


Quadrature for Uncertainty Analysis
Stochastic Collocation

What does quadrature have to do with uncertainty?

Assume y is a uniform random variable describing the
uncertainty in the input and Q is he quantity of interest
The mean of Q is

〈Q〉 =

∫ 1

−1
Q(y)fydy =

1
2

∫ 1

−1
Q(y)dy if y = U(-1,1)

Similarly for the variance, etc.

Moments of a quantity of interest are integrals in the probability
space defined by the uncertain variables!
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Stochastic Collocation

I For an input variables that is U(−1,1)

I Generate N values of the parameters yk k = 1, . . . ,N:
abscissas (the zeros of the Legendre polynomial PN )

I Perform N simulations according to the selected abscissas
and obtain Q(yk )

I Compute statistics as weighted sums (the weights are
integrals of Lagrange polynomials through the abscissas)

〈Q〉 =

∫ 1

−1
Q(y)dy =

N∑
k=1

Q(yk )wk

No randomness is introduced! but convergence is exponential
(cfr. MC)
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Non-intrusive Polynomial Chaos

I Quadrature (and sampling) can be used directly to
evaluate the statistics of the quantity on interest.

I Another avenue is to use these methods in conjunction
with polynomial chaos approaches

I Reminder: in polynomial chaos (stochastic Galerkin) the
solution is expressed as a spectral expansion of the
uncertain variable(s): ξ ∈ Ω as:

u(x , t , ξ) =
P∑

i=0

ui(x , t)︸ ︷︷ ︸
deterministic

ψi(ξ)︸ ︷︷ ︸
stochastic

and this expansion is inserted in the governing PDE!
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Non-intrusive Polynomial Chaos
I idea apply the Galerkin procedure directly to the formula:

u(x , t , ξ) =
∑P

i=0 ui(x , t)ψi(ξ)

I Steps:
I multiply by ψk (ξ)
I integrate over the probability space
I repeat for each k = 0,1, ...,P

I The result is∫
Ω

u(x , t , ξ)ψk (ξ)dξ =

∫
Ω

P∑
i=0

ui(x , t)ψi(ξ)ψk (ξ)dξ

I The orthogonality condition 〈ψiψk 〉 = δikhk leads to:∫
Ω

u(x , t , ξ)ψk (ξ)dξ = uk (x , t)hk

where hk is a known constant
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Non-intrusive Polynomial Chaos

I The conclusion is that we can compute the coefficients of
the polynomial chaos expansion

u(x , t , ξ) =
P∑

i=0

ui(x , t)ψi(ξ)

simply by computing a sequence of integrals

uk (x , t) =
1
hk

∫
Ω

u(x , t , ξ)ψk (ξ)dξ k = 0,1, ...,P

I Every numerical integration method (Monte Carlo, LHS,
quadrature) can be used and only require few (?)
evaluations of the solution u(x , t , ξ) of the original problem.
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Numerical Integration

I Recall ordinary numerical integration:

Problem: Compute the integral of f (x) over the interval [a : b].



Numerical Integration

I Evaluate the function at N regular interval ∆x = (b − a)/N
I Midpoint rule (direct summation)

A =
N∑

i=1

f (xi)∆x =
b − a

N

n∑
i=1

f (xi)

with xi = a + (i − 0.5)∆x are the abscissas



Numerical Integration
d-dimensional case

I Function defined on a d − dimensional interval
([a1 : b1], [a2 : b2], . . . , [ad : bd ])

I The integral becomes

V d+1 =
(b1 − a1)(b2 − a2) · · · (bd − ad )

N1N2 · · · Nd

N1∑
i1=1

N2∑
i2=1

· · ·
Nd∑

id =1

f (xi)

with xi = (xi1 , xi2 , . . . , xid )

I We can write the integral more compactly:

V d+1 = V d

∑N1
i1=1

∑N2
i2=1 · · ·

∑Nd
id =1 f (xi)

N

with N = N1N2 · · · Nd the total number of points where the
function is evaluated
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Monte Carlo Integration
I Pick N random d-dimensional vectors xi = (xi1 , xi2 , . . . , xid )

(the xij are independent uniform random numbers)
I The desired volume is

V d+1 = V d
∑N

i=1 f (xi)

N

Compare to: V d+1 = V d

∑N1
i1=1

∑N2
i2=1 · · ·

∑Nd
id =1 f (xi)

N
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Monte Carlo Integration

I The difference between mid-point integration and MC is
the replacement of d nested sums with one, and the
random choice of the abscissas.

I In 1D there is not much difference and indeed using
high-order integration (e.g. Simpson rule) the conventional
integration can be quite accurate and efficient

I In Multi D the conventional integration becomes
cumbersome and expensive.

I Assume Nj = 5 for all j (this is a low value!), for d = 10, we
need 510 points to get a reasonable answer
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MC versus Conventional Integration
Classical example

Compute the volume of a (hyper-) sphere in d dimensions
I Conventional integration: Nj = 20 for all j → VNI

I MC: N = 105 → VMC

d sec VNI/Ve sec VMC/Ve
2 0.00 1.0034 0.01 1.0006
3 0.00 0.9964 0.07 1.0002
4 0.00 0.9934 0.08 0.9996
5 0.02 0.9951 0.10 1.0028
6 0.30 0.9956 0.13 1.0012
7 5.02 0.9885 0.15 0.9968
8 89.9 0.9755 0.17 0.9973
9 1320 1.0307 0.20 1.0062
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Monte Carlo method

The MC integration can be rewritten as:

V d+1 = V d
∑N

i=1 f (xi)

N
= V d〈f 〉

The integration error can be related to the error of the average

S2 =
1

N − 1

[(
N∑

i=1

f (xi)
2

)
− 〈f 〉2

]
≈ 1

N

(
〈f 2〉 − 〈f 〉2

)
Monte Carlo integration error is unbiased and can be estimated
as: ∫

fdV = V 〈f 〉 ± αV

√
1
N
(
〈f 2〉 − 〈f 〉2

)
Larger α imply broader confidence that the true value is
included in the error bar.



Monte Carlo method

The MC integration can be rewritten as:

V d+1 = V d
∑N

i=1 f (xi)

N
= V d〈f 〉

The integration error can be related to the error of the average

S2 =
1

N − 1

[(
N∑

i=1

f (xi)
2

)
− 〈f 〉2

]
≈ 1

N

(
〈f 2〉 − 〈f 〉2

)

Monte Carlo integration error is unbiased and can be estimated
as: ∫

fdV = V 〈f 〉 ± αV

√
1
N
(
〈f 2〉 − 〈f 〉2

)
Larger α imply broader confidence that the true value is
included in the error bar.



Monte Carlo method

The MC integration can be rewritten as:

V d+1 = V d
∑N

i=1 f (xi)

N
= V d〈f 〉

The integration error can be related to the error of the average

S2 =
1

N − 1

[(
N∑

i=1

f (xi)
2

)
− 〈f 〉2

]
≈ 1

N

(
〈f 2〉 − 〈f 〉2

)
Monte Carlo integration error is unbiased and can be estimated
as: ∫

fdV = V 〈f 〉 ± αV

√
1
N
(
〈f 2〉 − 〈f 〉2

)
Larger α imply broader confidence that the true value is
included in the error bar.



Monte Carlo method
Computing π

I Assume uniform rain on the square
[−1,1]× [−1 : 1]→ x , y ≈ U[−1 : 1]

I The probability that a rain drop falls
into the circle is p →

P(
√

x2 + y2 < R) =
Acircle

Asquare
=
π

4

I Consider N independent rain drops
and count the ones falling within the
circle (rejection)
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Monte Carlo method
Computing π

I p = P(
√

x2 + y2 < R) ≈ Nin

N
and p =

Acircle

Asquare
=
π

4

I We can estimate π̄ ≈ 4
Nin

N
I Assume N = 100
I a result is Nin = 77
I π̄ = 4Nin/N = 3.08 (a fairly bad estimate...)

I The Law of Large Numbers guarantees that this estimate
converges to π as N →∞
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Monte Carlo method
Computing π - Convergence of the estimate

The Central Limit Theorem gives an estimate for the variance
— and therefore of the error in the estimate



Monte Carlo method
Comments

I MC is simple, non-intrusive, parallel, and provides an error
estimates

I The accuracy in MC increases as 1/
√

N independently on
the number of dimensions d

I It is easy to incorporate input variables covariances – if you
know how to sample . . .

I It is general
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Beyond Monte Carlo

I History
I MC estimation of π was suggested by Laplace in 1812
I Monte Carlo was officially invented in 1940s by Von

Neuman, Ulam and Metropolis (Manhattan Project)

I Why do we want to do anything else?
I Convergence speed

I Need to cheat . . .
I Importance sampling
I Control variate
I Latin Hypercube
I Quasi Monte Carlo
I . . .
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Latin Hypecube Sampling, LHS
Also stratified MC or constrained MC

I Assume we have a d−dimensional input vector y
I In MC we pick N random d-dimensional vectors

y i = (y i
1, y

i
2, . . . , y

i
d ) for i = 1, . . . ,N

I In LHS the realizations y i are chosen in a different way...

→
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LHS
Simple example

I Consider a 2D problem (d = 2) and assume we want to
generate N = 5 LHS samples with y1 a Gaussian r.v. and
y2 a Uniform r.v.

I The first step is to build the equi-probability partitions

y1 y2
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LHS
Simple example

I Sample randomly a value in each equi-probability partition
I We have now N values for y1 and N values for y2

I The next step is the random pairing of the intervals:
consider d random permutations of the first N integers and
associate the result with each input variable interval.

Permutation #1: (3, 1, 5, 2, 4)
Permutation #2: (2, 4, 1, 3, 5)

I The N input vectors y i are then

Realization y1 y2
1 3 2
2 1 4
3 5 1
4 2 3
5 4 5
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LHS
Simple example

These are the resulting realizations



MC vs. LHS

Qualitative differences...suggestive of better coverage in LHS

Monte Carlo LHS



LHS properties

I Advantages w.r.t. MC
I Convergence is typically faster (lower variance of the

estimate for equal N)
I Optimal coverage of the marginals→ equi-probability

partitions

I Disadvantages w.r.t. MC
I LHS has a history
I Need to run exactly N samples
I It is possible (but not straightforward) to control the

correlations between input variables by modifying the
pairing step [Iman & Conover, 1992]

Remains the Method of choice for a number of engineering
applications...
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Concluding...

I In general MC methods are unaware of the problem
(completely non-intrusive)...

I Consider the die-rolling example: probability of each
outcome is 1/6th.

I what happens if we try MC?

N = 100 N = 5000 N = 100000
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Sampling Methods

I Sample the random input parameter vector according to its
probability distributions

I Perform a sequence of independent simulations
I Compute statistics of the quantity of interest

Now we will introduce an alternative way of computing the
output statistics without random sampling!
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Numerical Integration

The basic idea is to use advanced numerical integration
techniques

I Recall numerical quadrature:

Problem: Compute the integral of f (x) over the interval [a : b].



Numerical integration
Express integrals as a finite, weighted sum∫ b

a
f (ξ)dξ ≈

N∑
i=1

wi f (ξi)

I Examples: midpoint, trapezoidal, Simpson rules
I Remark: all use equispaced abscissas ξi ∈ [a : b]

(Newton-Cotes)

We can do better: Gauss quadrature rules.

Observation: We can always fit an N-1 degree polynomial to a
set N points (N = 2→ line, N − 3→ parabola, etc.).
By carefully choosing the abscissas and weights (ξi ,wi ), we
can exactly evaluate the integral if f (ξ) is ≤ (2N − 1) degree
polynomial.
What are the abscissas ξi and the weights wi?
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Numerical quadrature

∫ b

a
f (ξ)dξ ≈

N∑
i=1

wi f (ξi)

The abscissas are the roots of orthogonal polynomials
(Legendre) ∫ 1

−1
pj(x)pi(x)dx = Ciδij

Abscissas: impose pN(ξ) = 0→ ξ1, . . . , ξN

The weights are the integrals of the Lagrange interpolating
polynomials passing through the abscissas

wi =

∫ 1

−1
Li,N(ξ)dξ with Li,N(ξ) =

N∏
k=1
k 6=j

ξ − ξk

ξi − ξk
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Legendre-Gauss quadrature
Legendre Polynomials

(n+1)Pn+1(ξ) = (2n+1)ξPn(ξ)−nPn−1(ξ) Three-term recurrence∫ 1

−1
Pj(x)Pi(x)dx =

2
2n + 1

δij Orthogonality



Legendre-Gauss quadrature

Both the abscissas and the weights are tabulated and can be
computed in several ways

For example:

function I = gauss(f,n) % (n+1)-pt Gauss quadrature
beta = .5/sqrt(1-(2*(1:n))^(-2)); % 3-term recurrence coeffs
T = diag(beta,1) + diag(beta,-1); % Jacobi matrix
[V,D] = eig(T); % eigenvalue decomposition
x = diag(D); [x,i] = sort(x); % nodes (= Legendre points)
w = 2*V(1,i)^2; % weights
I = w*feval(f,x); % the integral

The command gauss(cos,6) yields 1.68294196961579
which is correct to double precision [Trefethen, 2008]



Advanced Concepts



Beyond Uniform rvs
Gaussian rvs

What do we do if the input variables are not distributed as
uniform r.v.?

As you probably know, numerical quadrature is more than just
Legendre-Gauss quadrature!

Consider y distributed as a N(0,1), we can build orthogonal
polynomials w.r.t. to a Gaussian measure as:∫ ∞

−∞
pj(x)pi(x)e−x2

dx = Ciδij

Hermite polynomials for normal r.v. play the same role as
Legendre polynomials for uniform r.v.s!
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Hermite-Gauss quadrature
Hermite Polynomials

Hn+1(ξ) = 2ξHn(ξ)− 2nHn−1(ξ) Three-term recurrence∫ ∞
−∞

Hj(x)Hi(x)e−x2
dx = 2i i!

√
πδij Orthogonality



Stochastic Collocation
Summary of the quadrature rules

We can use Legendre or Hermite polynomials, can we do even
more?

Distribution pdf Polynomials Weights Support
Uniform 1/2 Legendre 1 [−1 : 1]

Gaussian (1/
√

2π)e(−x2/2) Hermite e(−x2/2) [−∞ :∞]
Exponential e−x Laguerre e−x [0 :∞]

Beta (1−x)α(1+x)β

B(α,β)
Jacobi (1− x)α(1 + x)β [−1 : 1]

Table: Some polynomials in the Askey family

What if the random variables are not distributed according to
any of the above?

1. Szego (1939). Orthogonal Polynomials - American Mathematical Society.

2. Schoutens (2000). Stochastic Processes and Orthogonal Polynomial - Springer.

3. Gram-Schmidt Procedure
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Nested rules
The choice of abscissas

The Gauss quadrature rules introduce different abscissas for
each order N considered. They are not nested, no reuse of
computed solutions for lower-order quadrature

Two extensions are possible
I Gauss-Kronrod rules
I Clenshaw-Curtis rules: express the integrand using

Chebyshev polynomials (lower polynomial exactness)

Figure: 32 abscissas in [−1 : 1]
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Clenshaw-Curtis vs. Gauss

Figure: Black: Gauss, White: CC [Trefethen, 2008]



Why Nested rules?

Assume you have a budget of N = 9 computations.

I With 9 Gauss abscissas (Legendre), we can obtain an
estimate of the statistics of the solution which would be
exact if the solution is a polynomial of degree
≤ 2N − 1 = 17

I With Clenshaw-Curtis we can obtain again an estimate
(only exact for polynomials of degree ≤ N = 9).
On the other hand, with the same computations (N = 9
abscissas) we can also estiamte the solution statistics
corresponding to N = 5 and N = 3→ error estimate.
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Multi-dimensional rules
Tensor Product

The extension of the previous 1D rules (Gauss or CC) is
straightforward

I The abscissas are tensor products
of the quadrature points in 1D

I The weights are the products of the
1D weights

I The number of function evaluations increases as Nd

→ curse of dimensionality
I Remank: This is valid ONLY if the uncertain variables are

independent (because the joint PDF becomes the product
of the marginals)!
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Extension of the Stochastic Collocation Methodology

I Stochastic Collocation is a very simple ad powerful
alternative to MC sampling

I Several limitations remain:
I High-Dimensionality
I Non-Smooth Responses
I General Correlated/Dependent Inputs

I Various extensions have attempted to address these
issues:

I Multi-dimensional constructions: Sparse Grids
I Global vs. Local Basis: Multi-element methods and Simplex

Stochastic Collocation
I Adaptive Quadrature
I Different Choice of Basis (non-polynomials): Wavelets,

Pade’
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Multi-dimensional Extensions
Sparse Grids - Smolyak Grids

Smolyak idea is to sparsify the construction of quadrature grids

Figure: Sequence of grids used in 2D by a nested rule



Multi-dimensional Extensions
Sparse Grids - Smolyak Grids

The nominal accuracy can be preserved with much less points

Figure: From Tensor grid to Sparse grid in 2D

The method is based on a linear combination of tensor
products to build the actual sparse grid
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Sparse Grids
Rationale

The key is to reinterpret the concept of "polynomial exactness"

Modified from Eldred 2009



Sparse Grids
Stochastic Collocation

Table: Abscissas for N = 5 in each dimension

d = 2 d = 3 d = 4 d = 5 d = 6 d = 7
Tensor Gauss 25 125 625 3125 15625 78125

Smolyak Gauss 17 31 49 71 97 127
Smolyak CC 13 25 41 61 85 113



Sparse Grids
Summary

I A fundamental advance in the development of stochastic
collocation approaches in multiD

I Becoming more and more popular

I Not perfect
I Not straightforward to construct (implementation errors)
I Does not solve the curse of dimensionality, although it is

better than tensor grids
I Not very flexible. Increasing the accuracy requires a large

increase in number of solutions...
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From Global to Local Basis
Multi-Element Methods

I The classical construction of the stochastic collocation
method relies on polynomial basis defined over the entire
domain spanned by the input uncertainties

I In many cases it is useful to compute the integrals over
subdomains

I Capture local features (including discontinuities)
I Allow more control on the number of simulations to perform
I . . .

Multi-Element SC Simplex SC



Basis Selection
Adaptivity & Anisotropy

I In multi-dimensional problem it is unlikely that all the input
uncertainty have the same importance with respect to the
quantity of interest

I How can we selectively increase the accuracy of the
integration?

I Define a sensor based on
I sensitivity
I variance decomposition
I error estimate

I Tailor the interpolation basis
I Increase the polynomial order selectively (anisotropy)
I Choose special basis (enrichment)
I Increase the resolution locally (subdomain decomposition)
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Discontinuous Surface Responses - Approaches
This is not a new problem....

I Multi-element approaches (Wan & Karniadakis, . . . )
I Wavelet-based polynomial chaos (LeMaitre et al.)
I Basis-enrichment (Ghosh & Ghanem, . . . )
I Polynomial Annihilation (Jakeman & Xiu)
I Simplex Element Collocation (Witteveen & Iaccarino)
I Kriging (Jouhaout & Libediu, . . . )
I . . .

Why do we need another method?
I Prefer a global approach
I No prior knowledge of the location of discontinuity
I Avoid adaptivity
I Reuse/extend stochastic collocation framework
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Padé-Legendre (PL) Method
I Consider f (x) = sign(x + 0.2)− sign(x − 0.5).

Data: Number of data points: N = 20
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Padé-Legendre (PL) Method
I Consider f (x) = sign(x + 0.2)− sign(x − 0.5).

Stochastic Collocation solution
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PL with "tuned" parameters (e.g. polynomial orders)

−1.0 −0.5 0.0 0.5 1.0

0

1

2

3

x

f(
x)

PL (M,K,L)=(13,3,2)

 

 

Response Surface
Data



Padé-Legendre (PL) Method
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How to construct the PL approximant?
How to choose the tuning parameters?



Padé-Legendre (PL) Method

Gibbs phenomena. Polynomial interpolation
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Padé-Legendre (PL) Method

Gibbs phenomena. Polynomial interpolation Auxiliary function Q(x)



Padé-Legendre (PL) Method

Gibbs phenomena. Polynomial interpolation Preconditioned function Q(x)u(x)



PL Formulation (1-D)
I Given data u(xk ), k = 0,1, . . . ,N
I Find the approximation R(x) ≈ u(x) in the form of

R(x) =
P(x)

Q(x)
=

M∑
j=0

p̂jΨj(x)

L∑
j=0

q̂jΨj(x)

, (A1)

such that

〈P −Qu, φ〉N = 0, ∀φ ∈ PN , (A2)

where where Ψj ’s are the Legendre polynomial basis and
〈·, ·〉N is the discrete inner product.

* J. Hesthaven, et al, Padé–Legendre interpolants for Gibbs reconstruction, J. Sci. Comput. 28 (2006) 337-359.
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PL Construction (1-D)

〈P −Qu, φ〉N = 0, ∀φ ∈ PN (A2)

I Calculate Q by using φ = Ψ ∈ PN \ PM .
But P ∈ PM , thus by orthogonality:

〈Qu,Ψn〉N = 0, n = M + 1, . . . ,N. (1)

Solve the following linear system for coefficients of Q: 〈uΨ0,ΨM+1〉N · · · 〈uΨL,ΨM+1〉N
...

. . .
...

〈uΨ0,ΨM+L〉N · · · 〈uΨL,ΨM+L〉N


 q̂0

...
q̂L

 = 0.

Matrix size: L× (L + 1). Solve for nonzero Q.
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1-D to n-D
One-dimensional PL

I There are N + 1 equations, one for each Ψn.
I We split the equations into M and L (M + L = N + 1).
I The last L equations are used to calculate Q.
I The first M equations are then used to calculate P.

Multi-dimensional PL
I Let d be the dimension.
I There are c(N,d) = (N+d)!

N!d! equations.

I There are c(L,d) = (L+d)!
L!d! coefficients in Q

I And c(M,d) = (M+d)!
M!d! coefficients in P.

I It is impossible to split the equations into two groups to
match the numbers of unknowns.
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PL Formulation (n-D)
I Given data u(xk , yl), k , l = 0,1, . . . ,N
I Find the approximation R(x , y) ≈ u(x , y) in the form of

R(x) =
P(x , y)

Q(x , y)
=

c(M)−1∑
j=0

p̂jΨj(x , y)

c(L)−1∑
j=0

q̂jΨj(x , y)

, (4)

such that

〈P −Qu, φ〉N = 0, ∀φ ∈ PM , (5)

and 〈P −Qu, φ〉N is minimized for φ ∈ PM+K .
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PL Construction (n-D)
I Similar to 1-D, choose the Legendre basis: φ = Ψ.

I Calculate Q approximately by using φ = Ψ ∈ PM+K \ PM

I Matrix size: L× (K + 1). Solve for nonzero Q using a
least-square minimization

I Calculate P exactly by using φ = Ψ ∈ PM .

We have to specify L, M and K (N is usually given).
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Automatic Parameter Selection
I Every triplet (L,M,K ) gives a different response surface.
I We designed a strategy (called APS) to choose the “best”

response surfaces among all the possible choices of
(L,M,K )

Question: What do we mean by “best?”
Answer: According to 2 error measures.



Two Error Measures
I L2-error (measure of accuracy w.r.t. data)

eL2 =
‖ũ − u‖L2

‖u‖L2

=


Nq∑
j=1

wj(u(xj)− ũ(xj))2

Nq∑
j=1

wju2(xj)


1
2

,

I Smoothness Indicator (measure of lack of spurious
oscillations between data points)

eSI =
|SI(ũ,GF )− SI(u,GD)|

SI(u,GD)
,

where SI(·) is Total Variation, GD is a grid consisting of the
available data, and GF is an additional highly refined grid.
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Pareto Front

Plot all response surfaces according to eL2 and eSI
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Reject all the ones that cannot be best
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Pareto Front

Keep rejecting until we can no longer reject anymore
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Pareto Front

The remaining PL surfaces constitute the Pareto front
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Pareto Front

The remaining PL surfaces constitute the Pareto front

e
SI

e L 2

 

 

Pareto Front

I Bottom-right: most data-accurate, but least smooth
I Top-left: most smooth, but least data-accurate



APS
I Any response surface in the Pareto front is logically

acceptable.

A good trade-off between smoothness and data-accuracy
depends on applications

I Data-accuracy is always good, but ...
I How accurate is the given data?
I Do we want to extract gradient information?
I Do we want to calculate extrema?
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Example
Underlying function: f (x) = tanh(10x), x ∈ [−1,1]
APS strategy: Most data-accurate.
Stochastic Collocation (SC) vs Padé-Legendre (PL) method

Number of data points: N = 10

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

f(
x)

 

 

SC
PL (APS)



Example
Underlying function: f (x) = tanh(10x), x ∈ [−1,1]
APS strategy: Most data-accurate.
Stochastic Collocation (SC) vs Padé-Legendre (PL) method

Number of data points: N = 20
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Example
Underlying function: f (x) = tanh(10x), x ∈ [−1,1]
APS strategy: Most data-accurate.
Stochastic Collocation (SC) vs Padé-Legendre (PL) method

Number of data points: N = 30
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Example
Underlying function: f (x) = tanh(10x), x ∈ [−1,1]
APS strategy: Most data-accurate.
Stochastic Collocation (SC) vs Padé-Legendre (PL) method

Number of data points: N = 40
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Convergence to SC for Smooth Underlying Functions
Consider f (x) = tanh(x/δ). Vary the number of data points, N.
Observe L of the most data-accurate response surfaces.

δ = 0.2 δ = 0.3 δ = 0.4
N eSI [SC] L eSI [SC] L eSI [SC] L
8 9.744e-1 2 2.852e-1 2 1.045e-1 2

10 5.882e-1 4 1.474e-1 4 2.627e-2 4
12 3.281e-1 4 6.224e-2 4 7.192e-3 4
14 2.141e-1 6 2.508e-2 6 2.414e-3 0
16 1.311e-1 6 8.718e-3 6 6.083e-4 0
18 7.265e-2 8 3.359e-3 0 2.535e-4 0
20 4.124e-2 8 1.069e-3 0 8.143e-5 0
22 2.352e-2 8 3.840e-4 0 2.603e-5 0
24 1.257e-2 9 1.656e-4 0 8.291e-6 0
26 6.967e-3 0 6.731e-5 0 2.596e-6 0
28 3.665e-3 0 2.839e-5 0 1.143e-6 0
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