Algorithmic Differentiation (by Source Transformation): achievements and challenges

Laurent Hascoët

INRIA Sophia-Antipolis, France

GDR Calcul, Jan 24, 2019

This is (Source-Transformation) AD

SUBROUTINE FOO(v1, v2, v4, p1)

REAL v1,v2,v3,v4,p1

v3 = 2.0 * v1 + 5.0

v4 = v3 + p1*v2/v3 END

This is (Source-Transformation) AD

```
SUBROUTINE FOO(v1, v1d, v2, v2d, v4, v4d, p1)
 REAL v1d,v2d,v3d,v4d
 REAL v1,v2,v3,v4,p1
 v3d = 2.0*v1d
 v_3 = 2.0 * v_1 + 5.0
 v4d = v3d + p1*(v2d*v3-v2*v3d)/(v3*v3)
 v4 = v3 + p1*v2/v3
END
```

Inserts differentiated instructions into FOO, automatically Computes derivatives with machine accuracy (2000) 2000

Hascoët (INRIA)

Outline

1 AD principle

- 2 AD tools
- 3 Challenges of Adjoint AD
- Data-Flow Analysis
- 5 Checkpointing
- 6 Profitable Situations
- Validation of Adjoint AD
- 8 The fun of Adjoint AD
- Ommercial break
- D Applications and performance

Formalization: programs are functions

See any (straight-line piece of) program $P: \{I_1; I_2; \dots I_p; \}$ as:

$$f: \mathbf{in} \in \mathbb{R}^m \to \mathbf{out} \in \mathbb{R}^n \quad f = f_p \circ f_{p-1} \circ \cdots \circ f_1$$

Define for short:

$$V_0 =$$
in and $V_k = f_k(V_{k-1})$

The chain rule yields:

$$f'(\mathbf{in}) = f'_p(V_{p-1}).f'_{p-1}(V_{p-2})....f'_1(V_0)$$

In which order shall we multiply all these matrices?

Evaluate from the right or from the left?

We may start from the right (i.e. the inputs in) \Rightarrow Tangent \Rightarrow start with a direction vector in, then progress leftwards:

out =
$$f'(in) \cdot in = f'_p(V_{p-1}) \cdot f'_{p-1}(V_{p-2}) \cdot \cdot \cdot f'_1(V_0) \cdot in$$

We may start from the left (i.e. the inputs **out**) \Rightarrow Adjoint \Rightarrow start with an weighting vector **out**, then progress rightwards:

$$\overline{\mathsf{in}} = \overline{\mathsf{out}}.f'(\mathsf{in}) = \overline{\mathsf{out}}.f'_p(V_{p-1}).f'_{p-1}(V_{p-2})\dots f'_1(V_0)$$

(for the full Jacobian, replace the start vectors by identity matrices)

Take the time to figure out the sizes and costs wrt sizes m and n

Same idea, different words

A (straight-line) program computes **out** from **in**:

in \longrightarrow v1 \longrightarrow v2 \longrightarrow ... \longrightarrow v9 \longrightarrow out

One can propagate
$$\frac{dv}{din}$$
 forward \Rightarrow Tangent:
1.0= $\frac{din}{din} \rightarrow \frac{dv1}{din} \rightarrow \frac{dv2}{din} \rightarrow \cdots$ $\frac{dout}{din}$

One can propagate $\frac{dout}{dv}$ backward \Rightarrow Adjoint: $\frac{d out}{d in}$ \cdots \leftarrow $\frac{d out}{d v8}$ \leftarrow $\frac{d out}{d v9}$ \leftarrow $\frac{d out}{d out} = 1.0$

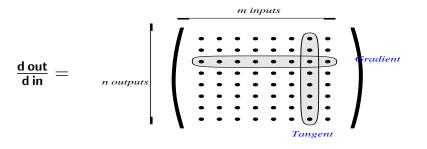
Same result, different cost:

... depending of the sizes of in and out

Hascoët (INRIA)

Full Jacobian with Tangent or Adjoint AD

$f : \mathbf{in} \in \mathbf{R}^m \rightarrow \mathbf{out} \in \mathbf{R}^n$



- $\frac{d \text{ out}}{d \ln}$ costs m * 4? * P using the tangent mode Good if $m \le n$
- $\frac{d \text{ out}}{d \ln}$ costs n * 4? * P using the adjoint mode Good if m >> n (e.g. n = 1 for a gradient) $\rightarrow = 2$ Hascoët (INRIA) ST-AD GDR Calcul, 2019

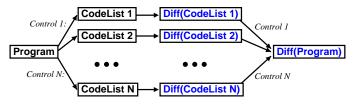
7 / 66

By the way: beware of control

Function f must be differentiable,

but implementation may require control \Rightarrow creates non-differentiability !

- Freeze the current control:
- \Rightarrow the program becomes a simple sequence of instructions
- \Rightarrow AD differentiates these sequences:



 \Rightarrow and replaces them into the control.

Caution: the diff program is only a piecewise diff !

 \Rightarrow see [Griewank] about the Abs-Normal-Form

Hascoët (INRIA)

Adjoint derivatives by Algorithmic Differentiation (AD):

- compute gradients of numerical models,
- from the models source program,
- more or less automatically,
- at a cost independant of #inputs,

...but there are serious challenges

$$\dot{\mathbf{out}} = f'(\mathbf{in}).\dot{\mathbf{in}} = f'_p(V_{p-1}).f'_{p-1}(V_{p-2})...f'_1(V_0).\dot{\mathbf{in}}$$

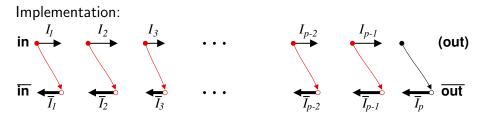
Tangent-diff instructions interleaved with the original instructions.

almost no problem...

Hascoët (I	INRIA)
------------	--------

Implementing Adjoint AD

$$\overline{\mathsf{in}} = \overline{\mathsf{out}}.f'(\mathsf{in}) = \overline{\mathsf{out}}.f'_p(V_{p-1}).f'_{p-1}(V_{p-2})\dots f'_1(V_0)$$



Adjoint-diff instructions form the backward sweep. There is a forward sweep and then the backward sweep. Mechanism required to make the V_k available in reverse order.

This is hard, but it is worth the effort

Hascoët (INRIA)

By the way: Adjoint code is weird

Consider instruction I_k : c := a*b i.e. function: f_k : $R^3 \rightarrow R^3$ $\begin{pmatrix} a \\ b \\ c \end{pmatrix} \mapsto \begin{pmatrix} a \\ b \\ a*b \end{pmatrix}$

Its adjoint code must compute:

$$\left(\begin{array}{ccc} \overline{\mathbf{a}} & \overline{\mathbf{b}} & \overline{\mathbf{c}} \end{array} \right) := \left(\begin{array}{ccc} \overline{\mathbf{a}} & \overline{\mathbf{b}} & \overline{\mathbf{c}} \end{array} \right) \times f'_k == \left(\begin{array}{ccc} \overline{\mathbf{a}} & \overline{\mathbf{b}} & \overline{\mathbf{c}} \end{array} \right) \times \left(\begin{array}{ccc} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \\ \mathbf{b} & \mathbf{a} & \mathbf{0} \end{array} \right)$$

And therefore its adjoint "code" is:

$$\overline{a} := \overline{a} + b * \overline{c}$$
$$\overline{b} := \overline{b} + a * \overline{c}$$
$$\overline{c} := 0.0$$

This is not a problem: all you need is a tool

Hascoët (INRIA)

By the way: why the name "Adjoint AD"?

Code instructions can be seen as equality constraints [Giles, Pironneau].

a :=
$$i_1$$

b := i_2
c := a*b
d := a*c
r := c + d
 \downarrow ?Lagrangian?
 $\mathcal{L} = \overline{r}(c+d-r)+\overline{d}(ac-d)+\overline{c}(ab-c)+\overline{b}(i_2-b)+\overline{a}(i_1-a)$
 \downarrow
 $\frac{d\mathcal{L}}{dd} = 0 = \overline{r}-\overline{d}$
 $\frac{d\mathcal{L}}{dc} = 0 = \overline{r}+a\overline{d}-\overline{c}$
 $\frac{d\mathcal{L}}{dc} = 0 = \overline{r}+a\overline{d}-\overline{c}$
 $\frac{d\mathcal{L}}{dc} = 0 = \overline{r}+a\overline{d}-\overline{c}$
 $\frac{d\mathcal{L}}{dc} = 0 = \overline{c}+b\overline{c}-\overline{a}$
 $\overline{d} := \overline{r}$
 $\overline{d} := \overline{r}$
 $\overline{d} := \overline{r} + a*\overline{d}$
 $\overline{d} := a*\overline{c}$
 $\overline{a} := c*\overline{d} + b*\overline{c}$

Outline

AD principle

2 AD tools

- 3 Challenges of Adjoint AD
- Data-Flow Analysis
- 5 Checkpointing
- 6 Profitable Situations
- Validation of Adjoint AD
- 8 The fun of Adjoint AD
- Ommercial break
- D Applications and performance

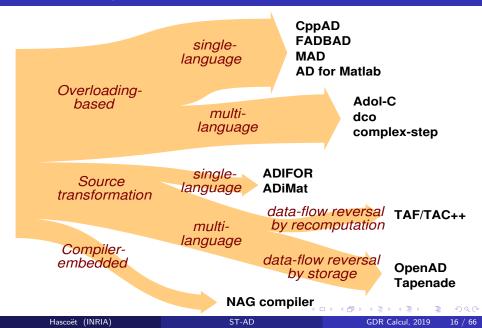
Roughly, AD tools are based either on Source-Transformation, or on Operator-Overloading.

Overloading (available in F90, Object languages, \dots) lets one redefine arithmetic operations to compute derivatives on the fly:

Change active float, real to aDouble, and link with a library that

- for Tangent: computes derivatives on aDouble's
- for Adjoint: stores instructions on a "tape", for later backward derivative computation

A taxonomy of AD tools



In the sequel we are mostly concerned with Source-Tranformation AD

> Wait for Uwe's talk for details on Operator-Overloading AD

Outline

AD principle

- 2 AD tools
- Challenges of Adjoint AD
 - 4 Data-Flow Analysis
- Checkpointing
- 6 Profitable Situations
- Validation of Adjoint AD
- 8 The fun of Adjoint AD
- Ommercial break
- D Applications and performance

Gradients are propagated backwards, using info from the (forward) primal code

- \Rightarrow Instruction flow reversal
- \Rightarrow Data flow reversal

There are many other challenges around AD:

- non-smoothness [Griewank et al.]
- stochastic or chaotic parts [Wang]
- higher derivatives (cost, size...) [Walther, Wang, Pothen]

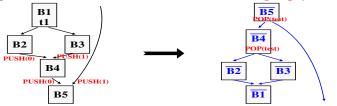
. . .

Adjoint first difficulty: instruction flow reversal

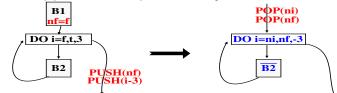
- Differentiated instructions follow the inverse of P's original control flow.
- The forward sweep must record its control-flow choices
- The backward sweep must use the recorded choices
- ... and all this must remain cheap

Instruction flow reversal with bookkeeping

The key is to store flow decisions at merging point:



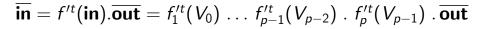
The same applies to loops and any other construct:



Works with a stack. Memory cost is negligible.

Hascoët (INRIA)

Adjoint second difficulty: data flow reversal

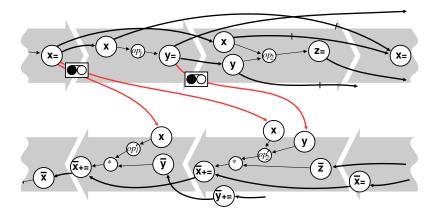


In most codes, V_0 , V_1 ,..., V_{p-1} successively overwrite one another. Most likely V_{p-2} is lost, overwritten by I_{p-1} , etc.

One can either store (our basic choice), or recompute In practice, one always ends up using both! In the sequel, data-flow reversal is based on storage Recomputation only comes as an extra

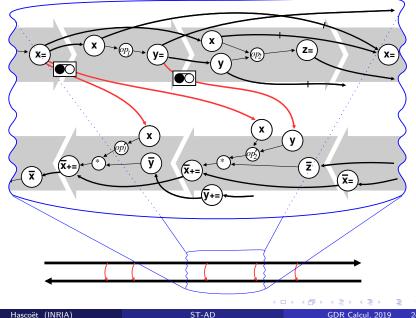
See tool TAF/TAC++ for data-flow reversal by recomputation

Store forwards; Retrieve backwards



< 🗗 🕨

Store forwards; Retrieve backwards



The memory cost of storing intermediate values grows linearly with runtime.

Can we master memory consumption ?

- use every possible Data-Flow analysis
 - \rightarrow can gain 40 to 70%... still linear memory cost
- trade recomputation/storage ("Checkpointing")
 - \rightarrow achieves logarithmic growth
- exploit profitable situations, (math or algorithm) e.g.
 - Linear solvers
 - Parallel loops
 - Fixed-Point iterations

Outline

AD principle

- 2 AD tools
- 3 Challenges of Adjoint AD
- 4 Data-Flow Analysis
- Checkpointing
- 6 Profitable Situations
- Validation of Adjoint AD
- 8 The fun of Adjoint AD
- Ommercial break
- D Applications and performance

Naïve application of the adjoint AD model would

- execute all primal instructions
- store every value before it is overwritten
- execute the complete adjoint of each instruction

Forward constant propagation & backward slicing, specialized for the particular structure of adjoint codes

Use static data-flow analysis (classic + and -), on the primal code, then produce an optimized adjoint code

4 classic AD Data-Flow analyses

• varied: [Fagan, Carle]

if current v depends on no "independent input", then \overline{v} is useless \Rightarrow slice out computation of \overline{v}

useful:

if current ${\tt v}$ influences no "dependent output", then $\overline{{\tt v}}$ is zero

 \Rightarrow propagate constant $\overline{\mathbf{v}}$ and remove its initialization \bullet diff-live:

if current v influences no useful derivative (may influence orig. result) \Rightarrow slice out computation of v

• **TBR**:[Naumann]

if current v not used in any derivative (e.g. only linear uses of v)

 \Rightarrow slice out storage of v before it is overwritten

- These are just special cases of classic code optim.
- Agressive compiler optim [Pearlmutter, Siskind] may be more systematic (⇒ are we missing adjoint data-flow analyses?)
- ... but there's a limit to the window of code that the compiler can examine, whereas fwd and bwd code are arbitrarily far apart
- Adjoint data-flow analyses use structural knowledge of adjoint codes, and run on the primal code. E.g.

$$\mathsf{TBR}^{+}(I) = \begin{cases} (\mathsf{TBR}^{-}(I) \cup \mathsf{use}(I')) \setminus \mathsf{kill}(I) & \text{if } I \text{ live} \\ \mathsf{TBR}^{-}(I) \cup \mathsf{use}(I') & \text{otherwise} \end{cases}$$

Diff-Live, TBR, Recompute

naïve	Diff-live	TBR	Recompute
CALL PUSHINTEGER4(n)	CALL PUSHINTEGER4(n)		· · ·
n = ind1(i)	n = ind1(i)	n = ind1(i)	n = ind1(i)
CALL PUSHREAL4(b(n))	CALL PUSHREAL4(b(n))		
b(n)=SIN(a(n))-b(n)	b(n)=SIN(a(n))-b(n)	b(n)=SIN(a(n))-b(n)	b(n)=SIN(a(n))-b(n)
CALL PUSHREAL4(a(n))	CALL PUSHREAL4(a(n))	CALL PUSHREAL4(a(n))	CALL PUSHREAL4(a(n))
a(n) = a(n) + x			
CALL PUSHREAL4(c)			
c = a(n) * b(n)			
CALL PUSHREAL4(a(n))			
a(n) = a(n)*a(n+1)			
CALL PUSHINTEGER4(n)	CALL PUSHINTEGER4(n)	CALL PUSHINTEGER4(n)	
n = ind2(i+2)	n = ind2(i+2)	n = ind2(i+2)	n = ind2(i+2)
CALL PUSHREAL4(z(n))			
z(n) = z(n) + c			
CALL POPREAL4(z(n))			
cb = zb(n)	cb = zb(n)	cb = zb(n)	cb = zb(n)
CALL POPINTEGER4(n)	CALL POPINTEGER4(n)	CALL POPINTEGER4(n)	n = ind1(i)
CALL POPREAL4(a(n))			
ab(n+1) = ab(n+1)	ab(n+1) = ab(n+1)	ab(n+1) = ab(n+1)	ab(n+1) = ab(n+1)
+a(n)*ab(n)	+a(n)*ab(n)	+a(n)*ab(n)	+a(n)*ab(n)
ab(n) = b(n)*cb	ab(n) = b(n)*cb	ab(n) = b(n)*cb	ab(n) = b(n)*cb
+a(n+1)*ab(n)	+a(n+1)*ab(n)	+a(n+1)*ab(n)	+a(n+1)*ab(n)
CALL POPREAL4(c)			
bb(n) = bb(n)	bb(n) = bb(n)	bb(n) = bb(n)	bb(n) = bb(n)
+a(n)*cb	+a(n)*cb	+a(n)*cb	+a(n)*cb
CALL POPREAL4(a(n))	CALL POPREAL4(a(n))	CALL POPREAL4(a(n))	CALL POPREAL4(a(n))
xb = xb + ab(n)			
CALL POPREAL4(b(n))	CALL POPREAL4(b(n))		
ab(n) = ab(n)	ab(n) = ab(n)	ab(n) = ab(n)	ab(n) = ab(n)
+COS(a(n))*bb(n)	+COS(a(n))*bb(n)	+COS(a(n))*bb(n)	+COS(a(n))*bb(n)
Hascoët (INRIA)	ST	-AD	GDR Calcul, 2019

/ 66

Adjoint data-flow analyses

- are classical compiler analyses/optims specialized for adjoint codes.
- bring substantial benefit
 - $\bullet~20\%$ to 50% in runtime
 - 40% to 70% in memory space

But memory still grows linearly with runtime

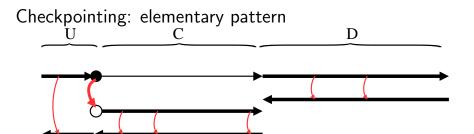
 \Rightarrow we need something else...

Outline

AD principle

- 2 AD tools
- 3 Challenges of Adjoint AD
- 4 Data-Flow Analysis
- 5 Checkpointing
- 6 Profitable Situations
- Validation of Adjoint AD
- 8 The fun of Adjoint AD
- Ommercial break
- D Applications and performance

Trading recomputation (CPU) for storage (memory)

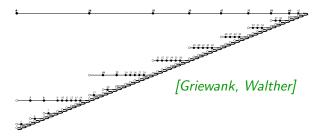


- reduces peak storage
- at the cost of duplicate execution
- also costs a memory "Snapshot", small enough: Snapshot \subset use $(\overline{C}) \cap (out(C) \cup out(\overline{D}))$

Nesting checkpoints

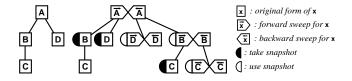
Checkpoints must be (carefully) nested.

Optimal nesting (binomial) exists for time-stepping loops:



- peak memory storage grows like log(runtime) execution duplication grows like log(runtime)
- in real life, storage is fixed to q snapshots, execution duplication grows like qth-root(runtime)

Nested checkpointing can be applied on procedure calls:



Not optimal(?), but still logarithmic if call tree is balanced.

Applies also to code sections that *could* be procedures.

A few limitations

• Checkpoints must respect code structure:

- no checkpoint across procedures
- no checkpoint across structured statements
- ...well you could, but you need a flattened instruction tape
- Checkpoints must contain both ends of system resources lifespan:

read/write, alloc/free, send/recv, isend/wait...

• Checkpointed code must be reentrant

All in all, nested checkpointing is the answer

Outline

AD principle

- 2 AD tools
- Challenges of Adjoint AD
- Data-Flow Analysis
- 5 Checkpointing
- 6 Profitable Situations
 - Validation of Adjoint AD
- 8 The fun of Adjoint AD
- Ommercial break
- D Applications and performance

Take advantage of algorithmic or mathematic knowledge on parts of the code.

A selection:

- Adjoint of Linear Solvers
- Adjoint of Parallel Loops
- Adjoint of Fixed-Point iterations

Avoid differentiation inside the source of linear solvers ⇒ write their adjoint by hand, calling the solver itself!

```
SOLVE_B(A,Ab,y,yb,b,bb) {
 At = TRANSPOSE(A)
                                        [Giles]
 SOLVE(At,tmp,yb)
 bb[:] = bb[:] + tmp[:]
 SOLVE(A, y, b)
 for each i and each j {
   Ab[i,j] = Ab[i,j] - y[j]*tmp[i]
 }
 yb[:] = 0.0
```

Data-Dependence Graph of Adjoints

Data-Dependence Graph is key to loop rescheduling. Fewer arrows in the DDG \Rightarrow more rescheduling allowed.

- (classical) No DDG arrow between successive **read**s of a variable.
- No DDG arrow either between successive increments of a variable. (assuming increments are atomic, or assuming memory is not shared)
- The adjoint of a read(x) is an increment(\overline{x})
- The adjoint of an increment(x) is a $read(\overline{x})$

The DDG of the backward sweep is a subset of the DDG of the primal code, only with arrows reversed

Therefore adjoint AD preserves most parallel properties!

Application to Parallel Loops

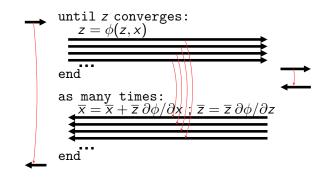
```
// Parallel loop:
for (i=0 ; i<=N ; ++i) {
  forward sweep iteration i
}
for (i=N ; i>=0 ; --i) {
  backward sweep iteration i
}
```

Loop #2 is parallel: reverse iterations, fuse with loop #1:

```
for (i=0 ; i<=N ; ++i) {
  forward sweep iteration i
   backward sweep iteration i
}</pre>
```

 \Rightarrow Reduces peak memory usage dramatically!

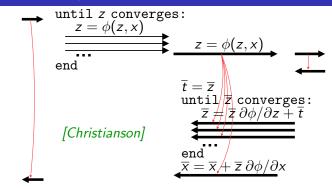
Adjoint of Fixed-Point iterations



You should not do that!

- all values from intermediate iterations are stored
- poor convergence guarantees of the adjoint sweep

Two-Phases Adjoint



- Only the converged primal iteration is stored, then is used several times.
- The adjoint iteration has its own convergence control
- Converges in one step if primal has quadratic convergence

Hascoët (INRIA)

Outline

AD principle

- 2 AD tools
- Challenges of Adjoint AD
- Data-Flow Analysis
- 5 Checkpointing
- 6 Profitable Situations
- 🕜 Validation of Adjoint AD
- The fun of Adjoint AD
- Ommercial break
- D Applications and performance

For any function/code F, with Jacobian J:

- For any \dot{X} , tangent code returns $\dot{Y} = J \times \dot{X}$
- For any \dot{X} , \dot{Y} is also the limit:

$$\dot{Y} = \lim_{\varepsilon \to 0} \frac{F(X + \varepsilon \dot{X}) - F(X)}{\varepsilon}$$

So we can approximate \hat{Y} by running P twice, at points X and $X + \varepsilon \hat{X}$ for a small ε .

Validate Adjoint wrt Tangent

For any X, tangent code returns Y = J × X
For any Y, adjoint code returns X = Y × J
Observe that X × X = Y × J × X = Y × Y

If the adjoint code is correct, then the above must hold for any \dot{X} and any \overline{Y} .

Moreover, at any "point" of the code, calling W the set of all active variables at that point:

$$\overline{X} \times \dot{X} = \overline{W} \times \dot{W} = \overline{Y} \times \dot{Y}$$

Outline

AD principle

- 2 AD tools
- Challenges of Adjoint AD
- Data-Flow Analysis
- 5 Checkpointing
- Profitable Situations
- Validation of Adjoint AD
- The fun of Adjoint AD
 - Ommercial break
- D Applications and performance

The adjoint of a use is an increment The adjoint of an increment is a use

primal	adjoint
= x	$xb = xb + \ldots$
s = s + 2.1 * x	xb = xb + 2.1*sb

Assuming increments are atomic, they are independent \Rightarrow The adjoint of a parallel loop is (almost) a parallel loop

```
The adjoint of a malloc is a free
The adjoint of a free is a malloc
```


B ▶ < B ▶

Image: A matrix of the second seco

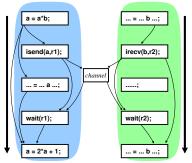
The adjoint of a sum is a spread The adjoint of a spread is a sum

The adjoint of a MPI_Bcast is a (SUM)MPI_Reduce The adjoint of a (SUM)MPI_Reduce is a MPI_Bcast The adjoint of a MPI_Gather is a MPI_Scatter The adjoint of a MPI_Scatter is a MPI_Gather

Message Passing

The adjoint of a SEND is a RECEIVE The adjoint of a RECEIVE is a SEND

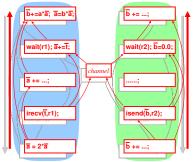
The adjoint of a MPI_Isend/MPI_Wait is a MPI_Irecv/MPI_Wait The adjoint of a MPI_Irecv/MPI_Wait is a MPI_Isend/MPI_Wait



Message Passing

The adjoint of a SEND is a RECEIVE The adjoint of a RECEIVE is a SEND

The adjoint of a MPI_Isend/MPI_Wait is a MPI_Irecv/MPI_Wait The adjoint of a MPI_Irecv/MPI_Wait is a MPI_Isend/MPI_Wait



⇒ Good news: adjoint AD introduces no deadlock

Hascoët (INRIA)

Outline

AD principle

- 2 AD tools
- Challenges of Adjoint AD
- Data-Flow Analysis
- 5 Checkpointing
- 6 Profitable Situations
- Validation of Adjoint AD
- The fun of Adjoint AD
- Ommercial break
- 10 Applications and performance

Tapenade

- Tapenade is the AD tool that our team develops.
- Source-Transformation, data-flow reversal by storage, association-by-name
- Tangent and Adjoint AD, on Fortran (77 to current) and C (ANSI)
- Classically used from the command-line: \$> tapenade -b -head "mod1.foo(d)/(b x y)" file1.f90 file2.f90 aux.f ...<options>
- Free for academic use
- Decent popularity ... despite limitations and bugs

In the sequel, applications images, performance measurements... are made with Tapenade

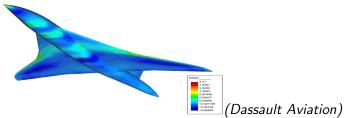
Outline

AD principle

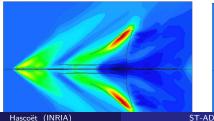
- 2 AD tools
- Challenges of Adjoint AD
- Data-Flow Analysis
- 5 Checkpointing
- 6 Profitable Situations
- Validation of Adjoint AD
- B The fun of Adjoint AD
- Ommercial break
- 10 Applications and performance

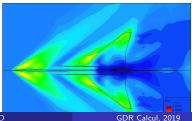
CFD optimization

AD gradient of the cost function (sonic boom under) on the skin geometry:



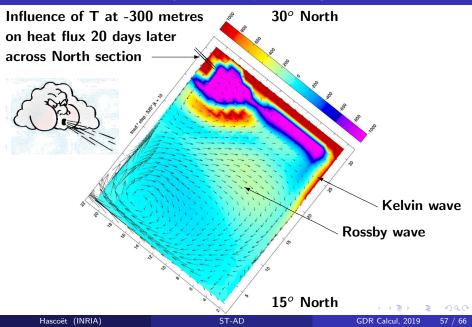
Sonic boom under the plane after 8 optimization cycles:



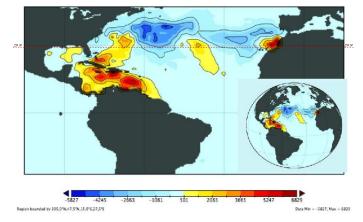


ıl, 2019 56 / 66

Data Assimilation (OPA 9.0/GYRE)



Data Assimilation (OPA 9.0/NEMO)

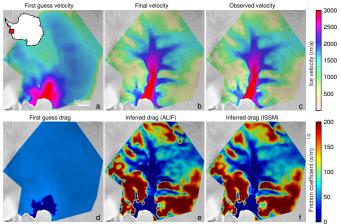


2^{o} grid cells, one year simulation

Hascoët ((INRIA)
-----------	---------

Inverse problem (ALIF/ISSM)

Infer the basal drag glacier/ground by minimizing discrepancy on surface velocity



Performance statistics

		tangent		angent adjoint			
	$n \rightarrow m$	A _t	$ R_t $	Aa	Ra	peak	traffic
						(Mb)	(Mb)
uns2d (2,000*F77)	14000 ightarrow 3	3.4	2.4	15.1	5.9	241	1243
nsc2ke (3,500*F77)	$1602 \rightarrow 5607$	1.9	2.4	4.5	16.2	168	2806
lidar (330*F90)	37 ightarrow 37	6.7	1.1	14.4	2.0	11	11
nemo (55,000*F90)	9100 ightarrow 1	3.0	2.0	8.1	6.5	1591	85203
gyre (21,000*F90)	21824 ightarrow 1	4.5	1.9	13.3	7.9	481	48602
winnie (3,700*F90)	$3 \rightarrow 1$	1.4	1.7	13.7	5.9	421	614
stics (17,000*F77)	739 ightarrow 1467	8.6	2.4	15.3	3.9	155	186
smac-sail(3,500*F77)	1321 ightarrow 7801	5.9	1.0	10.5	3.1	2	21
traces (19,800*F90)	$8 \rightarrow 1$	4.0	1.3	12.9	3.8	159	4390
mit-gcm(258,225*F77)	4704 ightarrow 1	8.5	2.0	14.5	6.6	260	5709
alif (6,755*C)	1413 ightarrow 1	6.0	1.6	14.0	4.3	729	

æ

Image: A mathematical states and a mathem

- AD is now a mature technology
- If your function is implemented, consider AD
- Adjoint AD still requires more effort, but it's worth it
- Many researchers are building excellent AD tools, for you

Enjoy today's presentations !

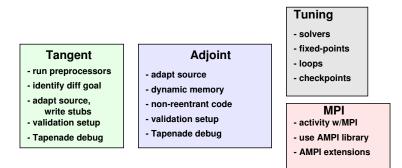
Automated validation:

 -context generates a context code to run diff code, to validate TGT against DD, and to validate ADJ against TGT.

When AD goes wrong:

- -debugTGT, -debugADJ insert debugging primitives at strategic places.
- -nooptim NAME turns off the AD optimization named NAME, for a less efficient but maybe more robust diff code.

Phases of an AD project



development time

- 3 to 4 phases,
- mostly sequential,
- needs interaction with AD tool developers...

+	-
light-weight, versatile	(mildly)hand-modified source
adapts to exotic control	overloading required,
and constructs	restricted data-flow analysis
	no global analysis
higher-order, Taylor,	not-so-efficient adjoints
intervals	(trajectory storage on tape)

- ∢ 🗇 እ

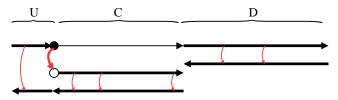
3

Splitting and merging differentiated instructions

- Split common subexpressions in derivatives
- Merge unnecessary intermediate derivatives

naïve adjoint	split and merge
resb = $v(j)*gb(i, j)$	resb = $v(j)*gb(i, j)$
vb(j) = vb(j) + res*gb(i, j)	temp = (z(j)-2.0)/v(j)
gb(i, j) = 0.0	<pre>tempb0 = temp*g(i, j)*resb</pre>
taub = taub	tempb = (tau-w(i, j))
+(z(j)-2.0)*g(i, j)*resb/v(j)	<pre>*g(i, j)*resb/v(j)</pre>
wb(i, j) = wb(i, j)	vb(j) = vb(j)
-g(i, j)*(z(j)-2.0)*resb/v(j)	+res*gb(i, j) -temp*tempb
gb(i, j) = gb(i, j)	gb(i, j) = temp
+(z(j)-2.0)*(tau-w(i, j))*resb/v(j)	<pre>*(tau-w(i, j))*resb</pre>
zb(j) = zb(j)	<pre>taub = taub + tempb0</pre>
+(tau-w(i, j))*g(i, j)*resb/v(j)	wb(i, j) = wb(i, j) - tempb0
vb(j) = vb(j)	zb(j) = zb(j) + tempb
-(tau-w(i, j))*g(i, j)*(z(j)-2.0)*resb/v(j)**2	

By the way: Combining Checkpointing and TBR



• The Snapshot may take care of TBR coming from U

• The TBR sent to D can take care of the Snapshot

A range of "optimal" combinations exist. E.g., given **tbr**U coming from U, "lazy" snapshot:

- Snapshot = $out(C) \cap (use(\overline{C}) \cup tbrU)$
- tbr to $D = (use(\overline{C}) \cup tbrU) \setminus out(C)$
- tbr to C = tbrU