35%) 0.9446

IMC 3 0.71554 (−11%) 1.71379× 10−1 (+225%) 0.9484

83 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

FastUQ: Multi-level Multi-fidelity MC
Combining multi-fidelity with a multi-level MC framework yields

further reduction in cost, (extension of work by Geraci)

Optimal samples (l) =
2

ǫ2

L∑

k=0

[√

Var(Yk)ck Λk

(

r
opt
k

)]
√

Var(Yl)

cl

• Λk

(

r
opt
k

)

additional

parameter to the MLMC

due to multi-fidelity (MF)

• Reduction at every level

• No gain in grey region

using MF

• φ = (1 + ropt

w)Λ

Geraci, CTR Report, 2015

Contours of Λ = Λ(ropt(w , ρ))
84 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

UQ of surface variations (LS89 cascade)

• Gaussian process model to represent surface variations

(e.g. mfr’ing, normal to surface) of LS89 Turbine cascade

xδ = x
︸︷︷︸

Mean surface

+ δ(x)
︸︷︷︸

Zero-mean Gaussian process

n̂
︸︷︷︸

Surface normal

• Squared exponential correlation function for GP using

perturbation height b and length l → Cij=b2 exp

(

−
||xi−xj ||

2

2l2

)

85 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
o

d
a
l
F

ra
c
ti

o
n

Modes (#)

Figure: Modal fraction: LS89 turbine cascade first 20 PCA modes

0.2

0.4

0.6

0.8

1

0 5 10 15 20

P
a

rt
ia

l
M

o
d

a
l

F
ra

c
ti

o
n

Modes (#)

Figure: Partial modal fraction: LS89 turbine cascade first 20 PCA

modes

86 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Goal-based truncation of PCA modes

• Goal based PCA magnitude (PCA dot-product with adjoint

sensitivity)

ηPCAi
= λi

dJ

dzi
≈ λi

dJ

dx
· zi

• New modal and partial fraction definition

λ̄i =
ηPCAi

n∑

j=1

ηPCAj

Λ̄i =

i∑

j=1

ηPCAi

n∑

j=1

ηPCAj

87 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Goal-based truncation of PCA modes

Eigen mode

λ i
/Σ

λ j
o
r
η
P
C
A

1 2 3 4 5 6 7 8 9 10
10

-2

10
-1

10
0

PCA
GPCA (MUR43)
GPCA (MUR47)

(i) Exit mass-flow rate

*

Eigen mode

λ i
/Σ

λ j
o
r
η
P
C
A

1 2 3 4 5 6 7 8 9 10
10

-2

10
-1

10
0

(ii) Total-pressure loss

* * *** *

PCA
GPCA (MUR43)
GPCA (MUR47)

• Goal-based modes drastically different

• Difference for cost-function and flow condition

• MUR43 Mexit = 0.84 and MUR47 Mexit = 1.02

88 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Goal-based truncation of PCA modes

Constructive superposition of modes on sensitivity = high

GPCA value

89 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Results: Flow conditions

“Error bars are ±σ (std. dev.)”

90 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

(a) MUR43 (b) MUR47

0.8

0.9

1.0

0.01 0.02 0.03 0.04

Is
e

n
tr

o
p

ic
 M

a
c

h
 n

u
m

b
e

r

x location

Mean

Experiment

0.8

1.0

1.2

0.01 0.02 0.03 0.04

Is
e

n
tr

o
p

ic
 M

a
c

h
 n

u
m

b
e

r

x location

Mean

Experiment

91 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Results: How many G-PCA modes?

G-PCA modes Exit mass flow Total-pressure loss

7 modes 4.62604 (±2.07639 × 10−2) 1.85356 (±1.07648 × 10−1)

25 modes 4.62286 (±2.64565 × 10−2) 1.89269 (±1.48167 × 10−1)

• 7 modes capture 50% of the G-PCA spectrum (both

MUR43/47 + QoIs)

• Need 25 modes to capture 99% of the G-PCA spectrum

• Expect this to grow for 3-D and additional QoI/conditions

• Lange used 60 PCA (truncated from 130) modes for a 3-D

turbine blade (efficiency and loss QoIs using Monte Carlo)

Lange et al. “Principal component analysis on 3D scanned compressor blades for probabilistic CFD simulation”,

53rd AIAA conf., 2012

92 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

MLMF vs. Multilevel IMC: Computational cost

reduction

% reduction in computational cost in comparison to SMLMC

(for MSE = 0.01)

68

70

96

96

50 60 70 80 90 100

MUR43

MUR47

Computational cost reduction (%)

ML-IMC

FastUQ

• MLMF as accurate as plain MLMC

• Cost comparable to ML-IMC

93 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Conclusion

• Proposed a new adjoint-assisted MLMF for UQ

• Can handle large number of input uncertainties

• Gives 70% reduction in cost over MLMC for good

correlation (ρ ≈ 0.8− 0.95) b/w IMC and HF

• Combining the IMC in a multifidelity control variate

increases its range of application and accuracy (at an

increased cost)

Type Eqv. HF (avg) % decrease

SMLMC 182 -

IMC 1 9 96%

FastUQ 56 69%

94 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Outline

The adjoint method

Introduction to Algorithmic Differentiation

STAMPS - Source-Transformation Adjoint Multi-Purpose Solver

CAD-based shape optimisation

Uncertainty Quantification

Summary

95 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Conclusions on AD

• Automatic differentiation is an effective and maintainable

way to compute derivatives, provided source code is

available.

• Forward mode is straight-forward, reverse mode is more

complex and can be memory intensive.

• Initial investment in code transformation can be

substantial, in particular if efficient code is needed. But

from then on maintenance can be automated.

• The derivative computation is exact and typically robust.

• Reverse mode allows to tackle a wide variety of

optimisation problems with very, very many of degrees of

freedom.

• The challenge then may becomes convergence of the

optimiser requiring good preconditioning of the control

problem with multi-level approaches, regularisation.

96 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Conclusions on AD

• Automatic differentiation is an effective and maintainable

way to compute derivatives, provided source code is

available.

• Forward mode is straight-forward, reverse mode is more

complex and can be memory intensive.

• Initial investment in code transformation can be

substantial, in particular if efficient code is needed. But

from then on maintenance can be automated.

• The derivative computation is exact and typically robust.

• Reverse mode allows to tackle a wide variety of

optimisation problems with very, very many of degrees of

freedom.

• The challenge then may becomes convergence of the

optimiser requiring good preconditioning of the control

problem with multi-level approaches, regularisation.

96 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Conclusions on adjoint workflows

• Source code production for adjoint STAMPS solver is fully

automated and highly efficient: runtime 0.7 against flow,

memory 1.12 against flow

• Successful differentiation of open-source CAD kernel

Open-CASCADE in forward and reverse mode.

• Demonstration of CAD-in-the-loop using explicit shape

parametrisations using hierarchic feature trees.

• Automatic derivation of rich design spaces from the BRep,

NSPCC framework to impose geometric constraints.

• Extension of NSPCC to handle intersecting, trimmed

patches.

• Adaptive and re-parametrisation approaches to produce

optimal hierarchic design spaces.

• Application to pylon-nacelle cases in progress.

97 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Conclusions on adjoint workflows

• Source code production for adjoint STAMPS solver is fully

automated and highly efficient: runtime 0.7 against flow,

memory 1.12 against flow

• Successful differentiation of open-source CAD kernel

Open-CASCADE in forward and reverse mode.

• Demonstration of CAD-in-the-loop using explicit shape

parametrisations using hierarchic feature trees.

• Automatic derivation of rich design spaces from the BRep,

NSPCC framework to impose geometric constraints.

• Extension of NSPCC to handle intersecting, trimmed

patches.

• Adaptive and re-parametrisation approaches to produce

optimal hierarchic design spaces.

• Application to pylon-nacelle cases in progress.

97 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Conclusions on adjoint workflows

• Source code production for adjoint STAMPS solver is fully

automated and highly efficient: runtime 0.7 against flow,

memory 1.12 against flow

• Successful differentiation of open-source CAD kernel

Open-CASCADE in forward and reverse mode.

• Demonstration of CAD-in-the-loop using explicit shape

parametrisations using hierarchic feature trees.

• Automatic derivation of rich design spaces from the BRep,

NSPCC framework to impose geometric constraints.

• Extension of NSPCC to handle intersecting, trimmed

patches.

• Adaptive and re-parametrisation approaches to produce

optimal hierarchic design spaces.

• Application to pylon-nacelle cases in progress.

97 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Conclusions on adjoint workflows

• Source code production for adjoint STAMPS solver is fully

automated and highly efficient: runtime 0.7 against flow,

memory 1.12 against flow

• Successful differentiation of open-source CAD kernel

Open-CASCADE in forward and reverse mode.

• Demonstration of CAD-in-the-loop using explicit shape

parametrisations using hierarchic feature trees.

• Automatic derivation of rich design spaces from the BRep,

NSPCC framework to impose geometric constraints.

• Extension of NSPCC to handle intersecting, trimmed

patches.

• Adaptive and re-parametrisation approaches to produce

optimal hierarchic design spaces.

• Application to pylon-nacelle cases in progress.

97 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Conclusions on adjoint workflows

• Source code production for adjoint STAMPS solver is fully

automated and highly efficient: runtime 0.7 against flow,

memory 1.12 against flow

• Successful differentiation of open-source CAD kernel

Open-CASCADE in forward and reverse mode.

• Demonstration of CAD-in-the-loop using explicit shape

parametrisations using hierarchic feature trees.

• Automatic derivation of rich design spaces from the BRep,

NSPCC framework to impose geometric constraints.

• Extension of NSPCC to handle intersecting, trimmed

patches.

• Adaptive and re-parametrisation approaches to produce

optimal hierarchic design spaces.

• Application to pylon-nacelle cases in progress.

97 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Conclusions on adjoint workflows

• Source code production for adjoint STAMPS solver is fully

automated and highly efficient: runtime 0.7 against flow,

memory 1.12 against flow

• Successful differentiation of open-source CAD kernel

Open-CASCADE in forward and reverse mode.

• Demonstration of CAD-in-the-loop using explicit shape

parametrisations using hierarchic feature trees.

• Automatic derivation of rich design spaces from the BRep,

NSPCC framework to impose geometric constraints.

• Extension of NSPCC to handle intersecting, trimmed

patches.

• Adaptive and re-parametrisation approaches to produce

optimal hierarchic design spaces.

• Application to pylon-nacelle cases in progress.

97 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Conclusions on adjoint workflows

• Source code production for adjoint STAMPS solver is fully

automated and highly efficient: runtime 0.7 against flow,

memory 1.12 against flow

• Successful differentiation of open-source CAD kernel

Open-CASCADE in forward and reverse mode.

• Demonstration of CAD-in-the-loop using explicit shape

parametrisations using hierarchic feature trees.

• Automatic derivation of rich design spaces from the BRep,

NSPCC framework to impose geometric constraints.

• Extension of NSPCC to handle intersecting, trimmed

patches.

• Adaptive and re-parametrisation approaches to produce

optimal hierarchic design spaces.

• Application to pylon-nacelle cases in progress.

97 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Outlook

• CAD-based shape optimisation is ready for industrial

application with full-adjoint design chains

• “Coarse-grain” unsteady adjoint calculations are feasible,

accuracy of gradients for large-scale shape modes

appears robust.

• Adjoints will be an important tool to accelerate uncertainty

quantification, essential for robust design.

• AD will be essential to develop adjoints for complex

multi-level and multi-physics systems.

98 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Outlook

• CAD-based shape optimisation is ready for industrial

application with full-adjoint design chains

• “Coarse-grain” unsteady adjoint calculations are feasible,

accuracy of gradients for large-scale shape modes

appears robust.

• Adjoints will be an important tool to accelerate uncertainty

quantification, essential for robust design.

• AD will be essential to develop adjoints for complex

multi-level and multi-physics systems.

98 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Outlook

• CAD-based shape optimisation is ready for industrial

application with full-adjoint design chains

• “Coarse-grain” unsteady adjoint calculations are feasible,

accuracy of gradients for large-scale shape modes

appears robust.

• Adjoints will be an important tool to accelerate uncertainty

quantification, essential for robust design.

• AD will be essential to develop adjoints for complex

multi-level and multi-physics systems.

98 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Outlook

• CAD-based shape optimisation is ready for industrial

application with full-adjoint design chains

• “Coarse-grain” unsteady adjoint calculations are feasible,

accuracy of gradients for large-scale shape modes

appears robust.

• Adjoints will be an important tool to accelerate uncertainty

quantification, essential for robust design.

• AD will be essential to develop adjoints for complex

multi-level and multi-physics systems.

98 / 99

Adjoint Algorithmic Differentiation STAMPS CAD-based UQ Summary

Acknowledgements

This work has been

conducted within the About

Flow and IODA projects at

Queen Mary University of

London

http://{aboutflow,ioda}.sems.qmul.ac.uk

We have received funding from the

European Union’s 7th FP and H2020

programs under Grant Agreement

Nos. 317006 and 642959.

99 / 99

	The adjoint method
	Introduction to Algorithmic Differentiation
	STAMPS - Source-Transformation Adjoint Multi-Purpose Solver
	CAD-based shape optimisation
	Uncertainty Quantification
	Summary

