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Part I

Why Uncertainty Quantification?

...don’t believe in the psychic
octopus approach to computer
predictions...



Why Uncertainty Quantification?
...from WikiPedia

Uncertainty quantification (UQ) is the science of quantitative
characterization and reduction of uncertainties in applications.

It tries to determine how likely certain outcomes are if some
aspects of the system are not exactly known.

An example would be to predict the acceleration of a human
body in a head-on crash with another car: even if we exactly
knew the speed, small differences in the manufacturing of
individual cars, how tightly every bolt has been tightened, etc,
will lead to different results that can only be predicted in a
statistical sense. [...]
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Why Uncertainty Quantification?
Decision Making

I UQ is critical in identifying the confidence in an outcome
I Provides basis for certification in high-consequence

decisions



Why Uncertainty Quantification?
Validation

I UQ is a fundamental component of model validation
I Required to identify the effect limited knowledge in inputs

of the simulations

Experiments Simulations
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Why Uncertainty Quantification?
A simplistic view

I In spite of the wide spread use of simulations it remains
difficult to provide objective confidence levels

I One of the objective of UQ is to add error bars

...but also the precise notion of validated model

Images from Trucano et al. 2002, and Romero 2008
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Why Uncertainty Quantification?
Error Bars

The objective is to replace the subjective notion of confidence
with a mathematical rigorous measure

Unsteady turbulent heat convection with uncertain wall heating

Costantine & Iaccarino, AIAA-2009-0975



Part II

Definitions

"As we know there are known knowns.
There are things we know we know.
We also know there are known unknowns.
That is to say, we know there are some things we do not know.
But there are also unknown unknowns,
The ones we don’t know we don’t know."

D. Rumsfeld, Feb. 12, 2002, Department of Defense news briefing



Verification and Validation
Definitions

The American Institute for Aeronautics and Astronautics (AIAA)
has developed the “Guide for the Verification and Validation
(V&V) of Computational Fluid Dynamics Simulations” (1998)

What is V&V?
I Verification: The process of determining that a model

implementation accurately represents the developer’s
conceptual description of the model.

I Validation: The process of determining the degree to which
a model is an accurate representation of the real world for
the intended uses of the model
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has developed the “Guide for the Verification and Validation
(V&V) of Computational Fluid Dynamics Simulations” (1998)

What is V&V?
I Verification: The process of determining that a model

implementation accurately represents the developer’s
conceptual description of the model.
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exercise in mathematics

I Validation: The process of determining the degree to which
a model is an accurate representation of the real world for
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exercise in physics



Errors vs. Uncertainties
Definitions

The AIAA “Guide for the Verification and Validation (V&V) of
CFD Simulations” (1998) defines

I errors as recognisable deficiencies of the models or the
algorithms employed

I uncertainties as a potential deficiency that is due to lack of
knowledge.

Well...
I The definitions are not very precise
I Do not clearly distinguish between the mathematics and

the physics.
I What is the relation with V&V?
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Errors vs. Uncertainties
Definitions

I What are errors? errors are associated to the translation of
a mathematical formulation into a numerical algorithm and
a computational code.

I round-off, limited convergence of iterative algorithms)
I implementation mistakes (bugs).
I is the mathematics...

I What are uncertainties? uncertainties are associated to
the specification of the input physical parameters required
for performing the analysis.

I is the physics...
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Uncertainties

Aleatory: it is the physical variability present in the system or its
environment.

I It is not strictly due to a lack of knowledge and cannot be
reduced (also referred to as variability, stochastic uncertainty or
irreducible uncertainty)

I It is naturally defined in a
probabilistic framework

I Examples are: material properties,
operating conditions manufacturing
tolerances, etc.

I In mathematical modeling it is also
studied as noise
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Aleatory Uncertainty
Natural variance

Patient-to-patient differences

Courtesy of de Backer et al, 2009



Aleatory Uncertainty
Flight conditions

Difference between measured (balloon) and expected (Global
Reference Atmospheric Model) temperature in the earth
atmosphere

Image from Smart et al. 2003



Uncertainties

Epistemic: it is a potential deficiency that is due to a lack of
knowledge

I It can arise from assumptions introduced in the derivation of the
mathematical model (it is also called reducible uncertainty or
incertitude)

I Examples are: turbulence
model assumptions or
surrogate chemical models

I It is NOT naturally defined in
a probabilistic framework

I Can lead to strong bias of the
predictions
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Epistemic Uncertainty
Model uncertainty

Deepwater Horizon oil tracking forecast

Source: University of Texas Institute of Geophysics



Epistemic Uncertainty
Model uncertainty

Predictions of heat flux over a compression ramp

Source: Roy et al, 2007



Summary
Not all uncertainties created equal..

I Uncertainties relate to the physics of the problem of
interest! not to the errors in the mathematical
description/solution...

I Reducible vs. Irreducible Uncertainty
I Epistemic uncertainty can be reduced by increasing our

knowledge, e.g. performing more experimental
investigations and/or developing new physical models.

I Aleatory uncertainty cannot be reduced as it arises
naturally from observations of the system. Additional
experiments can only be used to better characterize the
variability.
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Part III

Computations Under Uncertainty
=

Predictive Simulations

"The significant problems we face cannot be solved
at the same level of thinking we were at when we created them."

A. Einstein



Uncertainty Quantification
Computational Framework

Consider a generic computational model (y ∈ <d with d large)

How do we handle the uncertainties?

1. Uncertainty definition: characterize uncertainties in the
inputs

2. Uncertainty propagation: perform simulations accounting
for the identified uncertainties

3. Certification: establish acceptance criteria for predictions
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Uncertainty definition

The objective is characterize uncertainties in simulation inputs,
based on available information

I Direct methods
- Experimental observations
- Theoretical arguments
- Expert opinions
- etc.

I Inverse methods (Inference, Calibration)
I determination of the statistical input parameters that

represent observed data using a computational model
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Uncertainty definition

I Identification of all the (d) explicit and hidden parameters
(knobs) of the mathematical/computational model: y

I Characterization of the associated level of knowledge

I The mathematical framework for propagating uncertainties
is dependent on the data representation chosen
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Probabilistic Uncertainty Propagation

Perform simulations accounting for the uncertainty represented
as randomness

I Define an abstract probability space (Ω,A,P)

I Introduce uncertain input as random quantities y(ω), ω ∈ Ω

I The original problem becomes stochastic with solution
u(ω) ≡ u(y(ω))

Remark: y can affect the boundary conditions, the geometry,
the forcing terms or the operator in the computational model.
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Uncertainty Propagation
Intrusive vs. Non-Intrusive Methodology

I Nonintrusive methods only require (multiple) solutions of
the original (deterministic) model

I Intrusive methods require the formulation and solution of a
stochastic version of the original model
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I Nonintrusive methods only require (multiple) solutions of
the original (deterministic) model

+ Simple extension of the "conventional" simulation paradigm
+ Embarrassingly parallel: solutions are independent
+ Conceptually very simple

I Intrusive methods require the formulation and solution of a
stochastic version of the original model

+ Exploit the mathematical structure of the problem
+ Leverage theoretical & algorithmic advancements
+ Are largely (or entirely) deterministic
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Certification & Validation

→

I Need to define a validation metric to compare uncertain
quantities
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→

I Need to define a validation metric to compare uncertain
quantities



Certification
I Quantification of the confidence in the validation process
I Breakdown of the uncertainty sources

Hypersonic air-breathing vehicle - HyShot II



Part IV

Probabilistic Uncertainty Propagation



Uncertainty = Randomness

I Sampling Methods: Monte Carlo, Quasi Monte Carlo, Lati
Hypercube, etc.

I Intrusive Methods: Polynomial Chaos, Adjoints, etc.
I Non-Intrusive Methods: Stochastic Collocation, Response

Surface, etc.
I Optimization Methods



Uncertainty = Randomness
Monte Carlo is your town!

I If you know how to sample... it’s done

I ...not feasible with realistic
function evaluations!

I Interpret the uncertainty as
additional independent
variable(s) and use
approximation theory to
represent the solution
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Polynomial Chaos
Stochastic Galerkin Approach

The solution is expressed as a spectral expansion of the
uncertain variable(s): ξ ∈ Ω (assumed to be Gaussian)

u(x , t , ξ) =
∞∑

i=0

ui(x , t)︸ ︷︷ ︸
deterministic

ψi(ξ)︸ ︷︷ ︸
stochastic

The ψi(ξ) are Hermite polynomials and form a complete set of
orthogonal basis functions

ψ0 = 1; ψ1 = ξ; ψ2 = ξ2 − 1; ψ3 = ξ3 − 3ξ; etc.

〈ψnψm〉 =
∫

Ω ψn(ξ)ψm(ξ)w(ξ)dξ = hnδn,m

where w(ξ) is the pdf of ξ and hn are non-zero constants
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Polynomial Chaos
Hermite Polynomials



Polynomial Chaos
Hermite Polynomials

Orthogonal Polynomials

〈ψnψm〉 =
∫

Ω ψn(ξ)ψm(ξ)w(ξ)dξ = hnδn,m

E [ψ0] =
∫

Ω ψ0(ξ)w(ξ)dξ = 1

E [ψk ] =
∫

Ω ψk (ξ)w(ξ)dξ = 0, k > 0

where w(ξ) is the pdf of ξ and hn are non-zero constants



Polynomial Chaos
Stochastic Galerkin Approach

If we can compute u(x , t , ξ) =
∞∑

i=0

ui(x , t)ψi(ξ) we can evaluate

directly the moments

Expectation of u

E [u] =

∫
Ω

uw(ξ)dξ =

∫
Ω

( ∞∑
i=0

uiψi

)
w(ξ)dξ =

u0

∫
Ω
ψ0(ξ)w(ξ)dξ +

∞∑
i=1

ui

∫
Ω
ψi(ξ)w(ξ)dξ = u0 = E [u]

Variance of u

Var [u] = E [u2]−(E [u])2 =
∞∑

i=0

u2
i

∫
Ω
ψ2

i w(ξ)dξ−u2
0 =

∞∑
i=1

u2
i 〈ψ2

i 〉.
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Polynomial Chaos
Stochastic Galerkin Approach

How do we compute u(x , t , ξ) =
∞∑

i=0

ui(x , t)ψi(ξ)?

More precisely how do we compute ui(x , t) for i →∞?

I We truncate the series u(x , t , ξ) ≈
P∑

i=0

ui (x , t)ψi (ξ)

I We substitute the expression u(x , t , ξ) =
∞∑
i=0

ui (x , t)ψi (ξ) in

the governing PDE and perform a Galerkin projection
operation
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Polynomial Chaos
1D Linear Convection Equations

I Consider the 1D linear convection equations

ut + cux = 0 0 ≤ x ≤ 1

I The exact solution is u(x , t) = uinitial(x − ct)

I Assume the uncertainty is characterized by one
parameter; let it be a Guassian random variable ξ ∈ Ω

I Consider a (truncated) spectral expansion of the solution in
the random space

u(x , t , ξ) =
∞∑

i=0

ui(x , t)ψi(ξ) ≈
P∑

i=0

ui(x , t)ψi(ξ)

where ψi(ξ) are (1D) Hermite polynomials
(ψ0 = 1; ψ1 = ξ; ψ2 = ξ2 − 1; ψ3 = ξ3 − 3ξ; etc.)
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Polynomial Chaos
1D Linear Convection Equations - uncertainty in the initial condition

I Assume
uinitial(x , t = 0, ξ) = g(ξ)cos(x)

I The exact solution is

u(x , t , ξ) = g(ξ)cos(x − ct)

I Plug in the truncated expansion in the original PDE:

P∑
i=0

∂ui

∂t
ψi(ξ) + c

(
P∑

i=0

∂ui

∂x
ψi(ξ)

)
= 0

I Multiply by ψk (ξ)

P∑
i=0

∂ui

∂t
ψi(ξ)·ψk (ξ)+c

(
P∑

i=0

∂ui

∂x
ψi(ξ)

)
·ψk (ξ) = 0 for k = 0,1, ...,P
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Polynomial Chaos
1D Linear Convection Equations - uncertainty in the initial condition

I Integrate over the probability space Ω – (Galerkin
Projection) - for each k = 0,1, ...,P∫

Ω

P∑
i=0

∂ui

∂t
ψi(ξ)·ψk (ξ)w(ξ)dξ+

∫
Ω

c
P∑

i=0

∂ui

∂x
ψi(ξ)·ψk (ξ)w(ξ)dξ = 0

Pulling out of the integrand the deterministic components:

P∑
i=0

∂ui

∂t

∫
Ω
ψi(ξ)ψk (ξ)w(ξ)dξ+c

P∑
i=0

∂ui

∂x

∫
Ω
ψi(ξ)ψk (ξ)w(ξ)dξ = 0

which in compact notation is:

P∑
i=0

∂ui

∂t
〈ψiψk 〉+ c

P∑
i=0

∂ui

∂x
〈ψiψk 〉 = 0 for k = 0,1, ...,P.
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Polynomial Chaos
1D Linear Convection Equations - uncertainty in the initial condition

I We have
P∑

i=0

∂ui

∂t
〈ψiψk 〉+ c

P∑
i=0

∂ui

∂x
〈ψiψk 〉 = 0 for k = 0,1, ...,P.

I The orthogonality property 〈ψiψk 〉 = δikhk implies

∂u0

∂t
+ c

∂u0

∂x
= 0

·

·
∂uP

∂t
+ c

∂uP

∂x
= 0

I We obtain a system of P + 1 uncoupled & deterministic
eqns.
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Polynomial Chaos
1D Linear Convection Equations - uncertainty in the initial condition

I Initial conditions for the u0 . . . uP equations are obtained by
projection of the initial condition

〈uinitial(x , t = 0, ξ), ψk 〉 = uk (x , t = 0) =

= 〈g(ξ), ψk 〉cos(x) k = 0, . . . ,P

I The procedure is simply an approximation of g(ξ) on the
polynomial basis ψ(ξ)
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Linear Transport
Deterministic case



Linear Transport
Uncertainty in initial conditions



Linear Transport
Uncertainty in initial conditions



Polynomial Chaos
1D Linear Convection Equations - uncertainty in the transport velocity

I Assume
c = h(ξ)

I The exact solution is

u(x , t , ξ) = cos(x − h(ξ)t)

I Plug in the truncated expansion is the original PDE:

P∑
i=0

∂ui

∂t
ψi(ξ) + h(ξ)

(
P∑

i=0

∂ui

∂x
ψi(ξ)

)
= 0

I Multiply by ψk (ξ) and integrate over the probability space Ω
– (Galerkin Projection)

P∑
i=0

∂ui

∂t
〈ψiψk 〉+

P∑
i=0

∂ui

∂x
〈h(ξ)ψiψk 〉 = 0 for k = 0,1, ...,P.
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Polynomial Chaos
1D Linear Convection Equations - uncertainty in the transport velocity
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Polynomial Chaos
1D Linear Convection Equations - uncertainty in the transport velocity

I If we assume

h(ξ) =

Ph∑
j=0

hjψj(ξ)

I The system of equations becomes
P∑

i=0

∂ui

∂t
〈ψiψk 〉+

P∑
i=0

∂ui

∂x

Ph∑
j=0

hj〈ψjψiψk 〉 = 0 for k = 0,1, ...,P.

I The triple product 〈ψjψiψk 〉 is non zero for i 6= j

I We obtain a system of P + 1 coupled & deterministic eqns.
I This is a much tougher non-linear problem and leads to the

long-time integration issue
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Linear Transport
Uncertainty in the transport velocity



Polynomial Chaos
1D Burgers Equations

I Consider the 1D Burgers equations

ut + uux = 0 0 ≤ x ≤ 1

I Assume the uncertainty is characterized by one
parameter; let it be a Guassian random variable ξ ∈ Ω

I Consider a (truncated) spectral expansion of the solution in
the random space

u(x , t , ξ) =
∞∑

i=0

ui(x , t)ψi(ξ) ≈
P∑

i=0

ui(x , t)ψi(ξ)

where ψi(ξ) are (1D) Hermite polynomials
(ψ0 = 1; ψ1 = ξ; ψ2 = ξ2 − 1; ψ3 = ξ3 − 3ξ; etc.)



Polynomial Chaos
1D Burgers Equations

I Plug in the governing equations

P∑
i=0

∂ui

∂t
ψi(ξ) +

 P∑
j=0

ujψj(ξ)

( P∑
i=0

∂ui

∂x
ψi(ξ)

)
= 0

I Multiply by ψk (ξ) and integrate over the probability space Ω
– (Galerkin Projection)

P∑
i=0

∂ui

∂t
〈ψiψk 〉+

P∑
i=0

P∑
j=0

ui
∂uj

∂x
〈ψiψjψk 〉 = 0 for k = 0,1, ...,P.

I We obtain a system of P + 1 coupled & deterministic
equations (independently of the type of uncertainty)
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Polynomial Chaos
1D Burgers Equations

PC expansion for the Burgers equations

P∑
i=0

∂ui

∂t
〈ψiψk 〉+

P∑
i=0

P∑
j=0

ui
∂uj

∂x
〈ψiψjψk 〉 = 0 for k = 0,1, ...,P.

Double/Triple products are “numbers”

〈ψiψj〉 = δij i!

〈ψiψjψk 〉 =

{
0 if i + j + k is odd or max(i , j , k) > s

i!j!k!
(s−i)!(s−j)!(s−k)! otherwise

and s = (i + j + k)/2



Polynomial Chaos
1D Burgers Equations

I PC Expansion for the Burgers equations P=1

∂u0

∂t
+ u0

∂u0

∂x
+ u1

∂u1

∂x
= 0

∂u1

∂t
+ u1

∂u0

∂x
+ u0

∂u1

∂x
= 0

I PC Expansion for the Burgers equations P=2

∂u0

∂t
+ u0

∂u0

∂x
+ u1

∂u1

∂x
+ 2u2

∂u2

∂x
= 0

∂u1

∂t
+ u1

∂u0

∂x
+ (u0 + 2u2)

∂u1

∂x
+ 2u1

∂u2

∂x
= 0

∂u2

∂t
+ u2

∂u0

∂x
+ u1

∂u1

∂x
+ (u0 + 4u2)

∂u2

∂x
= 0



Polynomial Chaos
1D Burgers Equations

I PC Expansion for the Burgers equations P=1
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I PC Expansion for the Burgers equations P=2

∂u0

∂t
+ u0

∂u0

∂x
+ u1

∂u1
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+ 2u2

∂u2

∂x
= 0

∂u1

∂t
+ u1

∂u0

∂x
+ (u0 + 2u2)

∂u1

∂x
+ 2u1

∂u2

∂x
= 0

∂u2

∂t
+ u2

∂u0

∂x
+ u1

∂u1

∂x
+ (u0 + 4u2)

∂u2

∂x
= 0



Simple example
1D Viscous Burgers

I Governing equation; note the modified convective flux:

1
2

(1− u)
∂u
∂x

= µ
∂2u
∂u2

I Exact solution

u(x) =
1
2

[
1 + tanh

(
x

4µ

)]
I Assume uncertainty in the viscosity - Gaussian r.v. with

E [µ] = 0.25 and Var [µ] = 0.0025



Monte Carlo Sampling
1D Viscous Burgers

Expectation of the solution:

Computed solution (32 points) Exact solution



Monte Carlo Sampling
1D Viscous Burgers

Variance of the solution:

Computed solution (32 points) Exact solution



Polynomial Chaos
1D Viscous Burgers

Statistics of the solution:

Expectation Variance



Polynomial Chaos
1D Viscous Burgers

Polynomial chaos modes of the solution (P = 3)

Coefficients “0” and “1” Coefficients “2” and “3”

I Mode “0” is the mean (as expected)
I Mode “1” is dominant with respect to the others (u2

1 closely
approximates the variance)



1D Burgers Equations
Uncertainty Propagation

I Uncertainty in the initial conditions
I Expected expansion or compression (mean value of the

initial condition)
I Non-uniform variance
I Objective: Compare Monte Carlo solutions (reference) to

PC solutions



1D Burgers Equations
Uncertainty Propagation - Expansion

I Only 3 terms in the PC expansion are sufficient to
reproduce the MC results



1D Burgers Equations
Uncertainty Propagation - Compression

I Even with 22 terms in the PC expansion, the results do not
reproduce precisely the MC estimates



Polynomial Chaos
Navier-Stokes Equations

Consider the NS equations for an incompressible fluid

∂ui

∂xi
= 0

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p
∂xi

+ µ
∂2ui

∂xj∂xj

Assuming that the uncertainty is represented with one
uncertain variable ξ, the usual polynomial chaos expansion
reads

ui(x , t , ξ) =
P∑

j=0

u(j)
i (x , t)ψj(ξ)

p(x , t , ξ) =
P∑

j=0

p(j)(x , t)ψj(ξ)



Polynomial Chaos
Navier-Stokes Equations
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Polynomial Chaos
Navier-Stokes Equations

The PC expansion for the velocity plugged in the continuity
(∂ui/∂xi = 0) gives

∂u(k)
i

∂xi
= 0 k = 0, . . . ,P

The momentum equation instead becomes (for each k
component)

∂u(k)
i
∂t

+
P∑

m=0

P∑
n=0

u(m)
j

∂u(n)
i

∂xj

〈ψmψnψk 〉
〈ψkψk 〉

= −1
ρ

∂p(k)

∂xi
+ µ

∂2u(k)
i

∂xj∂xj

We obtain P + 1 equations for the velocity-mode vectors and
P + 1 constraints.

I Not dissimilar from deterministic system
I Can be solved by projection and results in a coupled

system of 3× (P + 1) momentum-like equations with P + 1
constraints.
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Polynomial Chaos
Non-intrusive Variants

Starting from the spectral expansion (in uncertain variable ξ):

u(x , t , ξ) =
P∑

j=0

u(j)(x , t)ψj(ξ)

We can multiply left and right and side for ψk (ξ) and integrate

〈u(x , t , ξ)ψk (ξ)〉 = 〈
P∑

j=0

u(j)(x , t)ψj(ξ)ψk (ξ)〉 = u(k)〈ψk (ξ)ψk (ξ)〉

and therefore
u(k) =

〈u(x , t , ξ)ψk (ξ)〉
〈ψk (ξ)ψk (ξ)〉

Computing the integrals 〈uφk 〉 requires sampling for example
and therefore the solution of the original problem!
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Concluding...
Polynomial Chaos

I The use of polynomial expansions transform the original
stochastic problem into a more complex deterministic
problem

I Polynomials are only one of the possible basis. wavelet are
another popular choice.

I This forces us to interpret the resulting mathematical
structure with potential enormous gains w.r.t. non-intrusive
approaches

I It also forces you to rewrite codes!
I Non-intrusive variants can provide similar information

(equivalent only in the linear case) and just require the
evaluation of integrals!
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Polynomial Chaos Methods
Concluding Remarks

Explicit representation of the quantity of interest u in terms of
the uncertainty

u(x , t , ξ) ≈
P∑

i=0

ui(x , t)ψi(ξ)

Accomplishments:
I Only need to solve deterministic problems
I Simple computations of the statistics of u
I Exponential convergence behavior

Further considerations:
I Extensions to Multiple Uncertain Variables (Dimensions):
ξ1, ξ2, . . . , ξd

I Approximation properties for Non-Smooth responses
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Polynomial Chaos Methods
Extension to multiple dimensions

I Consider d independent identically distributed random
variables ξ1, ξ2, . . . , ξd

I The PCE representation is written as:

u(x , t , ξ1, ξ2, . . . , ξd ) ≈
P∑
α=0

uα(x , t)Ψα(ξ1, ξ2, . . . , ξd )

where Ψi is a multivariate polynomial obtained as tensor
product of univariate polynomials

Ψα(ξ1, ξ2, . . . , ξd ) = ψα1(ξ1)× ψα2(ξ2)× · · · × ψαd (ξd )

I The Galerkin procedure applies as before.



Multi-D Polynomial Chaos Methods
I In Multi-D in addition to the standard statistics (expectation.

variance, etc.) it is useful to compute the relative
importance of one variable with respect to the others

I One option is to compute the contribution of each variable
to the variance (ANOVA decomposition)

I Consider the following manipulation

u = u0+
d∑

i=1

∑
α∈Ii

uαΨα(ξi)

+
∑

i≤i1<i2≤d

 ∑
α∈Ii1,i2

uαΨα(ξi1 , ξi2)



+
∑

i≤i1<...is≤d

 ∑
α∈Ii1,...,is

uαΨα(ξi1 , . . . , ξis )


+ · · ·+

∑
α∈Ii1,...,id

uαΨα(ξi1 , . . . , ξid )



Multi-D Polynomial Chaos Methods
I Recall that the variance is computed as

Var [u] =
P∑
α=1

u2
α〈Ψ2

α〉.

I The manipulation presented earlier allows to compute
partial variances:

I Primary effect→ variable i∑
α∈Ii

u2
α〈Ψ2

α(ξi )〉

I Combined effects→ variables i1 and i2:∑
α∈Ii1,i2

u2
α〈Ψ2

α(ξi1 , ξi2 )〉

I Combined effects→ variables i1, . . . , is:

. . .



Multi-D Polynomial Chaos Methods
I Recall that the variance is computed as

Var [u] =
P∑
α=1

u2
α〈Ψ2

α〉.

I The manipulation presented earlier allows to compute
partial variances:

I Primary effect→ variable i∑
α∈Ii

u2
α〈Ψ2

α(ξi )〉

I Combined effects→ variables i1 and i2:∑
α∈Ii1,i2

u2
α〈Ψ2

α(ξi1 , ξi2 )〉

I Combined effects→ variables i1, . . . , is:

. . .



Polynomial Chaos Methods
Concluding Remarks (again)

u(x , t , ξ) ≈
P∑

i=0

ui(x , t)ψi(ξ)

Advantages:
I Only need to solve deterministic problems
I Simple computations of the statistics of u
I Exponential convergence behavior
I Useful sensitivity information extracted with minimal effort

Disadvantages
I Many uncertainties (exponential increase in cost)
I Cardinality of the PCE:

P =
(P + d)!

P!d !

I Non-independent uncertainties
I Approximation properties for Non-Smooth responses
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Part V

Examples



Fluid Dynamics of High Speed Flows
RAE 2822 Airfoil

I Classical transonic
flow problem

I M∞ = 0.734
I α = 2.79o

I Re = 6.5× 106

Pressure field
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Fluid Dynamics of High Speed Flows
RAE 2822 Airfoil

I Introduce/define uncertainties in the problem (NODESIM
Workshop)

I M∞ = 0.734± 0.005
I α = 2.79o ± 0.1
I t/c = 0.1211± 0.005

I Assume input distributions of the uncertainty either uniform
or gaussian independent random variables

I Propagate the uncertainty in the simulations by performing
Monte Carlo

I Analyze the results in terms of probability distribution of the
output of interest (pressure distribution, lift, etc.)
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Fluid Dynamics of High Speed Flows
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I Resulting combined uncertainty

Mean Pressure Pressure variance

I Input uncertainties assumed independent uniform r.v.s
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Fluid Dynamics of High Speed Flows
RAE 2822 Airfoil

I Resulting combined uncertainty on wall pressure
distribution

I Input uncertainties assumed independent uniform r.v.s



Fluid Dynamics of High Speed Flows
RAE 2822 Airfoil

I Qualitatively the deterministic (not uncertain) and the mean
value of the probabilistic ensemble are NOT the same....

Deterministic Mean Value




