


UQ in Reacting Flows



Planetary Entry Simulations
High-Temperature Reactive Flow

I During descent in the
atmosphere vehicles experience
extreme heating loads

I The design of the thermal protection system (TPS) is the
most critical component of every planetary entry mission

I TPS design is fundamentally computation-based because
no ground-test can reproduce all the aspects of flight

I Safety (and reliability) requires rigorous evaluation of the
uncertainties present



Jupiter Entry Probe - Galieo

Source: NASA



Titan Entry Simulations
High-Temperature Reactive Flow

Predictions of TPS heating loads re-entry are challenging
I Physics Components

- Chemistry
- Radiation
- Turbulence
- etc.

I Computational issues
- Strong shocks
- Thin boundary layers
- Flow separation
- etc.

We focus on the uncertainties in the chemical kinetics, and their
impact on the heat transfer at the stagnation point...



Titan Entry Simulations
Aero-thermodynamic model

We consider nominal conditions for the Titan entry:

Table: Freestream conditions
N2 CH4 ρ∞(kg/m3) V∞(km/s) T∞(K )

95% 5% 1.49 × 10−4 5.76 152.7

The strong bow shock induced strong non-equilibrium effects
and dissociation/ionization

I We assumed a 13-species mechanism:
I C, H, N, C2, CH4, CH3, CH2, CH, CN, H2, HCN, N2, NH
I 26 reactions: 12 dissociation & 14 exchange
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Probabilistic approach
Reaction rates in ionization/dissociation models

I Uncertainty in the
reactions rates,
gathered from

I theory
I experiments
I engineering

judgment
I Uncertainty in the

reaction rates is
described using
independent
u.r.v.s



Another uncertainty source
Radiation modeling

NASA has identified the heating from shock layer radiation due
to the CN radical formed in the N2/CH4 atmosphere as a
primary uncertainty

Can we predict the CN radical?

I State-of-the art knowledge during
the design of the Huygen’s probe
was the Boltzmann model

I This led to overprediction of the
heating rates - conservative
design

I Recent work has lead to
collisional-radiative (CR) models
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TPS Heating load uncertainty
I We used Monte Carlo sampling (10,000 runs) to study the

effect of the kinetics uncertainties
I We employed the CR model but compared to NASA earlier

work (with Boltzmann model) in an attempt to characterize
the epistemic uncertainty

Stagnation point heat flux (W/cm2)

CR Model: Ghaffari, Iaccarino, Magin, 2009 Boltzmann model: Bose & Wright, 2004



TPS Heating load uncertainty
I We used Monte Carlo sampling (10,000 runs) to study the

effect of the kinetics uncertainties
I We employed the CR model but compared to NASA earlier

work (with Boltzmann model) in an attempt to characterize
the epistemic uncertainty

Stagnation point heat flux (W/cm2)

CR Model: Ghaffari, Iaccarino, Magin, 2009 Boltzmann model: Bose & Wright, 2004



TPS Heating load uncertainty
I Both the mean and the variance of the heat loads are

affected by the radiation model

I Ca we learn something more?
I Correlate and rank the uncertainty sources

Correlation: based on cross-plots of output (amount of CN) vs.
input (uncertainty in the reaction rates)

Correlation plot for N2 + C → CN + N2

CR Model: Ghaffari, Iaccarino, Magin, 2009 Boltzmann model: Bose & Wright, 2004
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TPS Heating load uncertainty

ANOVA ANalysis Of Variance: separate the variance in factors
contributed by each input uncertainty

8 major contributors to uncertainty

CR Model: Ghaffari, Iaccarino, Magin, 2009 Boltzmann model: Bose & Wright, 2004



Uncertainty in Ignition Delay Time
Determination of Ignition Delay Time is an important design
consideration, for example in air-breathing hypersonic
propulsion systems



Uncertainty in Ignition Delay Time

In scramjet there are two competing mechanism causing
sudden ignition of mixture:

I Mixing-induced accumulation of radicals starts chain
reaction

I Shock-induced radical farming

I What is the effect of uncertainties in reaction rates?
I Simplified Problem:

I Integrate evolution of reacting mixture in homogeneous
isochoric (constant volume) reactor

I Hydrogen chemistry (9 species, 25 elementary reactions)
I What is the uncertainty?
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Hydrogen Chemistry
Reaction Rate Uncertainties

I Rate (and their
uncertainties) are available
in the literature

I Modified Arrhenius form
k = AT nexp(−E/RT )

I The uncertainty factor UF
is such that
[k/UF : k × UF ] provide
probable bounds!

I Assume that the reaction
rate are independent,
lognormally distributed r.v.

Davis, Joshi, Wang, Egolfopoulos, Proc. Combust. Inst. 30, 2005



Ignition Delay Time
Uncertainty Propagation

I Conditions: Stoichiometric Hydrogen-Air Mixture (29.6%
H2; 14.8% O2); Temperature: 1000 K; Pressure: 1 atm;

I Non-intrusive LHS Sampling (25 uncertain variables)

DAKOTA UQ Suite from Sandia National Lab. used for this example
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Ignition Delay Time
Uncertainty Propagation

I UQ provides an effective quantification of the range (and
likelihood) of the ignition delay time

I Given that hydrogen chemistry is the simplest possible
chose and we still need ≈ 5000 solutions to get an
accurate answer (using LHS), two questions remain

I Good to know, so what?

I Can we do this faster?
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Ignition Delay Time
Pose the UQ quest as an Inverse Problem

I What uncertainty in the reaction rates can we tolerate to
ensure that the probability of ignition delay time exceeding
0.25 ms is less than 10%?

I Can be cast as an optimization problem under uncertainty:
find the maximum UF such that the p(IDT > IDTcr ) < 0.1

I Problem: too many parameters! Focus only on the
branching reaction (H + 02 ↔ O + OH)
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Ignition Delay Time
Uncertainty Propagation

Nomimal Optimal

I Overall uncertainty in the IDT is reduced
I Failure probability below critical requirement



Ignition Delay Time
Efficiency of UQ

The results shown so far use sampling to compute the statistics
of the output of interest

I The problem is characterized by high-dimensionality of the
input (H2 chemistry has 25 uncertain factors)

I Polynomial chaos methods cannot be applied because of
the exponential cost of building tensorial basis functions

(recall cardinality P =
(P + d)!
P! + d !

)

I But the key is that NOT all of the inputs are important!
We need to use/develop algorithms that discover the true
dependency of the solution
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Low-Rank Approximations
High-Dimensional UQ

Extend the concept of Separation of variables to computational
methodologies

I Assume yj for j = 1, . . . ,d are the input uncertainties
I Define

u(y1, . . . yd) ≈
∑r

k=1 u(k)
1 (y1)× u(k)

2 (y2)× · · · × u(k)
d (yd)

I Need to discover the functions u(k) and the rank r
I We cast it as an optimization problem: Find the lowest

possible r which approximates a set of given function
evaluations with u(k) being polynomials of fixed maximum
order
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Low-Rank Approximations
Mean Ignition Delay Time

Reuse the solutions computed in the autoignition example

Even with 500 samples the estimate of the mean ignition delay
is acceptable (smaller than MC with 14,000)
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Low-Rank Approximations
STD of Ignition Delay Time

Similar results for the variance
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Summary of the examples
...so far

I Illustrated Uncertainty Propagation: effect of the input
uncertainties on the output

I Demonstrated the concept of ranking of the uncertainties
I Showed an example of Backward Uncertainty Propagation:

from tolerable outputs to acceptable input uncertainties
I Given one example of efficiency gains with modern UQ

algorithms

To finish, I want to give you an example of UQ combined with
realistic flow simulations...
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Turbulent reacting flows
Challenges

I Turbulent flow simulations in realistic geometries with
detailed kinetic mechanisms are still beyond the reach of
computational engineering

PW6000 simulations
enabled by the flamelet
modeling approach, but
still requiring 1000
CPUs



Turbulent reacting flows
UQ Challenges

I Uncertainties in kinetic mechanisms might still dominate,
especially for the prediction of pollutants

I It is impossible to perform more than a handful of
simulation (O(5))

I Non-intrusive approach (even our fancy LR method) have
no hope of success

I Need to be intrusive and connect the
physics/mathematics/UQ



Turbulent reacting flows
Non-intrusive framework

I Perform MANY simulations and sample the outputs



Reacting Flow Modeling - Flamelet
I Basic Premise

I Since scales of chemical reaction are much smaller than
the smallest scales of turbulent, a turbulent flame is simply
an ensemble of laminar ÒflameletsÓ embedded in a
turbulent flow field

I Solve for flame structure independently from the flow field

I Coordinate Transformation
I Transform to coordinate system

attached to the flame
(x , y , z)→ (Z ,Z⊥)

I Neglect all gradients in tangential
directions

I Resulting equations are a one-dimensional set of
reaction-diffusion equations parameterized by the mixture
fraction Z

I Solved in advance and tabulated for a given fuel
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Reacting Flow Modeling - Governing Equations

∂ρ
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∂ρuj
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∂

∂xj

[
ρD

∂Z
∂xj

]
T = T (ρ,p,Z ) → tabulated

I Uncertainty in the kinetic rates appears indirectly through
the density

I Use the flamelet equations to ÒconditionÓ the
high-dimensional uncertainty

I Can use efficient UQ methods requiring few full system
simulations
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Turbulent reacting flows
Intrusive framework

I Split the flamelet-generation part from the actual flow
simulations

I Propagate the uncertainty through the flamelet
I Inject uncertainties in the link between flamelets and flow

equations (via mixture fraction, density, etc.)



Turbulent reacting flows
Sandia Flame D

Piloted partially premixed methane/air flame
I Used NGA (low Mach, structured grid)
I GRI 3.0 mechanism
I Uncertainties in rates from Sheen et al. 2009

Simulations
1. Used LHS sampling for flamelets (10,000

solutions)
2. Compiled tables with mean and variances of

density (other uncertainties, e.g. viscosity
ignored for now)

3. Performed 7 LES simulations sampling on the
density distribution



Turbulent reacting flows
Sandia Flame D

Step 1
From kinetic rate uncertainties to flamelet output uncertainties

Rich part of the flame more uncertain



Turbulent reacting flows
Sandia Flame D

Step 2
Create a stochastic flamelet table

Distributions are Gaussian-like



Turbulent reacting flows
Sandia Flame D

Step 3
LES with stochastic flamelet table

Emission uncertainty is quite high, and might be comparable
with other uncertainties (steady flamelet assumption, kinetic
mechanism, etc.)




