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Τα  παντα  ρει

Crown Breakup - maragoni instability 
drop impact onto an ethanol sheet

[2]! S.  T. THORODDSEN, T. G. ETOH, AND K.  TAKEHARA. CROWN BREAKUP BY 
MARANGONI INSTABILITY. J. FLUID MECH., 557(-1):63–72, 2006.

Vasculogenesis
blood vessel formation in embryonic 
development

R. M. H. MERKS, S. V. BRODSKY, M. S. GOLIGORKSY, 
S. A.NEWMAN, AND J. A. GLAZIER. CELL 
ELONGATION IS KEY TO IN SILICO REPLICATION 
OF IN VITRO VASCULOGENESIS AND SUBSEQUENT 
REMODELING. DEVELOPMENTAL BIOLOGY, 289(1):
44–54, 2006.
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25 years DINFKCSE  Lab

Runs at IBM Watson Center - BLue Gene/L 

The Flow and Growth of  Aircraft Wakes16384 Cores  - 10 Billion  Particles - 60% efficiency

Chatelain P., Curioni A., Bergdorf M., Rossinelli D., Andreoni W., Koumoutsakos P., Billion Vortex Particle Direct Numerical Simulations of Aircraft Wakes, Computer Methods in Applied Mech. and Eng. 197/13-16, 1296-1304, 2008 
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Milde F.,et al., A hybrid model of sprouting angiogenesis, Biophysical J.. 2008 

Cancer Growth and Flow 

credit : Roche
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Vortex Dynamics 
Koumoutsakos  Lab, ETHZ

Growth of Black Holes
Springel, MPI - Hernquist, Harvard

Transport in aquaporins
Schulten Lab, UIUC

PARTICLE  METHODS  ARE  UNIQUE

-9 0 +9

Molecular 
Dynamics

Vortex
Methods

Smoothed  Particle
Hydrodynamics
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A BRIEF  HISTORY of PARTICLE METHODS
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The 60’s : Marker And Cell (MAC) -(velocity – pressure)

Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface,, Harlow, Francis H. and Welch, J. Eddie, Physics of Fluids, 1965

F.H. Harlow and E.J. Welch
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Vortex Methods the 70–80’s

Chorin Leonard Belotserkovsky
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CFD genesis : Vortex Particle Methods 

@u

@t
+ u ·ru = �rP + ⌫r2u��( )

•No pressure  - Incompressibility  enforced
•Poisson equation for getting the velocity
•Langragian formulation

� = �� u r2u = �r⇥ !

D!

Dt
= ! ·ru + ⌫r2!

dxp

dt

= u
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vortex Particle Methods : From the 60’s to the 80’s 

What PAUSED Vortex Methods ?  

3D - Boundaries 
Cost
No theory of convergence
............
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Particles strike back  : SPH (Monaghan, Lucy, 1970’s)

GRID FREE + LAGRANGIAN/ADAPTIVE  + NO POISSON EQUATION

Growth of Black Holes
Springel, MPI - 
Hernquist, Harvard
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�p
Dup

Dt
= (⇥ · ⇥)p

dxp

dt
= up

PARTICLES : Lagrangian Form of Conservation Laws

SPH, Vortex Methods

m
dup

dt
= Fp

dxp

dt
= up

Molecular Dynamics, DPD
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J. H. Walther, P. Koumoutsakos, Three-dimensional vortex methods for particle-laden flows with two-way coupling, J. Comput. Phys.,  2001

Particle Approximations + Particle Models
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PARTICLE  METHODS

CONTINUUM APPROXIMATIONS
Particles as quadrature points of integral approximations

DISCRETE  MODELS
Particles represent discrete elements

COMMON ALGORITHMIC STRUCTURES
Algorithms, Data structures - HPC implementation

dxi

dt
= Ui(qj , qi, xi, xj , · · · )

dqi

dt
= Gi(qj , qi, xi, xj , · · · )

PROS
Adaptivity, Robustness
Multiphysics

CONS
Low Accuracy,Inconsistent
Expensive
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FUNCTIONS and PARTICLES

h

ε

�(x) =
�

�(y) �(x� y) dy

Integral Function Representation Point Particle Quadrature

�h(x, t) =
Np�

p=1

hd
p �p(t) �(x� xp(t))

�h
� (x, t) =

Np�

p=1

hd
p �p(t) ��(x� xp(t))��(x) =

�
�(y) ��(x� y) dy

Function Mollification Smooth Particle Quadrature

Particles are “mesh” free 
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�(t) = {x 2 ⌦ | �(x, t) = 0}
|r�| = 1

SURFACES  AS  LEVEL SETS

∂Φ
∂t

+ u ⋅∇Φ = 0

EVOLVING THE LEVEL SETS

PARTICLE APPROXIMATION

�h
� (x, t) =

Np�

p=1

hd
p �p(t) ��(x� xp(t))

D�p

Dt
= 0

dxp

dt
= up

Lagrangian Surface Transport

S. E. Hieber and P. Koumoutsakos. A Lagrangian particle level set method. J. Computational Physics, 210:342-367, 2005
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Lagrangian vs Eulerian Descriptions

PARTICLE LEVEL SETS  exact for rigid body motion

Lagrangian Particle  Level Sets 
(Hieber and Koumoutsakos, 2005)Hubrid Particle-Grid  Level Sets 

(Enright and Fedkiw, 2002)

�(x, t) = �0(x� ut)

 Lagrangian Particle methods 
good for linear advection 
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LAGRANGIAN  DISTORTION

Particles follow flow trajectories - Location distortion 

EXAMPLE :  
Incompressible 2D Euler Equations  

� = ⇥� u ⇥ · u = 0

D�

Dt
= 0

There is an exact axisymmetric solution

•loss of overlap -> loss of convergence
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J. Raviart (1970’s), O. Hald (1980’s), Anderson, G.H. Cottet (1990’s)

SMOOTH PARTICLES MUST OVERLAP

 Need h/ε < 1 for accuracy 

  PARTICLES MUST ALWAYS 
OVERLAP

�h(x, t) =
Np�

p=1

hd
p �p(t) �(x� xp(t))

�h
� (x, t) =

Np�

p=1

hd
p �p(t) ��(x� xp(t))��(x) =

�
�(y) ��(x� y) dy

�(x) =
�

�(y) �(x� y) dy

Integral Function Representation Point Particle Quadrature

Function Mollification Smooth Particle Quadrature

||� � �h
� || ⇥ ||� � ��|| + ||�� � �h

� ||

� (C1 �r + C2 (
h

�
)m) ||�||�

TOTAL ERROR 

Z
⇣ x

↵
dx = 0↵ 0  ↵ < r

Friday, July 20, 12



Are Particle Methods  Grid Free ?

How to fix it ?
•Modify the smoothing kernels (SPH - Monaghan) 
•Re-distribute particles with Voronoi Meshes (ALE - Russo)
•Re-initialise particle strengths (WRKPM - Liu, Belytchko) 

DOES NOT WORK
EXPENSIVE - UNSTABLE

EXPENSIVE 

REMESHING : Re-project particles on a mesh
•NO MESH-FREE particle methods
•Can use all the “tricks” of mesh based methods
•High CFL
•Multiresolution & Multiscaling
•.......
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Particle Remeshing = Resampling

Q

new
p =

X

p0

Qp0
M(j h� xp0)
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Particle Remeshing

Moment conserving Interpolation

−3 −2 −1 0 1 2 3
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1.2

 

 

Mp4
M*6

= Resampling

�

i

M(x� i) i� = x�

Remesh on i = 1...L  grid points 
Conserving L moments a = 1....L  implies
 L (well posed) equations for L unknowns 

Solve to derive M

20 Chapter 2. Particle Methods

compressible flows, that feature discontinuities in the density or velocity,
such a kernel can lead to spurious shock waves, and smoothing remeshing
kernels should be used. For the application of the smooth particle method
to incompressible flow the kernel of choice is usually a tensor product of
the M ⇥

4 function. This kernel was derived in [102] as an extrapolation of a
fourth-order B-spline kernel:

M ⇥
4(x) =

3
2

�
B4(x) +

x

3
�B4

�x

⇥
, (2.30)

its explicit form is:

M ⇥
4(x) =

⇤
⌃⇧

⌃⌅

1
2 (|x|� 1)(3 |x|2 � 2 |x|� 2) |x| < 1
� 1

2 (|x|� 1)(|x|� 2)2 1 ⇥ |x| < 2
0 2 ⇥ |x| .

(2.31)

This kernel is nominally third order accurate, is interpolating and has a
support of 4, and was used for the first time for vortex methods in [86].

For high-order calculations we derived the M ⇥⇥⇥
6 and the M�

6 kernel func-
tions:

M ⇥⇥⇥
6 (x) =

⇤
⌃⌃⌃⇧

⌃⌃⌃⌅

� 1
88 (|x|� 1)(60 |x|4 � 87 |x|3 � 87 |x|2 + 88 |x| + 88) |x| < 1

1
176 (|x|� 1)(|x|� 2)(60 |x|3 � 261 |x|2 + 257 |x| + 68) 1 ⇥ |x| < 2
� 3

176 (|x|� 2)(4 |x|2 � 17 |x| + 12)(|x|� 3)2 2 ⇥ |x| < 3
0 |x| ⇤ 3 .

(2.32)

The first 6 moments of this kernel vanish, it is interpolating, it has even
parity, and the first derivative is zero x = ±3.

The M�
6 function nominally fourth-order accurate and has a support of 6:

M�
6 (x) =

⇤
⌃⌃⌃⇧

⌃⌃⌃⌅

� 1
12 (|x|� 1)(24 |x|4 + 38 |x|3 � 3 |x|2 + 12 |x| + 12) |x| < 1

1
24 (|x|� 1)(|x|� 2)(25 |x|3 � 114 |x|2 + 153 |x|� 48) 1 ⇥ |x| < 2
� 1

24 (|x|� 2)(|x|� 3)3(5 |x|� 8) 2 ⇥ |x| < 3
0 3 ⇥ |x|

(2.33)
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OPEN SOURCE  www.cse-lab.ethz.ch/software.html 

Library for MPI parallel Particle-Mesh simulations

vector shared memory distributed memory single processor

Message Passing Interface (MPI)

Parallel Particle Mesh Library (PPM)

METIS FFTW

Fig. 16. Iso-surfaces of the vorticty (|ω| = 10) for t=5.0, 6.0, 9.0, 10.5, 12.0, and 14.2.
The surfaces are colored according to the magnitude of the vorticity components
perpendicular to the tube axes.

5 Summary

We have presented new Parallel Particle Mesh library ppm which provides
a general-purpose, physics-independent infrastructure for simulating contin-
uum physical systems using particle methods employing particle, mesh, and
hybrid particle-mesh algorithms. The design goals included ease of use, flexi-
bility, state-of-the-art parallel scaling, good vectorization, and platform inde-
pendence.

Ease of use was achieved by limiting the number of user-callable functions and
using generic interfaces and overloading for different variants of the same task.
The library has demonstrated its ease of use in the process of developing the
client applications presented in this paper. Within a few weeks, and without
library documentation, a single person could write and test a complete parallel
simulation application.

Flexibility and independence from specific physics was demonstrated by hav-
ing various simulation client applications. The library was successfully com-
piled and used on Intel/Linux, Apple G5/OS X, IBM p690/AIX, NEC SX-
5/SUPER-UX, and AMD Opteron/Linux.

Parallel scaling and efficiency were assessed in the test cases presented in Sec-
tion 4 of this paper. All applications showed parallel efficiencies comparable to
the present state of the art and favorable run-times on large systems. More-
over, vectorization as tested on the NEC SX-5 computer demonstrated the
suitability of the ppm library for vector architectures. Ongoing work involves
extension of the library to discrete atomistic, mesoscale and hybrid systems
as they are simulated by partile methods.

The absence of suitable parallel libraries has prevented so far the widespread

29

PPM : Parallel Particle Mesh library 

I.F. Sbalzarini, et. al.. J. Computational Physics,, 2006

www.ppm-library.org
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Scalability – CRAY XT5

Strong 
Size : 1280x1280x640

time : 512/90s - 8192/10s

Weak
time : 64/40s - 32768/85s

N = 2M N = 0.13M M = 64M
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Experiments : P. Schatzle & D. Coles (1986)

VORTEX RING COLLISION,  Re = 1800
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Vortex Ring Collision - Re = 10,000
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VORTEX DYNAMICS at High Re
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VORTEX DYNAMICS OF TUBES @ Re = 10,000

PSP

VM
RESOLUTION : 1280 X 960 x 640 = 0.8 Billion elements

Timings : 23sec (PSP) &  12.5 sec (VM) per step (on 4096 cores) : to T = 11.5 : Nsteps (PSP - RK4) = 8400, Nsteps (VM)- RK3 = 17,000 
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VORTEX DYNAMICS OF TUBES @ Re = 10,000

PSP

VM + M*6
RESOLUTION : 1280 X 960 x 640 = 0.8 Billion elements

Timings : 23sec (PSP) &  12.5 sec (VM) per step (on 4096 cores) : to T = 11.5 : Nsteps (PSP - RK4) = 8400, Nsteps (VM)- RK3 = 17,000 

VM + M’4

What is the 
effect of 

Remeshing ?
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REMESHED PARTICLE METHODS

1.ADVECT :  Particles ->Large CFL

2.REMESH :  Particles  to  Mesh -> Gather/Scatter

3.SOLVE:Poisson/Derivatives on Mesh ->FFTw/Ghosts

4:RESAMPLE: Mesh Nodes  BECOME  Particles 
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25 years DINFKwww.cse-lab.ethz.chSIMULATIONS USING PARTICLES

Are grid-free  Particle Methods Accurate ?

NO 
Remeshing

Remeshing
RK4

Remeshing
Euler
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http://www.cse-lab.ethz.ch
http://www.cse-lab.ethz.ch


25 years DINFKwww.cse-lab.ethz.chSIMULATIONS USING PARTICLES

Double Shear-Layer (Minion and Brown, JCP, 1997)

256x256 
particles

512x512 
particles2048x2048 

particles
Friday, July 20, 12
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Size of Remeshing Stencil = # Conserved Moments

h Xp - Xg

� �(�� 1)
2

�(2� �)
2

(1� 3
2
� +

1
2
�2)

� =
Xp �Xg

h

Bergdorf et. al., MMS,2005
Cottet et.al., CRAS, 2008
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+ REMESH

Euler Advect + One-sided Remesh = Beam-Warming FD

Euler Advect + Central Remesh = Lax - Wendroff FD ................

dxp

dt
= a

dup

dt
= 0up = u(xp)h

un+1
p = un

p �
�

2
(3un

p � 4un
p�1 + 4un

p�2) +
�2

2
(un

p � 2un
p�1 + un

p�2)

� �(�� 1)
2

un
p�2 +

�(2� �)
2

un
p�1 + (1� 3

2
� +

1
2
�2)un

pun+1
p =

p-­‐1p-­‐2 p+1 p+2p

tn

tn+1

�u

�t
+ a

�u

�x
= 0

⇥ = xp � xg =
a�t

h

= (p + �)hxn+1
p = xn

p + a �t
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25 years DINFKwww.cse-lab.ethz.chSIMULATIONS USING PARTICLES

So far, fields required to advance particles and update their 
strength (velocity, pressure, diffusion ..) supposed available.

Recovering these fields from the particle strengths 
is the main challenge in particle methods.

Two possible approaches: 
•ONLY Particles - grid-free methods
•rely on an underlying Eulerian grid - particle-grid methods

PARTICLE METHODS (flavors)

Friday, July 20, 12
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25 years DINFKwww.cse-lab.ethz.chSIMULATIONS USING PARTICLES

7

Other functions that ”resemble” more to the dirac mass, in the sense that they have the
same values (zero) for higher moments, can be constructed in a systematic way, a topic
that is beyond the scope of these class notes. We refer to [21] for further discussions on
this issue.

The particle representation formula (4) then becomes a blob representation

u(x, t) ⇤ u�(x, t) =
�

�p⇥�(x� xp(t)). (7)

Most importantly, regularization can be used to compute local (e.g. algebraic functions)
or non-local (in particular derivatives of any order) quantities based on u. We will show
later a number of examples of how this principle is used in practice.

Using smooth particles to solve 3 in the general case (F ⌅= 0), one further needs
to increment the particle strength by the amount that is dictated from the right hand
side F . For that purpose, local values of F at particle locations multiplied by local
volumes around particles are required. The local values of F can always be obtained
from regularization formulas (7). The volumes v of the particles are updated using the
transport equation

⌥v

⌥t
+ div (Uv) = �v div U (8)

The particle representation of the solution is therefore given by (4), (5) complemented
by the differential equations

dvp

dt
= �div U(xp, t) vp ,

d�p

dt
= vpFp. (9)

In (4), particle masses represent local integrals of the desired quantity around a parti-
cle. Typically, if particles are initialized on a regular lattice with grid size �x, one will
set x0

p = (p1�x, · · · , pn�x) and �p = (�x)d u(xp, t = 0). One may also write the
weight of the particles as the product of the particle strength and particle volume that are
updated separately :

�p = vp up. (10)

2.2 Examples: SPH and Vortex Methods

Two of the most widely used particle methods for flow simulations are Smoothed Particle
Hydrodynamics (SPH) and Vortex Methods (VM). We outline here the key elements of
these methods with an emphasis on their underlying principles. Extensive reviews of
these methods can be found in [63, 48].

2.2.1 COMPRESSIBLE FLOWS AND SPH The method of SPH was introduced for
the study of gas dynamics as they pertain to astronomical systems [56,31]. In these notes
we introduce for simplicity the numerical formulation of Smoothed Particle Hydrody-
namics (SPH), using the Euler equations for gas dynamics in one space dimension. The
equations of gas dynamics for the density ⇤ and the velocity u can be cast in the follow-
ing form

⌥⇤

⌥t
+ u

⌥⇤

⌥x
= �⇤

⌥u

⌥x
(11)

⌥u

⌥t
+ u

⌥u

⌥x
=

⌥⌅

⌥x
(12)

OPERATION  COUNT
•O(N) for local operations (multiplication, differentation ..)
•complexity increases if non-local quantities need to be 
recovered 
(typically : velocity fields from vorticity-carrying particles)

ε

X
p

SMOOTH PARTICLES
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25 years DINFKwww.cse-lab.ethz.chSIMULATIONS USING PARTICLES

Hybrid particle-grid methods : values are assigned to grid points by interpolation

∂U

∂t
+ div (a : U) + AU = F

∂(ajui) / ∂xj

ρ(x) =
∑

p

αpδ(x − xp)

ρu(x) =
∑

p

βp(t)δ(x − xp)

ρE(x) = · · ·

ui =
1

εd

∑

p

φi(xp)

∂ρ

∂t
+

∂(ρu)

∂x
= 0

∂(ρu)

∂t
+

∂(ρu u)

∂x
=

∂p

∂x
∂(ρE)

∂t
+

∂(ρE u)

∂x
=

∂(pu)

∂x

Comparison with a recent work of Smereka about approximation of delta-functions: computation of the
arc-length of an ellipse

φ(x, y) =
x2

a2
+

y2

b2
− 1 L =

∫

Ω

1

ε
ζ(

φ

ε
)|∇ϕ|dxdy

with a = 1.5 and b = 0.75, with random center and orientation.

Mesh Size Smereka Renormalization
Rel. Error Order Rel. Error Order

0.2 9.38 × 10−3 1.5 × 10−1

0.1 2.23 × 10−3 2.07 5 × 10−3

0.05 8.12 × 10−4 1.46 1.3 × 10−3 1.9
0.025 2.71 × 10−4 1.58 3 × 10−4 2.11
0.0125 7.58 × 10−5 1.83 8 × 10−5 1.9
0.00625 3.04 × 10−5 1.32 2 × 10−5 2

∂ω

∂t
+ (u · ∇)ω − (ω · ∇)u = 0 in fluid domain (1)

u · n = 0 on Γb (2)

∂ω

∂t
− ν∆ω = 0 in fluid domain

ν
∂ω

∂n
= −

u · τ

∆t
on Γb

nδΓ(x) ≈
1

ε
∇φ(x)ζ

(

φ(x)

ε

)

1

X
p

ε

X
i

15

into the flow, and it is memory efficient, requiring only one N additional storage per
variable. The overall procedure is illustrated by Algorithm 1.

Set up, initial conditions, etc. , t = 0;
/* Particle quantities stored in arrays,

e.g. vorticity: ⌅ ⇧ R⇥�N. For the ODE solver we
need two temporary variables: u0, and d⌅0 */

while t ⇥ T do
for l = 1 to 3 ; /* stages of the ODE Solver */
do

Interpolate ⌅ onto the grid (⌅ ⌅ ⌅ijk);
Compute velocity uijk from ⌅ijk;
u0⇤ Interpolate uijk onto the particles;
u0⇤ u + �l u0; d⌅0⇤ d⌅ + �l d⌅0 ; /* � = (0,�5

9 , 153
128) */

x⇤ x + ⇤t ⇥l u0; ⌅ ⇤ ⌅ + ⇤t ⇥l d⌅0 ;
end

end
Algorithm 1: A Particle-in-Cell method using Williamson’s Runge-Kutta scheme
no.7.

We note that this hybrid formulation has enabled simulations using an unprecedented
number of 10 billion particles [12] of computational elements for the simulation of
aircraft vortex wakes (see Fig:7 )

2.3.3 GRID-FREE VS. HYBRID - THE WINNER IS.... Let us now pause to com-
pare the respective merits of the grid-free and particle-grid approaches. Clearly the grid-
free approach is appealing in that it fully maintains the lagrangian nature of the method.
If short range interactions of particles are involved in the right hand side F one may
devise particle interactions on physical basis. Particle methods can then be seen both as
numerical methods and as discrete physical models. For incompressible flows the Biot-
Savart law is required to compute non-local interactions. One is thus led to a N -body
problem. If the vorticity is sampled on N particles, the simple minded calculation of
the right hand side of (23) requires O(N2) operations, something which is not afford-
able for N beyond a few hundreds. To overcome this problem, a lot of effort has been
devoted, following the pioneering work of Greengard and Rokhlin [33], to reduce this
cost to something approaching O(N). To summarize, the idea is to divide the particle
distribution in clusters of nearby particles. The exact interaction of particles in one clus-
ter with particles of another well separated cluster is replaced by an algebraic expansion
using the moments of clusters of particles around their center. The number of terms only
depends on the desired accuracy and never goes beyond a single digit number. Only
interaction between particles in the same cluster are computed by direct summation. For
maximal efficiency, the clustering of particles is done using a tree algorithm which cre-
ates boxes at different level of refinements containing always about the same number of
particles. These fast summation formulas are now routinely used in CFD particle-based
grid-free codes.

Unfortunately, practice shows that the construction of the tree, the evaluation of ex-
pansion coefficients and of the direct interaction of nearest particles, remain expansive,
in particular in 3D. As a matter of fact the turnover point where the fast summation
formulas become cheaper than the direct summation formulas is always beyond a few
hundreds, which means that the constant in front of N or N log N in the evaluation of

HYBRID Particle-Grid Methods
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http://www.cse-lab.ethz.ch
http://www.cse-lab.ethz.ch


25 years DINFKwww.cse-lab.ethz.chSIMULATIONS USING PARTICLES

Complexity of grid-free vs hybrid methods differ mostly when 
non-local quantities must be recovered.
Typically:  compute velocity field from vorticity-carrying particles

Problem to be solved : div u = 0 , ∇ x u = ω = ∑ αp δ(x-xp) 
and prescribed behavior at infinity

Grid-free vs hybrid particle-grid - The winner  is ..

13

is an additional quantity carried by the particles, and both particles velocity and energy
have to be assigned on the grid to compute the stresse which are next interpolated on the
particles. The use of a mesh in the context of SPH helps accelerate the calculations and
as we will see later it helps maintain the accuracy of the method. This combination of
grids and particles, that we baptized PMH : Particle-Mesh Hydrodynamics [13]has been
shown to be highly effective in a number of flow systems that have been challenging for
traditional SPH. The two phases of assignment and interpolation between grid and parti-
cles are crucial to ensure that the process is both accurate and does not introduce spurious
oscillations. A lot of effort has been devoted in CFD to this issue. We will come back
later when we discuss remeshing which somehow is currently the most effective way to
approach this problem. Grid-free SPH have a symmetric issue for the choice of the ker-
nel W and renormalization techniques to ensure conservation properties. Both methods
crucially need to care about the number of particles per grid-size (for PIC method) or
inside the range of the kernel W (for grid-free methods). It is important to realize at
that point that in particle methods particles have a numerical meaning not as individual
points but only through their collective contribution. This is a definite difference with
finite-diffrence, finite element or finite volume methods.

2.3.2 VORTEX METHODS : GRID FREE AND HYBRID For the second example,
we consider vortex methods of the the inviscid (� = 0) Navier-Stokes equation (18).
In that case, we only need to determine the velocity values necessary to push particles
and to update particle vorticity values. The grid-free way to do it relies on the so-called
Biot-Savart law.

The Biot-Savart law is an integral expression of the velocity in terms of the vorticity.
Consider first the case of a non-bounded flow. A divergence-free velocity u with vorticity
⇥ and vanishing at infinity is given by

u(x, t) =
�

K(x� y)⇤ ⇥(y) dy (23)

where the kernel K is given by the formula K(x) = 1
4�

x
|x|3 . If the velocity has a given

non zero value at infinity, this contribution has just to be added in the right hand side of
(23).

The case of a flow with solid boundaries is more involved. In that case the bound-
ary condition to be imposed on the velocity is in general a condition on the normal
component of the velocity (a condition on the other component becomes necessary and
physically relevant only for viscous flows). For the classical case of no-flow through
a boundary � enclosing a fluid domain ⇥, the theory of integral equations leads to the
addition of a potential to the formula (23) :

u(x, t) =
�

⇥
K(x� y)⇤ ⇥(y) dy +

�

�
K(x� y)⇤ q(y) dy (24)

where q is a potential to be determined through an integral equation such that the result-
ing velocity satisfies:

u(x, t) · n(x) = 0for xon �
The enforcement of the kinematic boundary conditions result in boundary integral equa-
tions that can be solved using boundary element methods [36] an approach that is widely
used in engineering.

Let us now turn to the hybrid particle-grid counterpart of this method. As for the
case of gas dynamics, one first needs to assign the quantity advected by particles - the

with K  = (1/4π) (x/|x|3)

Remove singularity of K by replacing particle by blobs to obtain : u(xp)=∑ αp Kε(xp-xq)

Grid-free methods rely on Bio-Savart integral representation:

Complexity of grid-free vs hybrid methods
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O(N2) complexity can be reduced to O(NLogN) with Fast  Summation Algorithms: 
The key idea is to replace kernel by algebraic  expansions: 

O(N2) complexity can be reduce to O(NLogN) by using Fast
Summation Algorithms: idea is to replace kernel by algebraic
expansions:

(Greengard-Rocklin, for logarithmic kernel)

with precise estimates
(from Greengard-Rocklin 1982, for logarithmic kernel) 

Fast Summation Algorithms
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Gain over direct summation can be explained on simple example

Field of M particles on N particles: 
• direct summation: O(MN) operations
• Fast summation with p terms: O(Mp+Np)

§ O(Mp) calculations to compute expansion coefficients from sources
§ 0(Np) calculations to evaluate expansions on receivers 

 M
  N

 

Fast Summation Algorithms
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Divide recursively 
into boxes containing about 
the same number of particles

Upward pass: 
form mulipole expansions,  from 
finer to coarser level (using shifts of 
previously computed expansions)

Downward pass: 
accumulate contributions of well-
separated boxes, from coarser to 
finer level

At finest level, complete with direct 
summation of nearby particles

Tree Codes and Fast Multipole Methods
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Hybrid particle-grid for field calculations (also called Particle-In-Cell/Vortex-In-Cell 
method):

•Project particle strength on grid points
•Use a Poisson solver on that grid
•Differentiate on the grid to get grid field values
•Interpolate back fields on particles

Typically, a formula that conserves 4 first moments of particle 
distributions is used 
-> 4x4x4= O(64N) algorithm
splitting formula reduces to O(12N)

Hybrid - Particle Methods
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DRAWBACKS
•against Lagrangian features of particles (and possible loss of information in grid-
particle interpolations)

•require far-field artificial boundary conditions

ADVANTAGES
•cheap (for relatively simple geometries)
•relying on a grid also useful/needed for remeshing and adapting 
local resolution
(come back later on this important issue) 
•allows to add subgrid (turbulent) effects on passive tracers by 
simple interpolations

Hybrid vs. Grid-free
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Comparison of CPU times for velocity evaluations in 3D

(Krasny tree-code vs VIC with Fishpack and 64 points interpolation formulas)

VIC1: cartesian  grid 
with 100% particles

VIC2: polar grid with 
65% particles

VIC3: polar grid with 
25% particles 

direct 
summation

Tree code

VIC1

VIC3

VIC2

Computational Cost
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Runs at IBM Watson Center - BLue Gene/L 

The Flow and Growth of  Aircraft Wakes16384 Cores  – 10 Billion  Particles - 60% efficiency
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PARTICLES ARE ADAPTIVE

yet inefficient ! 
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THE COMPETITION:  Adaptive Mesh Refinement 

Support of unstructured grids

Different mesh orientations
• Low compression rate

• No explicit control on the error 

References: Berger, Oliger, Colella, Quirk, ...
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(open source) Particle Library + 16K processors = 10 Billion Vortex Particles
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Particle  Methods  are  Adaptive yet  Inefficient

Chatelain P., Curioni A., Bergdorf M., Rossinelli D., Andreoni W., Koumoutsakos P., Billion Vortex Particle Direct Numerical Simulations of Aircraft Wakes, Computer Methods in Applied 
Mechanics and Engineering, 197/13-16, 1296-1304, 2008 
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I. Multiscale Simulations : Same Physics Scales 

MULTI-RESOLUTION 

Wavelet based Particle Methods 
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Multiresolution via Remeshing

Q

new
p =

X

p0

Qp0
M(j h� xp0)

Grid can have variable/adaptive  size

• Moment conserving
• Tensorial Product of 1D kernels
• Programming is challenging
  

Key  Issue   :    Introduction of a grid - The old  “magic” is gone 
Enabling  :  ● MULTIRESOLUTION - New Magic

● Fast Poisson solvers  - Efficient Differential operators
● Avoiding accumulation of energy in the small scales
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Multiresolution Techniques for Particles

Adaptive Global Mappings
Keypoints: Adaptive mapping 
represented by particles

uniform particles multiresolution particles

mapping f represented
by particles

f(x̂, t)

AMR-based
Keypoints: High-resolution particles 
are created on patches of refinement + Multilevel remeshing

Particle-Wavelet Method
Keypoints: Wavelets guide particle 
refinement. Lagrangian accounting for 
convection of small scales

3D curvature driven collapse of a 
level set dumbbell

Axisymmetrization of an
elliptical vortex (2D Euler)
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Adaptive Multiresolution Particle   Methods

 Adaptive  Global  
Mapping

adaptation

adaptation

 Adaptive Mesh 
Refinement
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Adaptive Global Mappings

x̂ 2 Ω̂ x 2Ω

Reference space
uniform particle size/shape

Physical space
distorted particle sizes/shapes

Particles are mapped from a ‘reference’ space with uniform 
particle sizes to the ‘physical’ space with varying particle sizes

f : x̂ 7! x

Key Point : Transient Particle approximation of the map

x = f(x̂, t) =
X

j

�j(t) '(x̂� ⇠j)smooth in 
space & time
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Convection-Diffusion equation

@q

@t
+r · (u q) = ⌫ �q

� =
@x̂

@x

ũ = � (û� U)
q(x, t)$ q(x̂, t)
q̂0 = ��1q̂

Physical space

Reference space @q̂0

@t
+ r̂ (ũ q̂0) = ⌫r̂

⇣
�r̂ (�q̂0)

⌘

Jacobian
convection velocity
in reference space

dx̂p
dt

= ũp
dQ̂p

dt
= ν

ε̂2∑
q

Φp+Φq

2
⇥
Q̂qv̂pΦq� Q̂pv̂qΦp

⇤
ηε̂ (x̂p� x̂q)

dv̂p
dt

= 1
ε̂ ∑
q

⇥
ũp+ ũq

⇤
∇̂ζε̂(x̂p� x̂q) v̂q v̂p

dχi
dt

= U(ξi)

positions

strengths

volumes

map Q̂p = q̂0
p v̂p

Monitor function M(x̂, t) M(x̂, t)�

�1
= const

nonlinear diffusion operator 

U = Cr̂ ·
⇣
Mr̂x

⌘
Choice of map adaptation  in case > 1D
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Burger’s equation

64 256 102410-5

10-4

10-3

10-2

10-1

@u

@t

+
@

@x

�
u

2
�

= ⌫

@

2
u

@x

2

● adaptive
o non-adaptive

particles

L2
 e

rr
or

L2 error for the moving shock problem

relative particle size

U = 1
2 u
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Evolution of Elliptical Vortex

Vorticity Particle size

Bergdorf, Cottet & Koumoutsakos, MMS, 2005

 2D Euler equations
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Evolution of Elliptical Vortex

Vorticity Particle size

Bergdorf, Cottet & Koumoutsakos, MMS, 2005

 2D Euler equations
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Adaptive  Multiresolution  Particle  Methods  (AMR)

Different maps which are piecewise constant are used 
in different parts of the domain leading to different 

core-/grid-sizes

Remeshing is used to communicate boundary conditions 
between levels of different core-sizes
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AMR  Particle Methods

€ 

∂u
∂t

+
∂
∂x

u2( ) = ν
∂ 2u
∂x 2

.

• periodic boundary 
     conditions

• viscosity coefficient (1e-3)
•initial condition leading to 

  steady “shock”
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Evolution of Elliptical Vortex - AMR

Vorticity

Bergdorf, Cottet & Koumoutsakos, MMS, 2005

 2D Euler equations
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http://www.icos.ethz.ch/cse APS Meeting March 2006

ENHANCED  (Dynamic)  
AGM - Adaptive Global Mappings

Transient adaptive mapping from a mono-scale reference space to 
physical space.

Moving Mesh PDEs

AMR - Grid-Particle  Methods

Multiresolution Analysis (MRA) of particle function representation.
Lagrangian convection of the scale distribution.

  PMW - Particle - Wavelet-based Multiresolution
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Adaptive Multiresolution 
 Adaptive  Global  

Mapping

adaptation

adaptation

 Adaptive Mesh 
Refinement
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Adaptive Global Mappings and AMR

Vorticity Particle size

 2D Euler equations

M. Bergdorf, G.-H. Cottet, P. Koumoutsakos, Multilevel adaptive particle methods for convection-diffusion equations, Multiscale Modeling and Simulation: 
A SIAM Interdisciplinary Journal, 4(1), 328-357, 2005

PARTICLES + AMR
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PARTICLETS : Particles and Wavelets

M. Bergdorf, P. Koumoutsakos. A Lagrangian Particle-Wavelet Method. 
Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 5(3), 980-995, 2006
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Wavelet  Compression

50:1
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WAVELET  PARTICLE  METHOD
While particles are on grid locations

mollification kernel             basis/scaling function

Multiresolution analysis (MRA)              of particle quantities{V l}L
l=0

+

⇣l+1
k =

X

j

h̃l
j,k ⇣

l
j +

X

j

g̃l
j,k  

l
j

Refineable kernels
as basis functions of 

=

⇣l
k =

X

j

hl
j,k ⇣l+1

jV l

Wavelets as basis functions of the 
complements W l

=
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Multiresolution function representation:

l

qL =
X

k

c0
k ⇣

0
k +

X

l<L

X

k

dl
k  

l
k

GROUND LEVEL

DETAIL 
COEFFICIENTS

WAVELETS

Analysis (collocation): ~ | fine - Prediction(coarse) |dl
k

(2D)

Each wavelet is associated 
with a specific
grid point/particle Compression/Adaptation:

Discard insignificant detail coefficients:

Compressed function representation:

→ Adapted grid

|dl,m
k | < �

⇥qL � qL
�⇥ < �
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PARTICLETS : REMESHED PARTICLES + WAVELETS

qL =
X

k

c0
k ⇣

0
k +

X

l<L

X

k

dl
k  

l
k

“ground” level detail 
coefficients wavelets

1.Remesh 
2.Wavelets- Compress/Adapt
3.Convect
4.Wavelets Reconstruct
5.GOTO 1
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Multilevel P2M
Basic concept: Interpolate particles of level l onto grid points of level l by buffer particles

Algorithm:

?
Key points: Get buffer values from l - 1

Size of buffer depends on kernel and “target set”

How to chose 
the target set?

u1
grid-based method, CFL < 1

Friday, July 20, 12



Key idea: Account for the convection 
of small scales in a 
Lagrangian way

u1

 In multidimensions the scale distribution (≈grid) 
can become amorphous, complex ... 

Indicator function: 

1 	

 for grid points/particles that have been selected by the FWT 
0 	

 for buffer grid points/particles

�l
k

target set = remeshed indicator function > 1.0-!

Convection of the Scale Distribution

d�l
p

dt
= 0 .
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Lagrangian transport of multiscale information

Particle methods: possibly CFL >> 1                Traditional approaches become inefficient

1) Grid points/particles selected by MRA
2) Indicator function alongside particle properties
3) Convect indicator and properties
4) mark grid points where Remeshing 
    is consistent (indicator)
5) Remesh particle properties onto selected grid 
points

-> perform MRA on new set of active grid points

Benefit: •the whole adaptivity structure of the grid is convected by the
    flow map in a Lagrangian way.
•independence of CFL
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Convection of the Scale Distribution

The scale distribution, i.e. the whole adaptivity structure of the 
grid is convected by the flow map in a Lagrangian way

Buffer sizes are bounded by

Independence of  CFL

d 1
2 supp(M) + LCFLe

Friday, July 20, 12



Multi-core: Blocked Grid

Neighbors look-up: less memory indirections
Less #ghosts
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Wavelet Adapted Particle Level Sets

Surface capturing: �(t) = {x 2 ⌦ | �(x, t) = 0}
@�

@t
+ u ·r� = 0 .

        OFTEN “Narrow Band” formulation (Adalsteinsson & Sethian, 1995)

FREE by virtue of adaptivity
Smooth truncation of detail coefficients: dl,m

k  dl,m
k ⌘

�
� (hl+1)�1

�

Reinitialization:  

|r�| = 1

@�

@⌧
+ sign (�)(|r�|� 1 ) = 0

(Sussman et al. 1994)

�

�

0
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MULTIRESOLUTION  LEVEL  SETS

Present Method
dof = # active gp/particles at t=0.0
dof = # active gp/particles at final time

Enright,  Fedkiw et al, 2002
dof = # grid points  + aux. particles at t=0.0

degrees of freedom

re
la

tiv
e 

er
ro

r 
in

 a
re

a

CFLmax ~ 40
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Results: Level sets

Simulation of 3D curvature-driven flow: Collapsing Dumbbell

 = r · n

@�

@t
+  n ·r� = 0.

and a time step of 2 · 10!5. The particles are reinitialized every 10th time step. Fig. 25 shows the sur-
face as it appears initially, after shrinkage, when reaching the singularity and after the break up. The
quality of the results is comparable with the finite difference solution of Sethian [39,40] as seen in Fig.
26. The resolution of domain and the size of the time step are equivalent in both simulations. The
interface is plotted every 100 time steps, later, when approaching the singularity, it is plotted every
10 time steps.

Fig. 24. Curvature flow of an H-shaped contour at t = 0, 10!3, 3 · 10!3, 5 · 10!3, 10 · 10!3, 14 · 10!3 with initially 1701 particles
(solid line) in comparison to Tang [38] (dashed line).

Fig. 25. Evolution of a dumbbell shaped surface under mean curvature flow at t = 0, 10!3, 1.1 · 10!3, 1.26 · 10!3 (initially 334,616
particles).

22 S.E. Hieber, P. Koumoutsakos / Journal of Computational Physics xxx (2005) xxx–xxx
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distribution of active particles 
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Results: 2D Euler equations

@!

@t
+r · (u !) = 0

u = r⇥ 

� = !

CFL
max

⇡ 10
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Results: Crystal Growth

Simulation of Dendritic growth
Interface is driven by the jump of the temperature flux across it.

crystallization core

super-cooled liquid@T

@t
= r · (krT )

T |� = T�

@�

@t
+ u ·r� = 0

u|� = �n[krT · n]�
� = {x | �(x = 0) }
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Multiresolution Level sets

1378 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 44, NO. 9, SEPTEMBER 1997

(a) (c)

(b) (d)

Fig. 6. LPCVD of SiO from silane in a trench. (a) The SEM [30]. Process conditions: 380 C, 250 mTorr, , SiH /N /O /PH . (b) The simulated
profile evolution. (c) The close-up of the region of interest in (b). (d) The adaptive quad-tree mesh corresponding to the final profile.

for each region. Since each region is moved independently, a

consistency criterion [24]

(11)

can be imposed to maintain consistent common interface

between any pair of adjacent regions.

B. Discretization and Solution Schemes

For the spatial discretization of (2), the central difference

scheme is used. Since is important only in the

vicinity of the boundary, and the velocity can only be

meaningfully computed by physical modeling on the boundary,

adaptive gridding methodology can be applied without loss of

generality. This also saves the computation at the points which

hold little information about the boundary. The narrow-band

method [25] incurs significant complexity in maintaining an

update matrix to register the location of a thin tube around

the boundary, and in reinitializing the grid to keep the moving

boundary within the tube. The level set method on adaptive

quad/oct-tree mesh [26] is a more straightforward alternative,

Losasso, Fedkiw et al.
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Level sets: Benchmark & Extension

Simulation of 3D curvature-driven 
flow
Collapsing Dumbbell@�

@t
+  n ·r� = 0.

and a time step of 2 · 10!5. The particles are reinitialized every 10th time step. Fig. 25 shows the sur-
face as it appears initially, after shrinkage, when reaching the singularity and after the break up. The
quality of the results is comparable with the finite difference solution of Sethian [39,40] as seen in Fig.
26. The resolution of domain and the size of the time step are equivalent in both simulations. The
interface is plotted every 100 time steps, later, when approaching the singularity, it is plotted every
10 time steps.

Fig. 24. Curvature flow of an H-shaped contour at t = 0, 10!3, 3 · 10!3, 5 · 10!3, 10 · 10!3, 14 · 10!3 with initially 1701 particles
(solid line) in comparison to Tang [38] (dashed line).

Fig. 25. Evolution of a dumbbell shaped surface under mean curvature flow at t = 0, 10!3, 1.1 · 10!3, 1.26 · 10!3 (initially 334,616
particles).

22 S.E. Hieber, P. Koumoutsakos / Journal of Computational Physics xxx (2005) xxx–xxx
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“Surfactant” dynamics
Adapt to:
• complex geometric features of Γ
• small scales of functions defined on Γ
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Lagrangian transport of multiscale information

Particle methods: possibly CFL >> 1                Traditional approaches become inefficient

MRA adapts grid Create particles
with indicator

Interpolate indicator 
onto grid

Indicator defines new grid
Interpolation of particle quantities onto this  
is consistent
MRA on 

K>(t)

K>(t + �t)

K>(t + �t)
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