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The original Schwarz Method (H.A. Schwarz, 1870)

−∆(u) = f in Ω
u = 0 on ∂Ω.

Ω1 Ω2

Schwarz Method : (un
1 ,u

n
2)→ (un+1

1 ,un+1
2 ) with

−∆(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 = un

2 on ∂Ω1 ∩ Ω2.

−∆(un+1
2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 = un+1

1 on ∂Ω2 ∩ Ω1.

Parallel algorithm, converges but very slowly, overlapping
subdomains only.
The parallel version is called Jacobi Schwarz method (JSM).
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Motivation: pro and cons of direct solvers

Complexity of the Gauss factorization

Gauss d = 1 d = 2 d = 3
dense matrix O(n3) O(n3) O(n3)

using band structure O(n) O(n2) O(n7/3)

using sparsity O(n) O(n3/2) O(n2)

Different sparse direct solvers

PARDISO (http://www.pardiso-project.org)

SUPERLU (http://crd.lbl.gov/˜xiaoye/SuperLU)

SPOOLES
(www.netlib.org/linalg/spooles/spooles.2.2.html)

MUMPS (http://graal.ens-lyon.fr/MUMPS/)

UMFPACK (http:
//www.cise.ufl.edu/research/sparse/umfpack)
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Why iterative solvers?

Limitations of direct solvers
In practice all direct solvers work well until a certain barrier:

two-dimensional problems (106 unknowns)
three-dimensional problems (105 unknowns).

Beyond, the factorization cannot be stored in memory any
more.
To summarize:

below a certain size, direct solvers are chosen.
beyond the critical size, iterative solvers are needed.
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Why domain decomposition?

Natural iterative/direct trade-off
Parallel processing is the only way to have faster codes,
new generation processors are parallel: dual, quadri core.
Large scale computations need for an ”artificial”
decomposition
Memory requirements, direct solvers are too costly.
Iterative solvers are not robust enough.

New iterative/direct solvers are welcome : these are
domain decomposition methods

In some situations, the decomposition is natural
Moving domains (rotor and stator in an electric motor)
Strongly heterogeneous media
Different physics in different subdomains
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Linear Algebra from the End User point of view

Direct DDM Iterative

Cons: Memory Pro: Flexible Pros: Memory

Difficult to || Naurally || Easy to ||
Pros: Robustness Cons: Robustness

solve(MAT,RHS,SOL) Few black box routines solve(MAT,RHS,SOL)

Few implementations

of efficient DDM

Multigrid methods: very efficient but may lack robustness, not
always applicable (Helmholtz type problems, complex systems)
and difficult to parallelize.
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The First Domain Decomposition Method

The original Schwarz Method (H.A. Schwarz, 1870)

−∆(u) = f in Ω
u = 0 on ∂Ω.

Ω1 Ω2

Schwarz Method : (un
1 ,u

n
2)→ (un+1

1 ,un+1
2 ) with

−∆(un+1
1 ) = f in Ω1

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 = un

2 on ∂Ω1 ∩ Ω2.

−∆(un+1
2 ) = f in Ω2

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 = un+1

1 on ∂Ω2 ∩ Ω1.

Parallel algorithm, converges but very slowly, overlapping
subdomains only.
The parallel version is called Jacobi Schwarz method (JSM).
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Continuous ASM and RAS - I

The algorithm acts on the local functions (ui)i=1,2.
To make things global, we need:

extension operators, Ei , s.t. for a function wi : Ωi 7→ R,
Ei(wi) : Ω 7→ R is the extension of wi by zero outside Ωi .
partition of unity functions χi : Ωi 7→ R, χi ≥ 0 and
χi(x) = 0 for x ∈ ∂Ωi and s.t.

w =
2∑

i=1

Ei(χi w|Ωi
) .

Let un be an approximation to the solution to the global Poisson
problem and un+1 is computed by solving first local
subproblems and then gluing them together.
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Continuous ASM and RAS - II

Local problems to solve

−∆(un+1
i ) = f in Ωi

un+1
i = 0 on ∂Ωi ∩ ∂Ω

un+1
i = un on ∂Ωi ∩ Ω3−i .

Two ways to ”glue” solutions
Using the partition of unity functions
Restricted Additive Schwarz (RAS)

un+1 :=
2∑

i=1

Ei(χi un+1
i ) .

Not based on the partition of unity Additive Schwarz
(ASM)

un+1 :=
2∑

i=1

Ei(un+1
i ) .
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Block Jacobi methods - I

Let us consider a linear system:

AU = F

with a matrix A of size m ×m, a right handside F ∈ Rm and a
solution U ∈ Rm where m is an integer. Let D be the diagonal
of A, the Jacobi algorithm reads:

DUn+1 = DUn + (b − AUn) ,

or equivalently,

Un+1 = Un + D−1(b − AUn) = Un + D−1rn ,

where rn is the residual of the equation.
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Block Jacobi methods - II

We now define a block Jacobi algorithm. The set of indices
{1, . . . ,m} is partitioned into two sets

N1 := {1, . . . ,ms} and N2 := {ms + 1, . . . ,m} .

Let U1 := U|N1 , U2 := U|N2 and similarly F1 := F|N1 , F2 := F|N2 .
The linear system has the following block form:(

A11 A12
A21 A22

)(
U1
U2

)
=

(
F1
F2

)
where Aij := A|Ni×Nj

, 1 ≤ i , j ≤ 2.
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Block Jacobi methods - III

The block-Jacobi algorithm reads:(
A11 0

0 A22

)(
Un+1

1

Un+1
2

)
=

(
F1 − A12 Un

2

F2 − A21 Un
1

)
. (1)

Let Un = (Un
1 ,U

n
2 )T , algorithm (1) becomes(

A11 0

0 A22

)
Un+1 = F −

(
0 A12

A21 0

)
Un . (2)

On the other hand, it can be rewritten equivalently(
Un+1

1
Un+1

2

)
=

(
Un

1
Un

2

)
+

(
A11 0
0 A22

)−1( rn
1

rn
2

)
(3)

where
rn := F − AUn , rn

i := rn
|Ni
, i = 1,2 .
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Block-Jacobi compact form

In order to have a more compact form, let us introduce
R1 the restriction operator from N into N1

R2 the restriction operator from N into N2.
The transpose operator RT

1 is an extension operator from N1
into N and the same holds for RT

2 .
Notice that Aii = RiART

i .

Block-Jacobi in compact form

Un+1 = Un + (RT
1 (R1ART

1 )−1R1 + RT
2 (R2ART

2 )−1R2)rn . (4)

where
rn := F − AUn , rn

i := rn
|Ni
, i = 1,2 .
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Schwarz algorithms as block Jacobi methods - I

Let Ω := (0,1) and consider the following BVP

−∆u = f in Ω
u(0) = u(1) = 0 .

discretized by a three point finite difference scheme on the grid
xj := j h, 1 ≤ j ≤ m where h := 1/(m + 1).
Let uj ' u(xj), fj := f (xj), 1 ≤ j ≤ m and the discrete problem

AU = F , U = (uj)1≤j≤m, F = (fj)1≤j≤m.

where Aj j := 2/h2 and Aj j+1 = Aj+1 j := −1/h2.
Let domains Ω1 := (0, (ms + 1) h) and Ω2 := (ms h,1) define an
overlapping decomposition with a minimal overlap of width h.
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Schwarz algorithms as block Jacobi methods - II

The discretization of the JSM for domain Ω1 reads
−

un+1
1,j−1 − 2un+1

1,j + un+1
1,j+1

h2 = fj , 1 ≤ j ≤ ms

un+1
1,0 = 0

un+1
1,ms+1 = un

2,ms+1

.

Solving for Un+1
1 = (un+1

1,j )1≤j≤ms corresponds to solving a
Dirichlet boundary value problem in subdomain Ω1 with
Dirichlet data taken from the other subdomain at the previous
step. Then, Un+1

1 and Un+1
1 satisfy

A11Un+1
1 + A12Un

2 = F1,

A22Un+1
2 + A21Un

1 = F2 .
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Schwarz as block Jacobi methods - III

The discrete counterpart of the extension operator E1 (resp.
E2) is defined by E1(U1) = (U1,0)T (resp. E2(U2) = (0,U2)T ).

Ω1 Ω2
xms xms+1

χ1 χ2

then E1(U1) + E2(U2) = E1(χ1U1) + E2(χ2U2) =

(
U1
U2

)
.

When the overlap is minimal, the discrete counterparts of the
three Schwarz methods are equivalent to the same block
Jacobi algorithm.
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Continuous level

Ω and an overlapping decomposition Ω = ∪N
i=1Ωi .

A function u : Ω→ R.
Restriction of u : Ω→ R to Ωi , 1 ≤ i ≤ N.
The extension Ei of a function Ωi → R to a function Ω→ R.
Partition of unity functions χi , 1 ≤ i ≤ N.

Discrete level

A set of d.o.f. N and a decomposition N = ∪N
i=1Ni .

A vector U ∈ R#N .
The restriction Ri U where U ∈ R#N and Ri is a
rectangular #Ni ×#N boolean matrix.
Extension RT

i .
Diagonal matrices with positive entries, of size #Ni ×#Ni
s. t. Id =

∑N
i=1 RT

i Di Ri .
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Restrictions operators

Let Th be a mesh of a domain Ω and uh some discretization of a
function u which is the solution of an elliptic Dirichlet BVP. This
yields a linear algebra problem

Find U ∈ R#N s.t. A U = F .

Define the restriction operator ri = ET
i :

ri : uh 7→ uh|Ωi

Let Ri be the boolean matrix corresponding to the restriction
operator ri :

Ri :=


1 0 0 0 0 0 0 0 0 . . .
0 0 1 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 1 . . .


Ri : R#N 7−→ R#Ni
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Partition of unity

We have
Ri : R#N 7−→ R#Ni

and the transpose is a prolongation operator

RT
i : R#Ni 7−→ R#N .

The local Dirichlet matrices are given by

Ai := RiART
i .

We also need a kind of partition of unity defined by matrices Di

Di : R#Ni 7−→ R#Ni

so that we have:
N∑

i=1

RT
i DiRi = Id
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Two subdomain case: 1d algebraic setting

Let N := {1, . . . ,5} be partitioned into

N1 := {1,2,3} and N2 := {4,5} .

N1 N2

1 2 3 4 5

Then, matrices R1, R2, D1 and D2 are:

R1 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 and R2 =

(
0 0 0 1 0
0 0 0 0 1

)
.

D1 =

1 0 0
0 1 0
0 0 1

 and D2 =

(
1 0
0 1

)
.

V. Dolean & F. Nataf Domain Decomposition 21 / 136



Consider now the case overlapping case

N δ=1
1 := {1,2,3,4} and N δ=1

2 := {3,4,5} .

N δ=1
1

N δ=1
2

1 2 3 4 5

Then, matrices R1, R2, D1, D2 are:

R1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 and R2 =

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

D1 =


1 0 0 0
0 1 0 0
0 0 1/2 0
0 0 0 1/2

 and D2 =

1/2 0 0
0 1/2 0
0 0 1

 .
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Two subdomain case: 1d finite element decomposition

Partition of the 1D mesh corresponds to an ovr. decomp. of N :

N1 := {1,2,3} and N2 := {3,4,5} .

Ω1 Ω2

1 2 3 4 5

Then, matrices R1, R2, D1, D2 are:

R1 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

 and R2 =

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

D1 =

1 0 0
0 1 0
0 0 1/2

 and D2 =

1/2 0 0
0 1 0
0 0 1


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Consider now the situation of an overlapping partition.

N δ=1
1 := {1,2,3,4} and N δ=1

2 := {2,3,4,5} .

Ωδ=1
1 Ωδ=1

2

1 2 3 4 5

Then, matrices R1, R2, D1, D2 are:

R1 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 and R2 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 .

D1 =


1 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 1/2

 and D2 =


1/2 0 0 0
0 1/2 0 0
0 0 1/2 0
0 0 0 1

 .
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Multi-D and many subdomains: General procedure

The set of indices N can be partitioned by an automatic graph
partitioner such as METIS or SCOTCH.

From the input matrix A, a connectivity graph is created.
Two indices i , j ∈ N are connected if the matrix coefficient
Aij 6= 0.
Even if matrix A is not symmetric, the connectivity graph is
symmetrized.
Algorithms that find a good partitioning of highly
unstructured graphs are used.
This distribution must be done so that the number of
elements assigned to each processor is roughly the same
(balance the computations among the processors).
The number of adjacent elements assigned to different
processors is minimized (minimize the communication
between different processors).
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Multi-D algebraic setting

Let us consider a partition into N subsets

N := ∪N
i=1Ni , Ni ∩Nj = ∅ for i 6= j .

N δ=1
2

N δ=1
1

N δ=1
3N2

N1

N3

Extend each subset Ni with its direct neighbors to form N δ=1
i .

Let Ri be the restriction matrix from set N to the subset N δ=1
i

and Di be a diagonal matrix of size #N δ=1
i ×#N δ=1

i , 1 ≤ i ≤ N
such that for

Mj := {1 ≤ i ≤ N| j ∈ N δ=1
i } .

and j ∈ N δ=1
i , we define (Di)jj := 1/#Mj .
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Multi-D algebraic finite element decomposition

In a FE setting, the computational domain is the union of
elements of the finite element mesh Th.

It is possible to create overlapping subdomains resolved by the
finite element meshes:

Ωi =
⋃
τ∈Ti,h

τ for 1 ≤ i ≤ N . (5)
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Let {φk}k∈N be a basis of the finite element space. For
1 ≤ i ≤ N, we define

Ni := {k ∈ N : supp(φk ) ∩ Ωi 6= ∅} .

For all degree of freedom k ∈ N , let

µk := # {j : 1 ≤ j ≤ N and supp(φk ) ∩ Ωj 6= ∅} .

Let Ri be the restriction matrix from set N to the subset Ni and
Di be a diagonal matrix of size #Ni ×#Ni , 1 ≤ i ≤ N. Then,
for k ∈ Ni , we define (Di)kk := 1/µk .
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Algebraic formulation - JSM

Define local unknowns Ui := Ri U for i = 1, . . . ,N and local
right handside Fi := Ri F .

Ri A U = Ri A RT
i (Ri U) + Ri A (Id − RT

i Ri)U = Fi

= Ri A RT
i Ui + Ri A (Id − RT

i Ri)
∑N

j=1 RT
j Dj Rj U

= Ri A RT
i Ui +

∑N
j=1 Ri A (Id − RT

i Ri)RT
j DjUj

Notice that (Id − RT
i Ri)RT

i Ri = 0 so we have

Ri A RT
i Ui +

∑
j 6=i

Ri A (Id − RT
i Ri)RT

j DjUj = Fi (6)
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Algebraic formulation - JSM

Let us define the block matrix Ã (extended matrix)

(Ã)ii := Ri A RT
i , (Ã)ij := Ri A (Id − RT

i Ri)RT
j Dj , 1 ≤ i 6= j ≤ N

Define (extended) unknown vector and right-hand side

Ũ := (U1, . . . ,Ui , . . . ,UN)T ∈ R
∑N

i=1 #Ni ,

F̃ := (R1 F , . . . ,Ri F , . . . ,RN F )T ∈ R
∑N

i=1 #Ni .

Let (MJSM)ii := (Ã)ii = Ri A RT
i . The block Jacobi method

applied to the (extended) system

Ã Ũ = F̃

is the JSM:

Ũn+1 = Ũn + M−1
JSM r̃n , r̃n := F̃ − Ã Ũn. (7)
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Algebraic formulation - RAS and ASM

As for (RAS), we give the following definition

M−1
RAS :=

N∑
i=1

RT
i Di (Ri A RT

i )−1 Ri (8)

so that the iterative RAS algorithm reads:

Un+1 = Un + M−1
RASrn , rn := F − A Un.

For (ASM), we give the following definition

M−1
ASM :=

N∑
i=1

RT
i (Ri A RT

i )−1 Ri (9)

so that the iterative ASM algorithm reads:

Un+1 = Un + M−1
ASM rn .
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Geometrical analysis in 1d

Let L > 0 and the domain Ω = (0,L) be decomposed into two
subodmains Ω1 := (0,L1) and Ω2 := (l2,L) with l2 ≤ L1. The
error en

i := un
i − u|Ωi

, i = 1,2 satisfies

−d2en+1
1

dx2 = 0 in (0,L1)

en+1
1 (0) = 0

en+1
1 (L1) = en

2(L1)

then,
−d2en+1

2
dx2 = 0 in (l2,L)

en+1
2 (l2) = en+1

1 (l2)

en+1
2 (L) = 0 .

(10)
Thus the errors are affine functions in each subdomain:

en+1
1 (x) = en

2(L1)
x
L1

and en+1
2 (x) = en+1

1 (l2)
L− x
L− l2

.
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Thus, we have

en+1
2 (L1) = en+1

1 (l2)
L− L1

L− l2
= en

2(L1)
l2
L1

L− L1

L− l2
.

Let δ := L1 − l2 denote the size of the overlap, we have

en+1
2 (L1) =

l2
l2 + δ

L− l2 − δ
L− l2

en
2(L1) =

1− δ/(L− l2)

1 + δ/l2
en

2(L1) .

It is clear that δ > 0 is sufficient and necessary to have
convergence.

L1l2 L

e1
1 e1

2

e2
1

e2
2

e3
1

0

x

δ

e0
2
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Fourier analysis in 2d - I

Let R2 decomposed into two half-planes Ω1 = (−∞, δ)× R and
Ω2 = (0,∞)× R with an overlap of size δ > 0 and the problem

(η −∆)(u) = f in R2,
u is bounded at infinity ,

By linearity, the errors en
i := un

i − u|Ωi satisfy the JSM f = 0:

(η −∆)(en+1
1 ) = 0 in Ω1

en+1
1 is bounded at infinity

en+1
1 (δ, y) = en

2(δ, y),

(11)

(η −∆)(en+1
2 ) = 0 in Ω2

en+1
2 is bounded at infinity

en+1
2 (0, y) = en

1(0, y).

(12)
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Fourier analysis in 2d - II

By taking the partial Fourier transform of the equation in the y
direction we get:(

η − ∂2

∂x2 + k2
)

(ên+1
1 (x , k)) = 0 in Ω1.

For a given k , the solution

ên+1
1 (x , k) = γn+1

+ (k) exp(λ+(k)x) + γn+1
− (k) exp(λ−(k)x).

must be bounded at x = −∞. This implies

ên+1
1 (x , k) = γn+1

+ (k) exp(λ+(k)x)

and similarly,

ên+1
2 (x , k) = γn+1

− (k) exp(λ−(k)x)
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Fourier analysis in 2d - III

From the interface conditions we get

γn+1
+ (k) = γn

−(k) exp(λ−(k)δ), γn+1
− (k) = γn

+(k) exp(−λ+(k)δ).

Combining these two and denoting λ(k) = λ+(k) = −λ−(k), we
get for i = 1,2,

γn+1
± (k) = ρ(k ;α, δ)2 γn−1

± (k)

with ρ the convergence rate given by:

ρ(k ;α, δ) = exp(−λ(k)δ), (13)

where λ(k) =
√
η + k2.
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Fourier analysis in 2d - IV

k

ρ

exp ��sqrt�.1�k^ 2 ��, exp ��0.5�sqrt�.1�k^ 2 �� , k from 0 to 7

Input in terpre ta tion :

p lot
exp �� 0.1 � k 2 �
exp �� 0.5 0.1 � k 2 � k � 0 to 7

Plo t:

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

�� k 2�0.1

��0.5 k 2�0.1

Genera ted by Wolfram |Alpha (www.wolfram alpha.com ) on October 26 , 2011 from Cham paign, IL.
©  Wolfram Alpha LLC—A Wolfram  Research  Company

1

Remark
We have the following properties:

For all k ∈ R, ρ(k) < exp(−√η δ) < 1 so that γn
i (k)→ 0

uniformly as n goes to infinity.

ρ→ 0 as k tends to infinity, high frequency modes of the error
converge very fast.

When there is no overlap (δ = 0), ρ = 1 and there is stagnation
of the method.

V. Dolean & F. Nataf Domain Decomposition 37 / 136



About FreeFem++ (survival kit)

FreeFem++ allows a very simple and natural way to solve a
great variety of variational problems (FEM, DG).

It is possible to have access to the underlying linear algebra
such as the stiffness or mass matrices.

Tutorial: http://www.cmap.polytechnique.fr/spip.
php?article239.

A very detailed documentation of FreeFem++ is available on
the official website http://www.freefem.org/ff++

http://www.freefem.org/ff++/ftp/freefem++doc.pdf
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Let a homogeneous Dirichlet boundary value problem for a
Laplacian defined on a unit square Ω =]0,1[2:{

−∆u = f dans Ω
u = 0 sur ∂Ω

(14)

The variational formulation of the problem

Find u ∈ H1
0 (Ω) := {w ∈ H1(Ω) : w = 0, on Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4}

such that ∫
Ω
∇u.∇vdx −

∫
Ω

f v dx = 0, ∀v ∈ H1
0 (Ω) .

Feature of Freefem++: penalization of Dirichlet BC. Let TGV
(Très Grande Valeur in French) be a very large value, the above
variational formulation is approximated by
Find u ∈ H1(Ω) such that∫

Ω
∇u.∇vdx + TGV

∫
∪i=1,...,4Γi

u v −
∫

Ω
fv dx = 0,∀v ∈ H1(Ω) .
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The following FreeFem++ script is solving this problem

// Number of mesh points in x and y directions
int Nbnoeuds=10;

The text after // symbols are comments ignored by the
FreeFem++ language.
Each new variable must be declared with its type (here int
designs integers).

//Mesh definition
mesh Th=square(Nbnoeuds,Nbnoeuds,[x,y]);

The function square returns a structured mesh of the square,
the sides of the square are labelled from 1 to 4 in
trigonometrical sense.

V. Dolean & F. Nataf Domain Decomposition 40 / 136



Define the function representing the right hand side

// Function of x and y
func f=x*y;

and the P1 finite element space Vh over the mesh Th.

// Finite element space on the mesh Th
fespace Vh(Th,P1);
//uh and vh are of type Vh
Vh uh,vh;

The functions uh and vh belong to the P1 finite element space
Vh which is an approximation to H1(Ω).

// variational problem definition
problem heat(uh,vh,solver=LU)=

int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))
-int2d(Th)(f*vh)
+on(1,2,3,4,uh=0);
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The keyword problem allows the definition of a variational
problem (without solving it)∫

Ω
∇uh.∇vhdx + TGV

∫
∪i=1,...,4Γi

uh vh −
∫

Ω
fvhdx = 0, ∀vh ∈ Vh .

where TGV is equal to 1030.
The parameter solver sets the method that will be used to
solve the resulting linear system. To solve the problem we need

//Solving the problem
heat;
// Plotting the result
plot(uh,wait=1);

The Freefem++ script can be saved with your favourite text
editor (e.g. under the name heat.edp). In order to execute the
script write the shell command

FreeFem++ heat.edp

The result will be displayed in a graphic window.
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Solve Neumann or Fourier boundary conditions such as
−∆u + u = f dans Ω
∂u
∂n = 0 sur Γ1
u = 0 sur Γ2
∂u
∂n + αu = g sur Γ3 ∪ Γ4

(15)

The new variational formulation consists in determining uh ∈ Vh
such that∫

Ω
∇uh.∇vhdx +

∫
Γ3∪Γ4

αuhvh + TGV
∫

Γ2

uh.vh

−
∫

Γ3∪Γ4

gvh −
∫

Ω
fvhdx = 0, ∀vh ∈ Vh.

The Freefem++ definition of the problem
problem heat(uh,vh)=
int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))
+int1d(Th,3,4)(alpha*uh*vh)
-int1d(Th,3,4)(g*vh)
-int2d(Th)(f*vh)
+on(2,uh=0);

V. Dolean & F. Nataf Domain Decomposition 43 / 136



In order to use some linear algebra package, we need the
matrices. The keyword varf allows the definition of a
variational formulation

varf heat(uh,vh)=
int2d(Th)(dx(uh)*dx(vh)+dy(uh)*dy(vh))
+int1d(Th,3,4)(alpha*uh*vh)
-int1d(Th,3,4)(g*vh)
-int2d(Th)(f*vh)
+on(2,uh=0);
matrix Aglobal; // stiffness sparse matrix
Aglobal = heat(Vh,Vh,solver=UMFPACK);// UMFPACK solver
Vh rhsglobal; //right hand side vector
rhsglobal[] = heat(0,Vh);

Here rhsglobal is a FE function and the associated vector of
d.o.f. is rhsglobal[].
The linear system is solved by using UMFPACK

// Solving the problem by a sparse LU sover
uh[] = Aglobalˆ-1*rhsglobal[];
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Decomposition into overlapping domains I

Suppose we want a decomposition of a rectangle Ω into
nn×mm domains with approximately nloc points in one
direction.

int nn=4,mm=4;
int npart= nn*mm;
int nloc = 20;
real allong = 1;
allong = real(nn)/real(mm);

mesh Th=square(nn*nloc*allong,mm*nloc,[x*allong,y]);
fespace Vh(Th,P1);
fespace Ph(Th,P0);
Ph part;
Ph xx=x,yy=y;
part = int(xx/allong*nn)*mm + int(yy*mm);
plot(part,fill=1,value=1,wait=1,ps="decompunif.eps");
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For arbitrary decompositions, use METIS or SCOTCH.
int nn=4,mm=4;
int npart= nn*mm;
int nloc = 20;
real allong = 1;
allong = real(nn)/real(mm);

mesh Th=square(nn*nloc*allong,mm*nloc,[x*allong,y]);
fespace Vh(Th,P1);
fespace Ph(Th,P0);
Ph part;
bool withmetis = 1;
if(withmetis) // Metis partition

{
load "metis";
int[int] nupart(Th.nt);
metisdual(nupart,Th,npart);
for(int i=0;i<nupart.n;++i)

part[][i]=nupart[i];
}

plot(part,fill=1,value=1,wait=1,ps="decompMetis.eps");
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Decomposition into overlapping domains II

To build the overlapping decomposition and the associated
algebraic call the routine SubdomainsPartitionUnity.
Output:

overlapping meshes aTh[i]
the restriction/interpolation operators Rih[i] from the
local finite element space Vh[i] to the global one Vh
the diagonal local matrices Dih[i] from the partition of
unity.

include "createPartition.edp";
include "decompMetis.edp";

// overlapping partition
int sizeovr = 3;
mesh[int] aTh(npart); // sequence of ovr. meshes
matrix[int] Rih(npart); // local restriction operators
matrix[int] Dih(npart); // partition of unity operators

SubdomainsPartitionUnity(Th,part[],sizeovr,aTh,Rih,Dih);

// Check partition of unity
Vh fctone=1;
plot(fctone,fill=1,value=1, dim=3,wait=1);

Vh sum=0;
for(int i=0; i < npart;i++)
{
Vh localone;

real[int] bi = Rih[i]*fctone[]; // restriction to the local domain
real[int] di = Dih[i]*bi;
localone[] = Rih[i]’*di;
sum[] +=localone[] ;
plot(localone,fill=1,value=1, dim=3,wait=1);

}
plot(sum,fill=1,value=1, dim=3,wait=1);
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RAS and ASM: global data
We first need to define the global data.
// Solve Dirichlet subproblem Delta (u) = f
// u = 1 on the global boundary
int[int] chlab=[1,1 ,2,1 ,3,1 ,4,1 ];
Th=change(Th,refe=chlab);

macro Grad(u) [dx(u),dy(u)] // EOM
func f = 1; // right hand side
func g = 1; // Dirichlet data

// global problem
Vh rhsglobal,uglob;
varf vaglobal(u,v) =

int2d(Th)(Grad(u)’*Grad(v))
+on(1,u=g) + int2d(Th)(f*v);

matrix Aglobal;
Aglobal = vaglobal(Vh,Vh,solver = UMFPACK); // matrix
rhsglobal[] = vaglobal(0,Vh); // rhs
uglob[] = Aglobalˆ-1*rhsglobal[];
plot(uglob,value=1,fill=1,wait=1,cmm="Solution par une methode directe",dim=3);V. Dolean & F. Nataf Domain Decomposition 48 / 136



RAS and ASM: local data

And then the local problems

// overlapping partition
int sizeovr = 4;
mesh[int] aTh(npart); // overlapping meshes
matrix[int] Rih(npart); // restriction operators
matrix[int] Dih(npart); // partition of unity
SubdomainsPartitionUnity(Th,part[],sizeovr,aTh,Rih,Dih);

matrix[int] aA(npart); // Dirichlet matrices
for(int i = 0;i<npart;++i)

{
cout << " Domain :" << i << "/" << npart << endl;
matrix aT = Aglobal*Rih[i]’;
aA[i] = Rih[i]*aT;
set(aA[i],solver = UMFPACK);// direct solvers

}

V. Dolean & F. Nataf Domain Decomposition 49 / 136



RAS and ASM : Schwarz iteration
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Convergence

Convergence history of the RAS solver for different values of
the overlapping parameter.
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Note that this convergence, not very fast even in a simple
configuration of 4 subdomains.
The iterative version of ASM does not converge. For this
reason, the ASM method is always used a preconditioner for a
Krylov method such as CG, GMRES or BiCGSTAB.
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Fixed point method

Consider a well-posed but difficult to solve linear system

A x = b

and B an “easy to invert” matrix of the same size than A. A
possible iterative method is a fixed point algorithm

xn+1 = xn + B−1(b − A xn)

and x is a fixed point of the operator:

x 7−→ x + B−1(b − A x) .

Let r0 := b − Ax0 and C := B−1 A, a direct computation shows
that we have:

xn =
n∑

i=0

(Id − C)i B−1r0 + x0 . (16)

We have convergence iff the spectral radius of the matrix Id −C
is smaller than one.
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Why Krylov methods I

Consider now a preconditioned Krylov applied to the linear
system:

B−1 A x = B−1 b

Let us denote x0 an initial guess and r0 := B−1 b − C x0 the
initial residual. Then y := x − x0 solves

C y = r0 .

The basis for Krylov methods is the following

Lemma
Let C be an invertible matrix of size N × N.
Then, there exists a polynomial P of degree p < N such that

C−1 = P(C) .
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Proof.
Let be a minimal polynomial of C of degree d ≤ N:

M(X ) :=
d∑

i=0

ai X i

We have
∑d

i=0 ai C i = 0 and there is no non zero polynomial of
lower degree that annihilates C. Thus, a0 cannot be zero since

C
d∑

i=1

ai C i−1 = 0 ⇒
d∑

i=1

ai C i−1 = 0 .

Then,
∑d−1

i=0 ai+1 X i would be an annihiling polynomial of C of
degree lower than d . This implies

Id + C
d∑

i=1

ai

a0
C i−1 = 0⇒ C−1 := −

d∑
i=1

ai

a0
C i−1 .
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Coming back to the linear system, we have

x = x0 +
d∑

i=1

(− ai

a0
)C i−1 r0 .

Thus, it makes sense to introduce Krylov spaces, Kn(C, r0)

Kn(C, r0) := Span{r0, Cr0, . . . ,Cn−1r0}, n ≥ 1.

to seek yn an approximation to y .
Example: The CG methods applies to symmetric positive
definite (SPD) matrices and minimizes the A−1-norm of the
residual when solving Ax = b:

CG

{
Find yn ∈ Kn(A, r0) such that
‖A yn − r0‖A−1 = min

w∈Kn(A,r0)
‖A w − r0‖A−1 .
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A detailed analysis reveals that xn = yn + x0 can be obtained
by the quite cheap recursion formula:

for i = 1,2, . . . do
ρi−1 = (ri−1, ri−1)2
if i = 1 then

p1 = r0
else
βi−1 = ρi−1/ρi−2
pi = ri−1 + βi−1pi−1

end if
qi = Api−1

αi =
ρi−1

(pi ,qi)2
xi = xi−1 + αipi
ri = ri−1 − αiqi
check convergence; continue if necessary

end for
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Preconditioned Krylov

By solving an optimization problem:

GMRES

{
Find yn ∈ Kn(C, r0) such that
‖C yn − r0‖2 = min

w∈Kn(C,r0)
‖C w − r0‖2

a preconditioned Krylov solve will generate an optimal xn
K in

Kn(C,B−1r0) := x0 + Span{B−1r0, C B−1r0, . . . ,Cn−1 B−1r0} .

This minimization problem is of size n. When n is small w.r.t. N,
its solving has a marginal cost. Thus, xn

K has a computing cost
similar to that of xn. But, since xn ∈ Kn(B−1A,B−1r0) as well
but with “frozen” coefficients, we have that xn is less optimal
(actually much much less) than xn

K .
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Schwarz methods as preconditioners

In the previous Krylov methods we can use as preconditioner
RAS (in conjunction with BiCGStab or GMRES)

B−1 := M−1
RAS =

N∑
i=1

RT
i Di (Ri A RT

i )−1 Ri

ASM (in a CG methods)

B−1 := M−1
ASM =

N∑
i=1

RT
i (Ri A RT

i )−1 Ri
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Preconditioner in CG

We use
M−1

ASM as a preconditioner

a Krylov method: conjugate gradient since M−1
ASM and A are

symmetric.

At iteration m the error for the PCG method is bounded by:

||x̄ − xm||
M

− 1
2

ASM AM
− 1

2
ASM

≤ 2
[√

κ− 1√
κ+ 1

]m

||x̄ − x0||
M

− 1
2

ASM AM
− 1

2
ASM

.

where κ is the condition number of M−1
ASMA and x̄ is the exact

solution.
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The CG with the ASM preconditioner becomes:

for i = 1,2, . . . do
ρi−1 = (ri−1,M−1

ASM ri−1)2
if i = 1 then

p1 = M−1
ASM r0

else
βi−1 = ρi−1/ρi−2
pi = M−1

ASM ri−1 + βi−1pi−1
end if
qi = Api−1

αi =
ρi−1

(pi ,qi)2
xi = xi−1 + αipi
ri = ri−1 − αiqi
check convergence; continue if necessary

end for
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The action of the global operator is given by
Vh Ax;
func real[int] A(real[int] &x) // A*u
{

Ax[]= Aglobal*x;
return Ax[];

}

The preconditioning method can be Additive Schwarz (ASM)
func real[int] Mm1(real[int] &l)
{

s = 0;
for(int i=0;i<npart;++i)

{
mesh Thi = aTh[i];
real[int] bi = Rih[i]*l; // restricts rhs
real[int] ui = aA[i] ˆ-1 * bi; // local solves
s[] += Rih[i]’*ui; // prolongation

}
return s[];

}

The Krylov method applied in this case is the Conjugate
Gradient (we are in the symmetric case)
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The Krylov method applied in this case is the CG. The
performance is now less sensitive to the overlap size.
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We can also use RAS as a preconditioner, by taking into
account the partition of unity

func real[int] Mm1(real[int] &l)
{

s = 0;
for(int i=0;i<npart;++i)

{
mesh Thi = aTh[i];
real[int] bi = Rih[i]*l; // restricts rhs
real[int] ui = aA[i] ˆ-1 * bi; // local solves
bi = Dih[i]*ui;
s[] += Rih[i]’*bi; // prolongation

}
return s[];

}

this time in conjuction with BiCGStab since we deal with
non-symmetric problems.
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Helmholtz Equation

We want to solve

−ω2u −∆u = f in Ω
u = 0 on ∂Ω.

The convergence rate of the classical Schwarz method is:

ρ = e−
√
−ω2 + k2 δ
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One possible Improvement: other interface conditions

(P.L. Lions, 1988)

−∆(un+1
1 ) = f in Ω1,

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

(
∂

∂n1
+ α)(un+1

1 ) = (− ∂

∂n2
+ α)(un

2) on ∂Ω1 ∩ Ω2,

(n1 and n2 are the outward normal on the boundary of the
subdomains)

−∆(un+1
2 ) = f in Ω2,

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

(
∂

∂n2
+ α)(un+1

2 ) = (− ∂

∂n1
+ α)(un

1) on ∂Ω2 ∩ Ω1.

with α > 0. Overlap is not necessary for convergence.
Extended to the Helmholtz equation (B. DesprÃ¨s, 1991)
a.k.a FETI 2 LM (Two-Lagrange Multiplier ) Method, 1998.
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Convergence with second order interface conditions

(
∂

∂ni
+ α− ∂

∂τ
γ
∂

∂τ
)

Proof of convergence valid for a problem discretized by a finite
volume scheme. At the continuous level we consider the
following problem.

η(x)u − div(κ(x)∇u) = f in Ω,
u = 0 on ∂Ω,

with η(x), κ(x) > C > 0. The domain is decomposed into N
subdomains (Ωi)1≤i≤N without overlap.
Let Γij denote the interface Γij = ∂Ωi ∩ ∂Ωj .
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Convergence

The interface condition is

κ(x)
∂un+1

i
∂ni

+ αij(x)un+1
i − ∂

∂τi
(γij(x)

∂un+1
i
∂τi

)

= −κ(x)
∂un

j

∂nj
+ αij(x)un

j −
∂

∂τj
(γij(x)

∂un
j

∂τj
) on Γij .

with
αij(x) = αji(x) ≥ α0 > 0,

γ(x)ij = γ(x)ji ≥ 0 et γij(x) = 0 sur ∂Γij

Let us denote

Λij = αij(x)− ∂

∂τi
(γij(x)

∂

∂τi
), x ∈ Γij .

Lemma

The algorithm converges in H1 (discrete norm).

The convergence rate is very sensitive to α and γ, how to
choose them?
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Optimal Interface Conditions

(Hagstrom, 1988)
Constant coefficient Advection-Diffusion equation on a domain
decomposed into two subdomains.

(~a∇− ν∆)(un+1
1 ) = f in Ω1,

un+1
1 = 0 on ∂Ω1 ∩ ∂Ω,

(
∂

∂n1
+ B1)(un+1

1 ) = (− ∂

∂n2
+ B1)(un

2) on ∂Ω1 ∩ Ω2,

(~a∇− ν∆)(un+1
2 ) = f in Ω2,

un+1
2 = 0 on ∂Ω2 ∩ ∂Ω

(
∂

∂n2
+ B2)(un+1

2 ) = (− ∂

∂n1
+ B2)(un

1) on ∂Ω2 ∩ Ω1.

where Bi , i = 1,2 are defined via a Fourier transform along the
interface
Convergence in two iterations
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Optimal Interface Conditions

Let us consider the problem

Li(Pi) = f in Ωi , i = 1,2
P1 = P2 on Γ12,

κ1
∂P1

∂n1
+ κ2

∂P2

∂n2
= 0 on Γ12.

where
Li = ηi − div(κi∇)̇

Could be as well Fluid/Structure interaction or Plate/beam
coupling.
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Optimal Interface Conditions

Let
ui = κi∇Pi

Let us consider a Schwarz type method:

L1(Pn+1
1 ) = f in Ω1

Pn+1
1 = 0 on ∂Ω1 ∩ ∂Ω

un+1
1 .~n1 + B1(Pn+1

1 )
= −un

2 .~n2 + B1(Pn
2 ) on Γ1

L2(Pn+1
2 ) = f in Ω2

Pn+1
2 = 0 on ∂Ω2 ∩ ∂Ω

un+1
2 .~n2 + B2(Pn+1

2 )
= −un

1 .~n1 + B2(Pn
1 ) on Γ2

We take
B1= DtN2.

and have convergence in two iterations.
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Optimal Interface Conditions

We introduce the DtN (Dirichlet to Neumann) map (a.k.a.
Steklov-Poincaré):

Let P0 : Γ12 → R

DtN2(P0) ≡ κ2
∂

∂n2
(P)|Γ12

(17)

where n2 is the outward normal to Ω2\Ω̄1 and P satisfies the
following boundary value problem:

L(P) = 0 in Ω2
P = 0 on ∂Ω2\Γi
P = P0 on Γ12.

We take
B1= DtN2.
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Optimal Interface Conditions

(Rogier, de Sturler and Nataf, 1993)
The result can be generalized to variable coefficients operators
and a decomposition of the domain Ω in more than two
subdomains. For the following geometries,

one can define interface conditions such as to have
convergence in a number of iterations equals to the number of
subdomains.
For arbitrary decompositions, negative conjectures have been
formulated (F. Nier, Séminaire X-EDP, 1998).

V. Dolean & F. Nataf Domain Decomposition 74 / 136



Analytical CIO in the scalar case

The Steklov-PoincarÃ c© DtN is not a partial differential
operator:

1 it is non local
2 its explicit form is not known in the general case

It is approximated by a partial differential operator

DtN ' αopt −
∂

∂τ
(γopt

∂

∂τ
)

trying to minimize the convergence rate of the algorithm.
We speak of optimized of order 2 (opt2) interface conditions
If we take γ = 0 and optimize only with respect to α, we speak
of optimized of order 0 (opt0)
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A model problem

L(u) := ηu −∆u = f in R2, η > 0

The plane R2 is divided into two half-planes with an overlap of
size δ ≥ 0 and the algorithm writes:

L(un+1
1 ) = f in Ω1 :=]−∞, δ[×R ,

(
∂

∂n1
+ α)(un+1

1 ) = (− ∂

∂n2
+ α)(un

2) at x = δ

L(un+1
2 ) = f in Ω2 :=]0,∞[×R ,

(
∂

∂n2
+ α)(un+1

2 ) = (− ∂

∂n1
+ α)(un

1) at x = 0

A Fourier analysis leads to the following convergence rate (k is
the dual variable):

ρ(k ; δ, α) =

∣∣∣∣∣
√
η + k2 − α√
η + k2 + α

∣∣∣∣∣ e−
√
η + k2 δ
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Optimizing the interface condition

In the physical space:

ρ(δ, α) = max
|k |≤1/h

∣∣∣∣∣
√
η + k2 − α√
η + k2 + α

∣∣∣∣∣ e−
√
η + k2 δ

When there is no overlap (δ = 0):
if α is h independent, then ρ ' 1− Ct h
if α varies like 1/h, then ρ ' 1− Ct h
if α solves the min-max problem:

ρ(αopt ) := min
α>0

max
|k |≤1/h

ρ(k ; 0, α)

then αopt varies like 1/
√

h and ρopt ' 1− Ct
√

h
With overlap

Classical Schwarz: α =∞, ρScwharz > ρα, ∀α
Optimization for small h with δ = C h, (Gander, SISC,
2006)
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1/∆y 10 20 40 80
αsc

opt 6 7 10 16
α = 1 27 51 104 231

Table: Number of iterations for different values of the mesh size and
two possible choices for α, no overlap
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Application: the Helmholtz Equation

M. Gander, F. Nataf, F. Magoulès
SIAM J. Sci. Comp., 2002.

We want to solve

−ω2u −∆u = f in Ω
u = 0 on ∂Ω.

The relaxation algorithm is : (up
1 ,u

p
2 )→ (up+1

1 ,up+1
2 ) with

(i 6= j , i = 1,2)

(−ω2 −∆)(up+1
i ) = f in Ωi

(
∂

∂ni
+ S)(up+1

i ) = (− ∂

∂nj
+ S)(up

j ) on Γij .

up+1
i = 0 on ∂Ωi ∩ ∂Ω

The operator S has the form

S = α− γ ∂
2

∂τ2 α, γ ∈ C
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Application: the Helmholtz Equation

By choosing carefully the coefficients α and γ, it is possible to
optimize the convergence rate of the iterative method which in
the Fourier space is given by

ρ(k ;α, γ) ≡



∣∣∣∣∣ I
√
ω2 − k2 − (α + γk2)

I
√
ω2 − k2 + (α + γk2)

∣∣∣∣∣ if |k | < ω (I2 = −1)

∣∣∣∣∣
√

k2 − ω2 − (α + γk2)√
k2 − ω2 + (α + γk2)

∣∣∣∣∣ if |k | > ω

Finally, we get analytic formulas for α and γ (h is the mesh
size):

αopt = α(ω,h) and γopt = γ(ω,h),

Moreover, a Krylov method (GC, GMRES, BICGSTAB, . . .)
replaces the fixed point algorithm.
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The Helmholtz Equation – Numerical Results

Waveguide: Optimized Schwarz method with QMR compared
to ABC0 (∂n + Iω) with relaxation on the interface
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Discretization of the two-field formulation

A direct discretization would require the computation of the
normal derivatives along the interfaces in order to evaluate the
right handsides. We introduce two new variables

λ1 = −∂u2

∂n2
+ S(u2) and λ2 = −∂u1

∂n1
+ S(u1).

The algorithm reads now

−∆un+1
1 + ω2un+1

1 = f in Ω1

∂un+1
1
∂n1

+ S(un+1
1 ) = λ1n

on Γ12

−∆un+1
2 + ω2un+1

2 = f in Ω2

∂un+1
2
∂n2

+ S(un+1
2 ) = λ2n

on Γ12

λ1n+1
= −λ2n

+ (S + S)(un+1
2 (λ1p

, f ))

λ2n+1
= −λ1n

+ (S + S)(un+1
1 (λ2p

, f )).

This new formulation paves the way for the replacement of the
fixed point algorithm by Krylov type methods (e.g. QMR,
ORTHODIR) which are both more efficient and more reliable.
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Finite Element Discretization

A finite element discretization leads to the following linear
system:

λ1 = −λ2 + (S + S)B2u2

λ2 = −λ1 + (S + S)B1u1

K̃ 1u1 = f 1 + B1T
λ1

K̃ 2u2 = f 2 + B2T
λ2 (18)

where B1 (resp. B2) is the trace operator of domain Ω1 (resp.
Ω2) on the interface Γ12. Matrix K̃ i , i = 1,2 arises from the
discretization of the local Helmholtz subproblems along with the
interface condition ∂n + α− γ∂ττ .

K̃ i = K i − ω2M i + BiT (αMΓ12 + γKΓ12)Bi (19)

where K i is the stiffness matrix, M i the mass matrix, MΓ12 is the
interface mass matrix and KΓ12 is the interface stiffness matrix.
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More precisely, the interface mass matrix MΓ12 and the
interface stiffness matrix KΓ12 are defined by

[MΓ12 ]lm =

∫
Γ12

φlφmdξ and [KΓ12 ]lm =

∫
Γ12

∇τφl∇τφmdξ (20)

where φl et φm are the basis functions associated to nodes l
and m on the interface Γ12 and ∇τφ is the tangential
component of ∇φ on the interface.
We have

S = αMΓ12 + γKΓ12 .
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The substructured linear system of the two-field formulation has
the form

Fλ = d (21)

where λ = (λ1, λ2), F is a matrix and d is the right handside

F =

[
I I − (S + S)B2K̃ 2−1

B2T

I − (S + S)B1K̃ 1−1
B1T

I

]

d =

[
(S + S)B1K̃ 1−1

f 1

(S + S)B2K̃ 2−1
f 2

]

The linear system is solved by a Krylov type method, here the
ORTHODIR algorithm. The matrix vector product amounts to
solving a subproblem in each subdomain and to send interface
data between subdomains.
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General Interface Conditions for the Helmholtz Equation
Numerical Results

Waveguide: Optimized Schwarz method with QMR and ABC0
(∂n + Iω) with relaxation on the interface
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General Interface Conditions for the Helmholtz Equation
Numerical Results

Acoustic in a Car : Iteration Counts for various interface
conditions

Ns ABC 0 ABC 2 Optimized

2 16 it 16 it 9 it

4 50 it 52 it 15 it

8 83 it 93 it 25 it

16 105 it 133 it 34 it

ABC 0: Absorbing Boundary Conditions of Order 0 (∂n + Iω)
ABC 2: Absorbing Boundary Conditions of Order 2
(∂n + Iω − 1/(2Iω)∂y2)
Optimized: Optimized Interface Conditions

V. Dolean & F. Nataf Domain Decomposition 87 / 136



Maxwell equations

The same ideas apply to Maxwell’s equations
Desprès, ; Joly, ; Roberts, A domain decomposition method for the
harmonic Maxwell equations. Iterative methods in linear algebra ,
1992.
Dolean, ; Gander, ; Gerardo-Giorda, Optimized Schwarz methods for
Maxwell’s equations. SISC, 2009

They are currently used in electromagnetic simulations:
LEE Jin-Fa - Ohio State University, ECE Department, USA:

Z. Peng, K. H. Lim, and J. F. Lee, Computations of Electromagnetic
Wave Scattering from Penetrable Composite Targets using a Surface
Integral Equation Method with Multiple Traces, IEEE T. ANTENNA
PROPAG., 2012.
Z. Peng, K. H. Lim, and J. F. Lee, Non-conformal Domain
Decomposition Methods for Solving Large Multi-scale
Electromagnetic Scattering Problems, Proceeding of IEEE, 2012.
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Optimal Interface Condition at the matrix level

When a finite element method, for instance, is used it yields a
linear system of the form AU = F , where F is a given
right-hand side and U is the set of unknowns.
Corresponding to a domain decomposition, the set of unknowns
U is decomposed into interior nodes of the subdomains U1 and
U2, and to unknowns, UΓ, associated to the interface Γ.
This leads to a block decomposition of the linear systemA11 A1Γ 0

AΓ1 AΓΓ AΓ2
0 A2Γ A22

U1
UΓ

U2

 =

F1
FΓ

F2

 . (22)
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Optimal Interface Condition at the matrix level

The DDM method reads:(
A11 A1Γ

AΓ1 AΓΓ + S2

)(
Un+1

1
Un+1

Γ,1

)
=

(
F1

FΓ + S2Un
Γ,2 − AΓ2Un

2

)
(23)

(
A22 A2Γ

AΓ2 AΓΓ + S1

)(
Un+1

2
Un+1

Γ,2

)
=

(
F2

FΓ + S1Un
Γ,1 − AΓ1Un

1

)
(24)

where
S1 = −AΓ1A−1

11 A1Γ

and
S2 = −AΓ2A−1

22 A2Γ

Convergence in two iterations
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Approximate Interface Condition at the matrix level

The matrices S1 = −AΓ1A−1
11 A1Γ and S2 = −AΓ2A−1

22 A2Γ are full
interface matrices (Γ× Γ).
Cons

Costly to compute
The subdomain matrix is partly full

Approximate S1 and S2 by sparse matrices
1 e.g. via sparse approximations to A−1

ii : SPAI
2 via local Schur complements on successive reduced

“outer” domains (γ × δ), “patches”, (Roux et al., 2006)
The first approach gives mild results. The second one is not
better than using an overlap of depth δ but is cheaper.
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Many layers

Very anisotropic and heterogeneous media, κM/κm = 107

Table: Gmres solve with TOL = 10−6

Cond. Nb Iter ‖e‖
RAS (Schwarz) 1.99 106 37 3.6 10−2

Patch 5.29 105 15 6.1 10−5

Best IC 2.1 9 1.5 10−7

Condition number of Patch method is very bad but only one
eigenvalue is very small, thus iteration count is good.
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Weak scalability

How to evaluate the efficiency of a domain decomposition?

Weak scalability – definition
”How the solution time varies with the number of processors for
a fixed problem size per processor.”

It is not achieved with the one level method

Number of subdomains 8 16 32 64
ASM 18 35 66 128

The iteration number increases linearly with the number of
subdomains in one direction.
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Convergence curves- more subdomains

Plateaus appear in the convergence of the Krylov methods.
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How to achieve scalability

Stagnation corresponds to a few very low eigenvalues in the
spectrum of the preconditioned problem. They are due to the
lack of a global exchange of information in the preconditioner.

−∆u = f in Ω
u = 0 on ∂Ω

The mean value of the solution in domain i depends on the
value of f on all subdomains.
A classical remedy consists in the introduction of a coarse grid
problem that couples all subdomains. This is closely related to
deflation technique classical in linear algebra (see Nabben and
Vuik’s papers in SIAM J. Sci. Comp, 200X).
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Adding a coarse grid

We add a coarse space correction (aka second level)
Let VH be the coarse space and z be a basis, VH = span z,
writing R0 = Z T we define the two level preconditioner as:

M−1
ASM,2 := RT

0 (R0ART
0 )
−1

R0 +
N∑

i=1

RT
i A−1

i Ri .

The Nicolaides approach is to use the kernel of the operator as
a coarse space, this is the constant vectors, in local form this
writes:

Z := (RT
i DiRi1)1≤i≤N

where Di are chosen so that we have a partition of unity:

N∑
i=1

RT
i DiRi = Id .
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Theoretical convergence result

Theorem (Widlund, Sarkis)

Let M−1
ASM,2 be the two-level additive Schwarz method:

κ(M−1
ASM,2 A) ≤ C

(
1 +

H
δ

)
where δ is the size of the overlap between the subdomains and
H the subdomain size.

This does indeed work very well

Number of subdomains 8 16 32 64
ASM 18 35 66 128

ASM + Nicolaides 20 27 28 27

V. Dolean & F. Nataf Domain Decomposition 98 / 136



Idea of the proof (Upper bound)

Lemma

If each point in Ω belongs to at most k0 of the subdomains Ωj ,
then the largest eigenvalue of M−1

ASM,2 A satisfies

λmax (M−1
ASM,2 A) ≤ k0 + 1.

Assumption (Stable decomposition)

There exists a constant C0, such that every u ∈ V admits a
decomposition u =

∑N
i=0 RT

i ui , ui ∈ Vi , i = 0, . . . ,N that
satisfies:

N∑
i=0

ãi(ui ,ui) ≤ C2
0a(u,u).
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Idea of the proof (Lower bound)

Theorem

If every v ∈ V admits a C0-stable decomposition (with uniform
C0), then the smallest eigenvalue of M−1

AS,2 A satisfies

λmin(M−1
ASM,2 A) ≥ C−2

0 .

Therefore, the condition number of the two-level Schwarz
preconditioner can be bounded by

κ(M−1
ASM,2A) ≤ C2

0(k0 + 1).
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Deflation and Coarse grid correction

Let A be a SPD matrix, we want to solve

Ax = b

with a preconditioner M (for example the Schwarz method).
Let Z be a rectangular matrix so that the “bad eigenvectors”
belong to the space spanned by its columns. Define

P := I − AQ, Q := ZE−1Z T , E := Z T AZ ,

Examples of coarse grid preconditioners

PA−DEF2 := PT M−1+Q , PBNN := PT M−1P+Q (Mandel, 1993)

Some properties: QAZ = Z , PT Z = 0 and PT Q = 0.
Let rn be the residual at step n of the algorithm: Z T rn = 0.

How to choose Z?
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Coarse grid correction for smooth problems

For a Poisson like problem, Nicolaides (1987), Sarkis (2002).
Let (χi)1≤i≤N denote a partition of unity :

Z =


χ1 0 · · · 0
... χ2 · · · 0
...

... · · · ...
0 0 · · · χN



0 50 100 150
10−8

10−6

10−4

10−2

100

102

104

 

 

X: 25
Y: 1.658e−08

SCHWARZ

additive Schwarz
with coarse gird acceleration
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Coarse grid implementation - I
It is enough to replace the Schwarz preconditioner by PBNN as
follows. First build E = Z T AZ

Vh[int] Z(npart);
for(int i=0;i<npart;++i)
{ Z[i]=1.;
real[int] zit = Rih[i]*Z[i][];
real[int] zitemp = Dih[i]*zit;
Z[i][]=Rih[i]’*zitemp;
}
real[int,int] Ef(npart,npart); // E = ZˆT*A*Z
for(int i=0;i<npart;++i)
{ real[int] vaux = A(Z[i][]);

for(int j=0;j<npart;++j)
Ef(j,i) = Z[j][]’*vaux;

}
matrix E;
E = Ef;
set(E,solver=UMFPACK);
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Coarse grid implementation - II

Then the coarse space correction Q = ZE−1Z T :

func real[int] Q(real[int] &l) // Q = Z*Eˆ-1*ZˆT
{

real[int] res(l.n);
res=0.;
real[int] vaux(npart);
for(int i=0;i<npart;++i)
{

vaux[i]=Z[i][]’*l;
}
real[int] zaux=Eˆ-1*vaux; // zaux=Eˆ-1*ZˆT*l
for(int i=0;i<npart;++i) // Z*zaux
{

res +=zaux[i]*Z[i][];
}
return res;

}
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Coarse grid implementation - III
The projector out of the coarse space P = I −QA and its
transpose PT :

func real[int] P(real[int] &l) // P = I - A*Q
{

real[int] res=Q(l);
real[int] res2=A(res);
res2 -= l;
res2 *= -1.;
return res2;

}
func real[int] PT(real[int] &l) // PˆT = I-Q*A
{

real[int] res=A(l);
real[int] res2=Q(res);
res2 -= l;
res2 *= -1.;
return res2;

}
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Coarse grid implementation - IV

And finally the preconditioner PBNN = PT M−1P + Q:

int j;
func real[int] BNN(real[int] &u) // precond BNN
{

real[int] aux1 = Q(u);
real[int] aux2 = P(u);
real[int] aux3 = Mm1(aux2);
aux2 = PT(aux3);
aux2 += aux1;
++j;

return aux2;
}
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Motivation

Large discretized system of PDEs
strongly heterogeneous coefficients
(high contrast, nonlinear, multiscale)

E.g. Darcy pressure equation,
P1-finite elements:

Au = f

cond(A) ∼ αmax

αmin
h−2

Goal:
iterative solvers
robust in size and heterogeneities

QUATERNARY

MERCIA MUDSTONE

VN-S CALDER

FAULTED VN-S CALDER

N-S CALDER

FAULTED N-S CALDER

DEEP CALDER

FAULTED DEEP CALDER

VN-S ST BEES

FAULTED VN-S ST BEES

N-S ST BEES

FAULTED N-S ST BEES

DEEP ST BEES

FAULTED DEEP ST BEES

BOTTOM NHM

FAULTED BNHM

SHALES + EVAP

BROCKRAM

FAULTED BROCKRAM

COLLYHURST

FAULTED COLLYHURST

CARB LST

FAULTED CARB LST

N-S BVG

FAULTED N-S BVG

UNDIFF BVG

FAULTED UNDIFF BVG

F-H BVG

FAULTED F-H BVG

BLEAWATH BVG

FAULTED BLEAWATH BVG

TOP M-F BVG

FAULTED TOP M-F BVG

N-S LATTERBARROW

DEEP LATTERBARROW

N-S SKIDDAW

DEEP SKIDDAW

GRANITE

FAULTED GRANITE

WASTE VAULTS

CROWN SPACE

EDZ

Applications:
flow in heterogeneous /

stochastic / layered media
structural mechanics
electromagnetics
etc.
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Darcy equation with heterogeneities

−∇ · (α(x , y)∇u) = 0 in Ω ⊂ R2,
u = 0 on ∂ΩD,
∂u
∂n = 0 on ∂ΩN .

IsoValue
-5262.11
2632.55
7895.66
13158.8
18421.9
23685
28948.1
34211.2
39474.3
44737.4
50000.5
55263.6
60526.7
65789.8
71052.9
76316
81579.1
86842.2
92105.3
105263

Decomposition α(x , y)

Jump 1 10 102 103 104

ASM 39 45 60 72 73
ASM + Nicolaides 30 36 50 61 65
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Objectives
Strategy

Define an appropriate coarse space VH 2 = span(z2) and use
the framework previously introduced, writing R0 = Z T

2 the two
level preconditioner is:

P−1
ASM 2 := RT

0 (R0ART
0 )
−1

R0 +
N∑

i=1

RT
i A−1

i Ri .

The coarse grid must be
Local (calculated on each subdomain)→ parallel
Adaptive (calculated automatically)
Easy and cheap to compute (on the boundary for instance)
Robust (must lead to an algorithm whose convergence
does not depend on the partition or the jumps in
coefficients)
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Heuristic approach: what functions should be in Z2?

The error satisfies the Schwarz algorithm, it is harmonic, so it
satisfies a maximum principle.

Ωi Ωi+1Ωi−1 en
i

en+1
i−1 en+1

i+1

Ωi Ωi+1Ωi−1 en
i

en+1
i−1 en+1

i+1

Fast convergence Slow convergence

Idea
Ensure that the error decreases quickly on the subdomain
boundaries which translates to making ∂e

∂ni

∣∣∣
Γi

big.
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Ensuring that the error decreases quickly on the
subdomain boundaries

The Dirichlet to Neumann operator is defined as follows: Let
g : Γi 7→ R,

DtNΩi (g) = α
∂v
∂ni

∣∣∣∣
Γi

,

where v satisfies{
(−div(α∇))v = 0, in Ωi ,

v = g, on ∂Ωi .

To construct the coarse space, we use the low frequency
modes associated with the DtN operator:

DtNΩi (v
λ
i ) = λα vλi

with λ small. The functions vλi are extended harmonically to the
subdomains.
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Theoretical convergence result

Suppose we have (vλk
i , λk

i )1≤k≤nΓi
the eigenpairs of the local

DtN maps (λ1
i ≤ λ2

i ≤ . . .) and that we have selected mi in each
subdomain. Then let Z be the coarse space built via the local
DtN maps:

Z := (RT
i Di Ṽλk

i
i )1≤i≤N; 1≤k≤mi

Theorem (D., Nataf, Scheichl and Spillane 2010)
Under the monotonicity of α in the overlapping regions:

κ(M−1
ASM,2 A) ≤ C(1 + max

1≤i≤N

1

δi λ
mi +1
i

)

where δi is the size of the overlap of domain Ωi and C is
independent of the jumps of α.

If mi is chosen so that, λmi +1
i ≥ 1/Hi the convergence rate will

be analogous to the constant coefficient case.
V. Dolean & F. Nataf Domain Decomposition 113 / 136



Results with the new DtN method

Jump 1 10 102 103 104

ASM 39 45 60 72 73
ASM + Nicolaides 30 36 50 61 65

ASM + DtN 31 35 36 36 36

IsoValue
-5262.11
2632.55
7895.66
13158.8
18421.9
23685
28948.1
34211.2
39474.3
44737.4
50000.5
55263.6
60526.7
65789.8
71052.9
76316
81579.1
86842.2
92105.3
105263

Decomposition α(x , y)

With DtN the jumps do not affect convergence
We put at most two modes per subdomain in the coarse grid
(using the automatic selection process)

V. Dolean & F. Nataf Domain Decomposition 114 / 136



Numerical results
IsoValue
-78946.3
39474.7
118422
197369
276317
355264
434211
513159
592106
671053
750001
828948
907895
986842
1.06579e+06
1.14474e+06
1.22368e+06
1.30263e+06
1.38158e+06
1.57895e+06

IsoValue
-0.0079688
0.0039844
0.0119532
0.019922
0.0278908
0.0358596
0.0438284
0.0517972
0.059766
0.0677348
0.0757036
0.0836724
0.0916412
0.09961
0.107579
0.115548
0.123516
0.131485
0.139454
0.159376

Channels and inclusions: 1 ≤ α ≤ 1.5 × 106, the solution and
partitionings (Metis or not)

V. Dolean & F. Nataf Domain Decomposition 115 / 136



Numerical results
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ASM convergence for channels and inclusions – 4× 4 Metis
partitioning
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Numerical results

subdomain i mi total number of eigenvalues
1 3 155
2 1 109
3 5 175

10 4 174
11 2 71
12 2 128
13 3 166
14 3 127
15 3 188
16 3 106

Metis 4 by 4 decomposition
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Numerical results

ASM ASM+Nico ASM+DtN
2× 2 103 110 22

2× 2 Metis 76 76 22
4× 4 603 722 26

4× 4 Metis 483 425 36
8× 8 461 141 34

8× 8 Metis 600 542 31

Convergence results for the ”hard” test case
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Numerical results – Optimality

#Z per subd. ASM ASM+ZNico ASM+ZD2N
max(mi − 1,1) 273

mi 614 543 36
mi + 1 32

mi is given automatically by the strategy.
Taking one fewer eigenvalue has a huge influence on the
iteration count
Taking one more has only a small influence
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Results for elasticity (Problem)

IsoValue
-47367.4
23685.2
71053.6
118422
165790
213159
260527
307895
355264
402632
450001
497369
544737
592106
639474
686842
734211
781579
828947
947368

E
IsoValue
0.324976
0.336603
0.344354
0.352105
0.359856
0.367608
0.375359
0.38311
0.390861
0.398612
0.406364
0.414115
0.421866
0.429617
0.437368
0.44512
0.452871
0.460622
0.468373
0.487751

sigma

Young’s modulus (1 ≤ E ≤ 106) Poisson’s ratio (0.35 ≤ ν ≤ 0.48)

V. Dolean & F. Nataf Domain Decomposition 120 / 136



Results for 2d elasticity (Solution)
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Overlap is two grid cells
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Problem setting – I

Given f ∈ (V h)∗ find u ∈ V h

a(u, v) = 〈f , v〉 ∀v ∈ V h

⇐⇒ A u = f

Assumption throughout: A symmetric positive definite (SPD)

Examples:
Darcy a(u, v) =

∫
Ω κ∇u · ∇v dx

Elasticity a(u, v) =
∫

Ω C ε(u) : ε(v) dx
Eddy current a(u, v) =

∫
Ω ν curl u · curl v + σ u · v dx

Heterogeneities / high contrast / nonlinearities in parameters
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Problem setting – II

1 V h . . . FE space of functions in Ω based on mesh T h = {τ}
2 A given as set of element stiffness matrices

+ connectivity (list of DOF per element)

Assembling property:

a(v , w) =
∑
τ

aτ (v|τ , w|τ )

where aτ (·, ·) symm. pos. semi-definite
3 {φk}nk=1 (FE) basis of V h

on each element: unisolvence
set of non-vanishing basis functions linearly independent

fulfilled by standard FE
continuous, Nédélec, Raviart-Thomas of low/high order

4 Two more assumptions on a(·, ·) later!
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Schwarz setting – I

Overlapping partition: Ω =
⋃N

j=1 Ωj (Ωj union of elements)

Vj := span
{
φk : supp(φk ) ⊂ Ωj

}
such that every φk contained in one of those spaces, i.e.

V h =
N∑

j=1

Vj

Example: adding “layers” to non-overlapping partition
(partition and adding layers based on matrix information only!)
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Schwarz setting – II

Local subspaces:

Vj ⊂ V h j = 1, . . . ,N

Coarse space (defined later):

V0 ⊂ V h

Additive Schwarz preconditioner:

M−1
ASM,2 =

N∑
j=0

R>j A−1
j Rj

where Aj = R>j ARj

and R>j ↔ R>j : Vj → V h natural embedding
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Partition of unity

Definitions:

dof (Ωj) :=
{

k : supp(φk ) ∩ Ωj 6= ∅
}

idof (Ωj) :=
{

k : supp(φk ) ⊂ Ωj
}

Vj = span{φk}k∈idof (Ωj )

imult(k) := #
{

j : k ∈ idof (Ωj)
}

Partition of unity:
(used for design of coarse space and for stable splitting)

Ξjv =
∑

k∈idof (Ωj )

1
imult(k)

vk φk for v =
n∑

k=1

vkφk

Properties:
N∑

j=1

Ξjv = v Ξjv ∈ Vj
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Overlapping zone / Choice of coarse space

Overlapping zone: Ω◦
j = {x ∈ Ωj : ∃i 6= j : x ∈ Ωi}

Observation: Ξj|Ωj\Ω◦
j

= id

Coarse space should be local:

V0 =
N∑

j=1

V0, j where V0, j ⊂ Vj

E.g. V0, j = span{Ξjpj,k}
mj
k=1
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Abstract eigenvalue problem

Gen.EVP per subdomain:

Find pj,k ∈ Vh|Ωj
and λj,k ≥ 0:

aΩj (pj,k , v) = λj,k aΩ◦
j

(Ξjpj,k , Ξjv) ∀v ∈ Vh|Ωj

Ajpj,k = λj,k XjA◦
j Xj pj,k (Xj . . . diagonal)

(properties of eigenfunctions discussed soon) aD . . . restriction of a to D

In the two-level ASM:
Choose first mj eigenvectors per subdomain:

V0 = span
{

Ξjpj,k
}j=1,...,N

k=1,...,mj
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Theory

Two technical assumptions.

Theorem (D., Hauret, Nataf, Pechstein, Scheichl, Spillane)
If for all j : 0 < λj,mj+1 <∞:

κ(M−1
ASM,2A) ≤ (1 + k0)

[
2 + k0 (2k0 + 1)

N
max
j=1

(
1 +

1
λj,mj +1

)]

Possible criterion for picking mj : (used in our Numerics)

λj,mj +1 <
δj

Hj

Hj . . . subdomain diameter, δj . . . overlap
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Numerics – Darcy – I

Domain & Partitions Coefficient

Iterations (CG) vs. jumps Code: Matlab & FreeFem++

κ2 ASM-1 ASM-2-low dim(VH) GenEO dim(VH)

1 22 16 (8) 16 (8)
102 31 24 (8) 17 (15)
104 37 30 (8) 21 (15)
106 36 29 (8) 18 (15)

ASM-1: 1-level ASM ASM-2-low: mj = 1 NEW: λj,mj +1 < δj/Hj
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Numerics – Darcy – II

Iterations (CG) vs. number of subdomains

regular partition

subd. dofs ASM-1 ASM-2-low dim(VH) GenEO dim(VH)

4 4840 14 15 (4) 10 (6)
8 9680 26 22 (8) 11 (14)
16 19360 51 36 (16) 13 (30)
32 38720 > 100 61 (32) 13 (62)

METIS partition

subd. dofs ASM-1 ASM-2-low dim(VH) GenEO dim(VH)

4 4840 21 18 (4) 15 (7)
8 9680 36 29 (8) 18 (15)
16 19360 65 45 (16) 22 (31)
32 38720 >100 79 (32) 34 (63)
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Numerics – Darcy – III

Iterations (CG) vs. overlap

(added) layers ASM-1 ASM-2-low (VH ) GenEO (VH )
1 26 22 (8) 11 (14)
2 22 18 (8) 9 (14)
3 16 15 (8) 9 (14)

V. Dolean & F. Nataf Domain Decomposition 133 / 136



Numerics – 2D Elasticity

IsoValue
-1.05053e+10
5.28263e+09
1.58079e+10
2.63332e+10
3.68584e+10
4.73837e+10
5.79089e+10
6.84342e+10
7.89595e+10
8.94847e+10
1.0001e+11
1.10535e+11
1.21061e+11
1.31586e+11
1.42111e+11
1.52636e+11
1.63162e+11
1.73687e+11
1.84212e+11
2.10525e+11

E

E1 = 2 · 1011

ν1 = 0.3

E2 = 2 · 107

ν2 = 0.45

METIS partitions with 2 layers added

subd. dofs ASM-1 ASM-2-low (VH ) GenEO (VH )
4 13122 93 134 (12) 42 (42)
16 13122 164 165 (48) 45 (159)
25 13122 211 229 (75) 47 (238)
64 13122 279 167 (192) 45 (519)
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Numerics – 3D Elasticity

Iterations (CG) vs. number of subdomains

E1 = 2 · 1011

ν1 = 0.3

E2 = 2 · 107

ν2 = 0.45

Relative error vs. iterations
16 regular subdomains

subd. dofs ASM-1 ASM-2-low (VH ) GenEO (VH )
4 1452 79 54 (24) 16 (46)
8 29040 177 87 (48) 16 (102)
16 58080 378 145 (96) 16 (214)
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