
Algorithmic Differentiation

(by Source Transformation):

achievements and challenges

Laurent Hascoët

INRIA Sophia-Antipolis, France

GDR Calcul, Jan 24, 2019
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This is (Source-Transformation) AD

SUBROUTINE FOO(v1, v2, v4, p1)

REAL v1,v2,v3,v4,p1

v3 = 2.0*v1 + 5.0

v4 = v3 + p1*v2/v3

END

v3d = 2.0*v1d

v4d = v3d + p1*(v2d*v3-v2*v3d)/(v3*v3)

REAL v1d,v2d,v3d,v4d

v1d, v2d, v4d,
•

Inserts differentiated instructions into FOO, automatically
Computes derivatives with machine accuracy
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Formalization: programs are functions

See any (straight-line piece of) program P:{I1; I2; . . . Ip; } as:

f : in ∈ IRm→out ∈ IRn f = fp ◦ fp−1 ◦ · · · ◦ f1

Define for short:

V0 = in and Vk = fk(Vk−1)

The chain rule yields:

f ′(in) = f ′p(Vp−1).f ′p−1(Vp−2). . . . .f ′1(V0)

In which order shall we multiply all these matrices?
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Evaluate from the right or from the left?

We may start from the right (i.e. the inputs in) ⇒ Tangent
⇒ start with a direction vector ˙in, then progress leftwards:

˙out = f ′(in). ˙in = f ′p(Vp−1).f ′p−1(Vp−2) . . . f ′1(V0). ˙in

We may start from the left (i.e. the inputs out) ⇒ Adjoint
⇒ start with an weighting vector out, then progress rightwards:

in = out.f ′(in) = out.f ′p(Vp−1).f ′p−1(Vp−2) . . . f ′1(V0)

(for the full Jacobian, replace the start vectors by identity matrices)

Take the time to figure out the sizes and costs wrt sizes m and n
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Same idea, different words

A (straight-line) program computes out from in:
in v1 v2 v9 out

One can propagate dv
d in forward ⇒ Tangent:

1.0=
d in

d in

d v1

d in

d v2

d in

d out

d in

One can propagate dout
dv backward ⇒ Adjoint:

=1.0
d out

d out

d out

d v9

d out

d v8

d out

d in

Same result, different cost:
. . . depending of the sizes of in and out
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Full Jacobian with Tangent or Adjoint AD

f : in ∈ IRm → out ∈ IRn

d out
d in = ( )[

]m inputs

n outputs

Gradient

Tangent

d out
d in costs m ∗ 4? ∗ P using the tangent mode

Good if m <= n
d out
d in costs n ∗ 4? ∗ P using the adjoint mode

Good if m >> n (e.g n = 1 for a gradient)
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By the way: beware of control

Function f must be differentiable,
but implementation may require control ⇒ creates non-differentiability !

Freeze the current control:
⇒ the program becomes a simple sequence of instructions

⇒ AD differentiates these sequences:

Program

CodeList 1

CodeList 2

CodeList N

Diff(CodeList 1)

Diff(CodeList 2)

Diff(CodeList N)

Diff(Program)

Control 1:

Control N:

Control 1

Control N

⇒ and replaces them into the control.

Caution: the diff program is only a piecewise diff !
⇒ see [Griewank] about the Abs-Normal-Form
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Adjoint AD in a nutshell

Adjoint derivatives by Algorithmic Differentiation (AD):

compute gradients of numerical models,

from the models source program,

more or less automatically,

at a cost independant of #inputs,

...but there are serious challenges
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Implementing Tangent AD

˙out = f ′(in). ˙in = f ′p(Vp−1).f ′p−1(Vp−2) . . . f ′1(V0). ˙in

Implementation:

in

in

out

outI I I I II I I I I I
1 2 3 p-2 p-1

pp-1p-2321

Tangent-diff instructions interleaved with the original instructions.

almost no problem...
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Implementing Adjoint AD

in = out.f ′(in) = out.f ′p(Vp−1).f ′p−1(Vp−2) . . . f ′1(V0)

Implementation:

in

in

(out)

out

I I I I I

IIIIII

1 2 3 p-2 p-1

pp-1p-2321

Adjoint-diff instructions form the backward sweep.
There is a forward sweep and then the backward sweep.
Mechanism required to make the Vk available in reverse order.

This is hard, but it is worth the effort
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By the way: Adjoint code is weird

Consider instruction Ik : c := a*b i.e. function:

fk : IR3 → IR3 a

b

c

 7→

 a

b

a ∗ b


Its adjoint code must compute:

(
a b c

)
:=
(
a b c

)
× f ′k ==

(
a b c

)
×

 1

1

b a 0


And therefore its adjoint “code” is:

a := a + b*c

b := b + a*c

c := 0.0

This is not a problem: all you need is a tool
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By the way: why the name “Adjoint AD”?

Code instructions can be seen as equality constraints [Giles, Pironneau].

a := i1
b := i2
c := a*b

d := a*c

r := c + d

Adjoint AD →
d := r

c := r + a*d

b := a*c

a := c*d + b*c
↓ ?Lagrangian?

L = r(c+d-r)+d(ac-d)+c(ab-c)+b(i2-b)+a(i1-a)

↓
dL
dd = 0 = r-d
dL
dc = 0 = r+ad-c
dL
db = 0 = ac-b
dL
da = 0 = cd+bc-a

→
d := r

c := r + a*d

b := a*c

a := c*d + b*c
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AD by Overloading, AD by Source-Transformation

Roughly, AD tools are based either on
Source-Transformation, or on Operator-Overloading.

Overloading (available in F90, Object languages, . . . ) lets
one redefine arithmetic operations to compute derivatives
on the fly:
Change active float, real to aDouble, and link with a
library that

for Tangent: computes derivatives on aDouble’s

for Adjoint: stores instructions on a “tape”, for later
backward derivative computation
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A taxonomy of AD tools

Overloading-
based

single-
language

CppAD

FADBAD

MAD

AD for Matlab

multi-
language

Adol-C

dco

complex-step

Source
transformation

single-
language

ADIFOR

ADiMat

multi-
language

data-flow reversal
by recomputation

TAF/TAC++

data-flow reversal
by storage OpenAD

Tapenade

Compiler-
embedded

NAG compiler
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In the sequel we are mostly concerned with
Source-Tranformation AD

Wait for Uwe’s talk for details on
Operator-Overloading AD
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Challenges of adjoint AD

Gradients are propagated backwards,
using info from the (forward) primal code
⇒ Instruction flow reversal
⇒ Data flow reversal

There are many other challenges around AD:

non-smoothness [Griewank et al.]

stochastic or chaotic parts [Wang]

higher derivatives (cost, size...) [Walther, Wang, Pothen]

. . .
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Adjoint first difficulty: instruction flow reversal

Differentiated instructions follow the inverse of P’s
original control flow.

The forward sweep must record its control-flow
choices

The backward sweep must use the recorded choices

. . . and all this must remain cheap
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Instruction flow reversal with bookkeeping

The key is to store flow decisions at merging point:
B1

t1

B2 B3

B4

B5

PUSH(0) PUSH(1)

PUSH(0) PUSH(1)

B5

B4

B2 B3

B1

POP(test)

POP(test)

The same applies to loops and any other construct:
B1

nf=f

DO i=f,t,3

B2
PUSH(nf)
PUSH(i-3)

DO i=ni,nf,-3

B2

POP(ni)
POP(nf)

Works with a stack. Memory cost is negligible.
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Adjoint second difficulty: data flow reversal

in = f ′t(in).out = f ′t1 (V0) . . . f ′tp−1(Vp−2) . f ′tp (Vp−1) .out

in

in

(out)

out

I I I I I

IIIIII

1 2 3 p-2 p-1

pp-1p-2321

In most codes, V0, V1,. . .Vp−1 successively overwrite one
another. Most likely Vp−2 is lost, overwritten by Ip−1, etc.

One can either store (our basic choice), or recompute
In practice, one always ends up using both!
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In the sequel, data-flow reversal is based on storage
Recomputation only comes as an extra

See tool TAF/TAC++ for
data-flow reversal by recomputation
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Store forwards; Retrieve backwards

x=
x op

y=

x

y
op z=

x=

x=

z

x

y

op
*

y+=

x+=
y

x

op

*x+=

x

1 2

1
2

x=
x op

y=

x

y
op z=

x=

x=

z

x

y

op
*

y+=

x+=
y

x

op

*x+=

x

1 2

1
2
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Store forwards; Retrieve backwards
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x op
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x

y
op z=
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z

x

y

op
*
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The memory challenge

The memory cost of storing intermediate values grows
linearly with runtime.

Can we master memory consumption ?

use every possible Data-Flow analysis
→ can gain 40 to 70%... still linear memory cost

trade recomputation/storage (“Checkpointing”)
→ achieves logarithmic growth
exploit profitable situations, (math or algorithm) e.g.

Linear solvers
Parallel loops
Fixed-Point iterations

Hascoët (INRIA) ST-AD GDR Calcul, 2019 25 / 66



Outline

1 AD principle

2 AD tools

3 Challenges of Adjoint AD

4 Data-Flow Analysis

5 Checkpointing

6 Profitable Situations

7 Validation of Adjoint AD

8 The fun of Adjoint AD

9 Commercial break

10 Applications and performance
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Data-Flow Analysis

Näıve application of the adjoint AD model would

execute all primal instructions

store every value before it is overwritten

execute the complete adjoint of each instruction

Forward constant propagation & backward slicing,
specialized for the particular structure of adjoint codes

Use static data-flow analysis (classic + and −),
on the primal code,
then produce an optimized adjoint code
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4 classic AD Data-Flow analyses

varied:[Fagan, Carle]

if current v depends on no “independent input”, then v is useless

⇒ slice out computation of v

useful:
if current v influences no “dependent output”, then v is zero

⇒ propagate constant v and remove its initialization

diff-live:
if current v influences no useful derivative (may influence orig. result)

⇒ slice out computation of v

TBR:[Naumann]

if current v not used in any derivative (e.g. only linear uses of v)

⇒ slice out storage of v before it is overwritten
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Discussion

These are just special cases of classic code optim.

Agressive compiler optim [Pearlmutter, Siskind] may be
more systematic (⇒ are we missing adjoint data-flow analyses?)

... but there’s a limit to the window of code that the
compiler can examine, whereas fwd and bwd code are
arbitrarily far apart
Adjoint data-flow analyses use structural knowledge
of adjoint codes, and run on the primal code. E.g.

TBR+(I ) =

{
(TBR−(I ) ∪ use(I ′)) \ kill(I ) if I live
TBR−(I ) ∪ use(I ′) otherwise
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Diff-Live, TBR, Recompute

näıve Diff-live TBR Recompute
CALL PUSHINTEGER4(n)

n = ind1(i)

CALL PUSHREAL4(b(n))

b(n)=SIN(a(n))-b(n)

CALL PUSHREAL4(a(n))

a(n) = a(n) + x

CALL PUSHREAL4(c)

c = a(n)*b(n)

CALL PUSHREAL4(a(n))

a(n) = a(n)*a(n+1)

CALL PUSHINTEGER4(n)

n = ind2(i+2)

CALL PUSHREAL4(z(n))

z(n) = z(n) + c

CALL POPREAL4(z(n))

cb = zb(n)

CALL POPINTEGER4(n)

CALL POPREAL4(a(n))

ab(n+1) = ab(n+1)

+a(n)*ab(n)

ab(n) = b(n)*cb

+a(n+1)*ab(n)

CALL POPREAL4(c)

bb(n) = bb(n)

+a(n)*cb

CALL POPREAL4(a(n))

xb = xb + ab(n)

CALL POPREAL4(b(n))

ab(n) = ab(n)

+COS(a(n))*bb(n)

bb(n) = -bb(n)

CALL POPINTEGER4(n)

CALL PUSHINTEGER4(n)

n = ind1(i)

CALL PUSHREAL4(b(n))

b(n)=SIN(a(n))-b(n)

CALL PUSHREAL4(a(n))

a(n) = a(n) + x

CALL PUSHINTEGER4(n)

n = ind2(i+2)

cb = zb(n)

CALL POPINTEGER4(n)

ab(n+1) = ab(n+1)

+a(n)*ab(n)

ab(n) = b(n)*cb

+a(n+1)*ab(n)

bb(n) = bb(n)

+a(n)*cb

CALL POPREAL4(a(n))

xb = xb + ab(n)

CALL POPREAL4(b(n))

ab(n) = ab(n)

+COS(a(n))*bb(n)

bb(n) = -bb(n)

CALL POPINTEGER4(n)

n = ind1(i)

b(n)=SIN(a(n))-b(n)

CALL PUSHREAL4(a(n))

a(n) = a(n) + x

CALL PUSHINTEGER4(n)

n = ind2(i+2)

cb = zb(n)

CALL POPINTEGER4(n)

ab(n+1) = ab(n+1)

+a(n)*ab(n)

ab(n) = b(n)*cb

+a(n+1)*ab(n)

bb(n) = bb(n)

+a(n)*cb

CALL POPREAL4(a(n))

xb = xb + ab(n)

ab(n) = ab(n)

+COS(a(n))*bb(n)

bb(n) = -bb(n)

n = ind1(i)

b(n)=SIN(a(n))-b(n)

CALL PUSHREAL4(a(n))

a(n) = a(n) + x

n = ind2(i+2)

cb = zb(n)

n = ind1(i)

ab(n+1) = ab(n+1)

+a(n)*ab(n)

ab(n) = b(n)*cb

+a(n+1)*ab(n)

bb(n) = bb(n)

+a(n)*cb

CALL POPREAL4(a(n))

xb = xb + ab(n)

ab(n) = ab(n)

+COS(a(n))*bb(n)
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Summary: good, but not sufficient

Adjoint data-flow analyses

are classical compiler analyses/optims specialized for
adjoint codes.

bring substantial benefit

20% to 50% in runtime
40% to 70% in memory space

But memory still grows linearly with runtime

⇒ we need something else. . .
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Trading recomputation (CPU) for storage (memory)

Checkpointing: elementary pattern{{ {U C D

reduces peak storage

at the cost of duplicate execution

also costs a memory “Snapshot”, small enough:
Snapshot ⊂ use(C) ∩

(
out(C) ∪ out(D)

)
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Nesting checkpoints

Checkpoints must be (carefully) nested.
Optimal nesting (binomial) exists for time-stepping loops:

0 62606056

5857

5651

545352

5145

49484746

4538

4342414039

3830

363534333231

3016

2827262524222219

20

19

16

17

160

141312111096

7

63

4

3

0

1

0

[Griewank, Walther]

peak memory storage grows like log(runtime)
execution duplication grows like log(runtime)

in real life, storage is fixed to q snapshots,
execution duplication grows like qth-root(runtime)
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Checkpointing on calls

Nested checkpointing can be applied on procedure calls:

A

B

C

D

A A

B

C

D D D B B

C C C

x : original form of x

x : forward sweep for x

x : backward sweep for x

: take snapshot

: use snapshot

Not optimal(?), but still logarithmic if call tree is
balanced.

Applies also to code sections that could be procedures.
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A few limitations

Checkpoints must respect code structure:

no checkpoint across procedures
no checkpoint across structured statements
...well you could, but you need a flattened instruction tape

Checkpoints must contain both ends of system
resources lifespan:
read/write, alloc/free, send/recv, isend/wait. . .

Checkpointed code must be reentrant

All in all, nested checkpointing is the answer
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Profitable Situations

Take advantage of algorithmic or mathematic knowledge
on parts of the code.

A selection:

Adjoint of Linear Solvers

Adjoint of Parallel Loops

Adjoint of Fixed-Point iterations
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Adjoint of Linear Solvers

Avoid differentiation inside the source of linear solvers
⇒ write their adjoint by hand, calling the solver itself!

SOLVE B(A,Ab,y,yb,b,bb) {
At = TRANSPOSE(A)

SOLVE(At,tmp,yb)

bb[:] = bb[:] + tmp[:]

SOLVE(A,y,b)

for each i and each j {
Ab[i,j] = Ab[i,j] - y[j]*tmp[i]

}
yb[:] = 0.0

}

[Giles]
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Data-Dependence Graph of Adjoints

Data-Dependence Graph is key to loop rescheduling.
Fewer arrows in the DDG ⇒ more rescheduling allowed.

(classical) No DDG arrow between successive reads of a variable.

No DDG arrow either between successive increments of a variable.
(assuming increments are atomic, or assuming memory is not shared)

The adjoint of a read(x) is an increment(x)

The adjoint of an increment(x) is a read(x)

The DDG of the backward sweep is a subset of the DDG
of the primal code, only with arrows reversed

Therefore adjoint AD preserves most parallel properties!
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Application to Parallel Loops

// Parallel loop:
for (i=0 ; i<=N ; ++i) {

forward sweep iteration i
}
for (i=N ; i>=0 ; --i) {

backward sweep iteration i
}

Loop #2 is parallel: reverse iterations, fuse with loop #1:

for (i=0 ; i<=N ; ++i) {
forward sweep iteration i
backward sweep iteration i
}

⇒ Reduces peak memory usage dramatically!
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Adjoint of Fixed-Point iterations

until z converges:
z = φ(z , x)

...
end

as many times:
x = x + z ∂φ/∂x ; z = z ∂φ/∂z

...
end

You should not do that!

all values from intermediate iterations are stored

poor convergence guarantees of the adjoint sweep
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Two-Phases Adjoint
until z converges:

z = φ(z , x)

...
end

z = φ(z , x)

t = z
until z converges:

z = z ∂φ/∂z + t

...
end
x = x + z ∂φ/∂x

[Christianson]

Only the converged primal iteration is stored,
then is used several times.
The adjoint iteration has its own convergence control
Converges in one step if primal has quadratic
convergence
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Validate Tangent first!

For any function/code F , with Jacobian J :

For any Ẋ , tangent code returns Ẏ = J × Ẋ

For any Ẋ , Ẏ is also the limit:

Ẏ = lim
ε→0

F (X + εẊ )− F (X )

ε

So we can approximate Ẏ by running P twice, at points X
and X + εẊ for a small ε.
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Validate Adjoint wrt Tangent

For any Ẋ , tangent code returns Ẏ = J × Ẋ

For any Y , adjoint code returns X = Y × J

Observe that X × Ẋ = Y × J × Ẋ = Y × Ẏ

If the adjoint code is correct, then the above must hold
for any Ẋ and any Y .

Moreover, at any “point” of the code, calling W the set
of all active variables at that point:

X × Ẋ = W × Ẇ = Y × Ẏ
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Reading and writing variables

The adjoint of a use is an increment
The adjoint of an increment is a use

primal adjoint
... = ... x ... xb = xb + ...

s = s + 2.1*x xb = xb + 2.1*sb

Assuming increments are atomic, they are independent
⇒ The adjoint of a parallel loop is (almost) a parallel loop
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Dynamic memory

The adjoint of a malloc is a free

The adjoint of a free is a malloc

B = FW_ADMM_Allocate(size);

p = B+9;

*z = sin(*p);

push(p);

FW_ADMM_Deallocate(B);

p = ...;

table [B,size,_]
B = malloc(size);

table [oldB,size,B]
free(B);

table

pop(&size); pop(&oldB);
B = malloc(size);

[oldB,size,B]
free(B);
push(B); push(size);

table [B,size,_]

BW_ADMM_Allocate(B);

*p’ = *p’+cos(*p)*(*z’);

ADMM_Rebase(&p);pop(&p);

B = BW_ADMM_Deallocate();

such that

[oldB,size,B] in tablefind

p = B+(p−oldB);

p in [oldB,size]

...

...

...

... ...

...

...

...
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Parallel collective operations

The adjoint of a sum is a spread
The adjoint of a spread is a sum

The adjoint of a MPI Bcast is a (SUM)MPI Reduce

The adjoint of a (SUM)MPI Reduce is a MPI Bcast

The adjoint of a MPI Gather is a MPI Scatter

The adjoint of a MPI Scatter is a MPI Gather
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Message Passing

The adjoint of a SEND is a RECEIVE
The adjoint of a RECEIVE is a SEND

The adjoint of a MPI Isend/MPI Wait is a MPI Irecv/MPI Wait

The adjoint of a MPI Irecv/MPI Wait is a MPI Isend/MPI Wait

a = a*b;

isend(a,r1);

... = ... a ...;

wait(r1);

a = 2*a + 1;

channel

... = ... b ...;

irecv(b,r2);

......;

wait(r2);

... = ... b ...;

a = a*b;

isend(a,r1);

... = ... a ...;

wait(r1);

a = 2*a + 1;

channel

... = ... b ...;

irecv(b,r2);

......;

wait(r2);

... = ... b ...;

b+=a*a;  a=b*a;

wait(r1); a+=t;

a += ...;

irecv(t,r1);

a = 2*a

channel

b += ...;

wait(r2); b=0.0;

......;

isend(b,r2);

b += ...;

⇒ Good news: adjoint AD introduces no deadlock
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Hascoët (INRIA) ST-AD GDR Calcul, 2019 51 / 66



Outline

1 AD principle

2 AD tools

3 Challenges of Adjoint AD

4 Data-Flow Analysis

5 Checkpointing

6 Profitable Situations

7 Validation of Adjoint AD

8 The fun of Adjoint AD

9 Commercial break

10 Applications and performance
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Tapenade

Tapenade is the AD tool that our team develops.

Source-Transformation, data-flow reversal by storage,
association-by-name

Tangent and Adjoint AD, on Fortran (77 to
current) and C (ANSI)

Classically used from the command-line:
$> tapenade -b -head "mod1.foo(d)/(b x y)"

file1.f90 file2.f90 aux.f ...<options>

Free for academic use

Decent popularity . . . despite limitations and bugs
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In the sequel,
applications images, performance measurements. . .
are made with Tapenade
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CFD optimization

AD gradient of the cost function (sonic boom under) on
the skin geometry:

(Dassault Aviation)

Sonic boom under the plane after 8 optimization cycles:

(Plane geometry provided by Dassault Aviation)
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Data Assimilation (OPA 9.0/GYRE)
Influence of T at -300 metres

on heat flux 20 days later

across North section

30o North

15o North

@@@@
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Data Assimilation (OPA 9.0/NEMO)

29 N 29 N

2o grid cells, one year simulation
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Inverse problem (ALIF/ISSM)

Infer the basal drag glacier/ground
by minimizing discrepancy on surface velocity

First guess velocity
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Performance statistics

tangent adjoint
n→ m At Rt Aa Ra peak traffic

(Mb) (Mb)

uns2d (2,000*F77) 14000→ 3 3.4 2.4 15.1 5.9 241 1243

nsc2ke (3,500*F77) 1602→ 5607 1.9 2.4 4.5 16.2 168 2806

lidar (330*F90) 37→ 37 6.7 1.1 14.4 2.0 11 11

nemo (55,000*F90) 9100→ 1 3.0 2.0 8.1 6.5 1591 85203

gyre (21,000*F90) 21824→ 1 4.5 1.9 13.3 7.9 481 48602

winnie (3,700*F90) 3→ 1 1.4 1.7 13.7 5.9 421 614

stics (17,000*F77) 739→ 1467 8.6 2.4 15.3 3.9 155 186

smac-sail(3,500*F77) 1321→ 7801 5.9 1.0 10.5 3.1 2 21

traces (19,800*F90) 8→ 1 4.0 1.3 12.9 3.8 159 4390

mit-gcm(258,225*F77) 4704→ 1 8.5 2.0 14.5 6.6 260 5709

alif (6,755*C) 1413→ 1 6.0 1.6 14.0 4.3 729
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Conclusion

AD is now a mature technology

If your function is implemented, consider AD

Adjoint AD still requires more effort, but it’s worth it

Many researchers are building excellent AD tools, for you

Enjoy today’s presentations !
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Tapenade validation and debug

Automated validation:

-context generates a context code to run diff code, to validate
TGT against DD, and to validate ADJ against TGT.

When AD goes wrong:

-debugTGT, -debugADJ insert debugging primitives at strategic
places.

-nooptim NAME turns off the AD optimization named NAME, for
a less efficient but maybe more robust diff code.

Hascoët (INRIA) ST-AD GDR Calcul, 2019 62 / 66



Phases of an AD project

development time

Tangent Adjoint

Tuning

MPI

- run preprocessors

- identify diff goal

- adapt source,

       write stubs

- validation setup

- Tapenade debug

- adapt source

- dynamic memory

- non-reentrant code

- validation setup

- Tapenade debug

- solvers

- fixed-points

- loops

- checkpoints

- activity w/MPI

- use AMPI library

- AMPI extensions

3 to 4 phases,

mostly sequential,

needs interaction with AD tool developers...
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Overloading AD: pros and cons

+ -

light-weight, versatile (mildly)hand-modified source

adapts to exotic control
and constructs

overloading required,
restricted data-flow analysis
no global analysis

higher-order, Taylor,
intervals

not-so-efficient adjoints
(trajectory storage on tape)
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Splitting and merging differentiated instructions

Split common subexpressions in derivatives

Merge unnecessary intermediate derivatives

näıve adjoint split and merge
resb = v(j)*gb(i, j)

vb(j) = vb(j) + res*gb(i, j)

gb(i, j) = 0.0

taub = taub

+(z(j)-2.0)*g(i, j)*resb/v(j)

wb(i, j) = wb(i, j)

-g(i, j)*(z(j)-2.0)*resb/v(j)

gb(i, j) = gb(i, j)

+(z(j)-2.0)*(tau-w(i, j))*resb/v(j)

zb(j) = zb(j)

+(tau-w(i, j))*g(i, j)*resb/v(j)

vb(j) = vb(j)

-(tau-w(i, j))*g(i, j)*(z(j)-2.0)*resb/v(j)**2

resb = v(j)*gb(i, j)

temp = (z(j)-2.0)/v(j)

tempb0 = temp*g(i, j)*resb

tempb = (tau-w(i, j))

*g(i, j)*resb/v(j)

vb(j) = vb(j)

+res*gb(i, j) -temp*tempb

gb(i, j) = temp

*(tau-w(i, j))*resb

taub = taub + tempb0

wb(i, j) = wb(i, j) - tempb0

zb(j) = zb(j) + tempb
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By the way: Combining Checkpointing and TBR{{ {U C D

The Snapshot may take care of TBR coming from U

The TBR sent to D can take care of the Snapshot

A range of “optimal” combinations exist.
E.g., given tbrU coming from U, “lazy” snapshot:

Snapshot = out(C) ∩
(
use(C) ∪ tbrU

)
tbr to D =

(
use(C) ∪ tbrU

)
\ out(C)

tbr to C = tbrU
Hascoët (INRIA) ST-AD GDR Calcul, 2019 66 / 66


	AD principle
	AD tools
	Challenges of Adjoint AD
	Data-Flow Analysis
	Checkpointing
	Profitable Situations
	Validation of Adjoint AD
	The fun of Adjoint AD
	Commercial break
	Applications and performance

