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Contact Q“

www.firedrakeproject.org/contact.html

Methods

- Slack: firedrakeproject.slack.com
- Mail: firedrake@imperial.ac.uk (subscribe first)

- Github: github.com/firedrakeproject/firedrake
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What is Firedrake? Q“

[...] an automated system for the portable solution of
partial differential equations using the finite element
method.

- Written in Python.

- Finite element problems specified with embedded domain
specific language.

- Runtime compilation to low-level (C) code.

- Expressly data parallel: don't worry about MPI.
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A specification of finite element problems

Find u € Vx Q C H(div) x L? sit.

from firedrake import =
mesh = UnitSquareMesh(100, 100)

V = FunctionSpace(mesh, "RT”, 2) <U, V> + <d|V Vv, D) =0 VV S %

Q = FunctionSpace(mesh, "DG”, 1)

W= veQ divu,q) = —{(1 N .
u, = TrialFunctions(W) < ’q> ( ’q> q € Q

p
v, q = TestFunctions(W)

a = dot(u, v)*dx + div(v)+pxdx + div(u)=*g+dx

L = -Constant(1)vdx

u = Function(Ww)

solve(a == L, u, solver_parameters={
"ksp_type”: "gmres”,
"ksp_rtol”: le-8,
"pc_type”: "fieldsplit”,
"pc_fieldsplit_type”: "schur”,
"pc_fieldsplit_schur_fact_type”: "full”,
"pc_fieldsplit_schur_precondition”: "selfp”,
"fieldsplit_0_ksp_type”: "preonly”,
"fieldsplit_0_pc_type”: "ilu”,
"fieldsplit_1_ksp_type”: "preonly”,
"fieldsplit_1_pc_type”: "hypre” \




Symbolic, numerical computing Q“

Weave together

- symbolic problem description
W = V*Q
u, p = TrialFunctions(W)
v, q = TestFunctions(W)
a = dot(u, v)*dx + div(v)=p*dx + div(u)=qg=dx
L = -Constant(1)#vxdx

- with problem-specific data (which mesh, what solver?)

mesh = UnitSquareMesh(100, 100)
V = FunctionSpace(mesh, "RT”, 2)
Q = FunctionSpace(mesh, "DG”, 1)

solve(a == L, u, solver_parameters=...)

and synthesise efficient implementation from the symbolic
problem description.
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More than a pretty face Qi‘

Library usability

- High-level language enables rapid model development
- Ease of experimentation

- Small model code base

Library development

- Automation of complex optimisations
- Exploit expertise across disciplines

- Small library code base
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Composability of libraries that manipulate PDE solvers Q“

www.dolfin-adjoint.org
Automated derivation of the discrete adjoint from forward
models written using FEniCS and Firedrake.

$ cloc dolfin-adjoint/
Language files blank comment code

Python 54 2322 937 7294
$ cloc dolfin-adjoint/compatibility.py
Python 1 38 11 140
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www.dolfin-adjoint.org

Ease of experimentation Q“

How much code do you need to change to

- Change preconditioner (e.g. ILU to AMG)?

- Drop terms in the preconditioning operator?

- Use a completely different operator to precondition?
- Do quasi-Newton with an approximate Jacobian?

- Apply operators matrix-free?

Same “easy to use” code must run fast at scale.
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Say what, not how.




Firedrake

automated finite element system.

Finite element problems written in the FEniCS
& F705%: language (UFL + problem solving language).

ite element language obje

Mesh, Functi

nSpace, Function.

4

7
<, dolfin-adjoint
Adjoint simulations by
automated reasoning about the
finite element problem.
\

Form compiler converts
tegrals into unscheduled loops.

Extended FIAT

&s 095 element tabulator

PyOP2
Interface

MPI

Optimised compiled mesh loops

PyOP2

High performance
mesh execution abstraction.

r
PETSc
DMPlex global mesh objects

Linear and nonlinear solvers
\ J




Local kernels




Automating expertise Q“

- “In-person” case-by-case optimisation does not scale

- Code generation allows us to package expertise and
provide it to everyone

- Done by a special-purpose kernel compiler
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COFFEE I %

No single optimal schedule for evaluation of every finite
element kernel. Variability in

- polynomial degree,

- number of fields,

- kernel complexity,

- working set size,

- structure in the basis functions,

- structure in the quadrature points,
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COFFEE Il %

Vectorisation

Align and pad data structures, then use intrinsics or rely on
compiler.

Luporini, Varbanescu, et al. 2015 doi: 10.1145/2687415

Flop reduction

Exploit linearity in test functions to perform factorisation, code
motion and CSE.

Luporini, Ham, and Kelly 2016 arXiv: 1604.05872 [cs.MS]

github.com/coneoproject/COFFEE
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Global iteration




Tensions in model development | Q“

Performance

- Keep data in cache as long as possible.
- Manually fuse kernels.
- Loop tiling for latency hiding.

- Individual components hard to test

- Space of optimisations suffers from combinatorial
explosion.
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Tensions in model development Il Q“

Maintainability

- Keep kernels separate
- “Straight-line” code

- Testable

- Even if performance of individual kernels is good, can lose
a lot

-



PyOP2 53*‘

A library for expressing data parallel iterations

Sets iterable entities
Dats abstract managed arrays (data defined on a set)
Maps relationships between elements of sets
Kernels local computation
par_loop Data parallel iteration over a set

Arguments to parallel loop indicate how to gather/scatter
global data using access descriptors

par_loop(kernel, iterset, datal(mapl, READ), data2(map2, WRITE))
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Key ideas Q“

Local computation
Kernels do not know about global data layout.

- Kernel defines contract on local, packed, ordering.

- Global-to-local reordering/packing appears in map.

“Implicit” iteration
Application code does not specify explicit iteration order.

- Define data structures, then just “iterate”

- Lazy evaluation
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Did we succeed?




Experimentation Q“

With model set up, experimentation is easy

- Change preconditioner: c. 1 line
- Drop terms: c. 1-4 lines

- Different operator: c. 1-10 lines
- quasi-Newton: c. 1-10 lines

- Matrix-free: c. 1-10 lines (+ c. 30 lines for preconditioner).
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Maintainability Q“

Core Firedrake Shared with FEniCS
Component  LOC Component  LOC
Firedrake 11000 FIAT 4000
PyOP2 5000 UFL 13000
TSFC 3500 Total 17000
COFFEE 4500
Total 24000
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Performance | Q“

Kernel performance
- COFFEE produces kernels that are better (operation count)
than existing automated form compilers
- Provably optimal in some cases

- Good vectorised performance, problem dependent, but up
to 70% peak for in-cache computation.
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Summary Q“

- Firedrake provides a layered set of abstractions for finite
element

- Enables automated provision of expertise to model
developers

- Computational performance is good, often > 50%
achievable peak.
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