
Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation

Multigrid Methods on Parallel Computers

Lehrstuhl für Informatik 10 (Systemsimulation)
Universität Erlangen-Nürnberg

www10.informatik.uni-erlangen.de

CEMRACS’12
Numerical Methods and Algorithms for

High Performance Computing
CIRM, Marseille

July 17,2012

U. Rüde (LSS Erlangen, ruede@cs.fau.de)

1

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation

Overview
Motivation
A tutorial intro to Multigrid (based on Irad Yavneh‘s tutorial)

„Sergeant Jacobi‘s“ soldier alignment problem
The multigrid algorithm
How fast should our solvers be

How fast are parallel computers today:
The race to Exa-Scale

Scalable Parallel Multigrid
Matrix-Free Multigrid FE solver: Hierarchical Hybrid Grids (HHG)
Other things we do

Flow Simulation with Lattice Boltzmann Methods
Conclusions

2

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation

A (too) brief introduction
to Multigrid

following the wonderful tutorial and
using slides by I. Yavneh

3

Further Acknowledgements

4

• Multigrid Lecture Notes by S. McCormick
• Slides from Multigrid Tutorial by V. Henson
• „Why Multigrid Methods are so Efficient“ by I. Yavneh
• Multigrid Tutorial by B. Briggs, S. McCormick, V. Henson
• „The Multigrid Guide“ by A. Brandt

5

What is „Multigrid“?

A framework of efficient iterative methods for solving
problems with many variables and many scales.

• Framework: common concept, different methods.
• Efficient: usually O(N) or O(N log N) operations
 The importance of efficient methods becomes greater as

computers grow stronger!
• Iterative: most nontrivial problems in our field cannot be solved

directly efficiently.
• Solving: approximately, subject to appropriate convergence

criteria, constraints, etc.
• Many variables: the larger the number of variables, the greater

the gain of efficient methods
• Many scales: typical spatial and/or temporal sizes.

What can multigrid achieve?
• Solve elliptic PDE in asymptotically optimal complexity
• Poisson‘s eqn in 2D: <30 FLOPs per unknown

– Cheaper than computing

• Solve FE problems (linear, scalar, elliptic PDE) with
more than 1012 tetrahedral elements
– on a massively parallel supercomputer
– reminder: 1012 ! 2 ! 106

6

ui,j = sin(xi) sin(yj)

7

Basic Concepts: Local vs. Global processing.

Imagine a large number of soldiers who need to be
arranged in a straight line and at equal distances from
each other.
The two soldiers at the ends of the line are fixed. Suppose
we number the soldiers 0 to N , and that the length of the
entire line is L.

8

Initial Position

9

Final Position

10

Global processing. Let soldier number j stand on the
line connecting soldier 0 to soldier N at a distance jL/N
from soldier number 0.

11

12

Global processing. Let soldier number j stand on the line
connecting soldier 0 to soldier N at a distance jL/N from
soldier number 0.

This method solves the problem directly, but it requires a
high degree of sophistication: recognition of the extreme
soldiers and some pretty fancy arithmetic.

13

A step in the right direction

14

15

Slow convergence

16

17

Fast convergence

18

19

Slow convergence

20

Local solution: damping

21

Local solution: damping

22

Local solution: damping

23

Local solution: damping

24

The multiscale idea: Employ the local processing with
simple arithmetic. But do this on all the different scales.

25

26

Large scale

27

Large scale

28

Intermediate scale

29

Intermediate scale

30

Small scale

31

Slide 32

How much work do we save?

Jacobi’s method requires about N2 iterations and N2 *N =
N3 operations to improve the accuracy by an order of
magnitude.

The multiscale approach solves the problem in about
Log2(N) iterations (whistle blows) and only about N
operations.

Example: for N = 1000 we require about:
10 iterations and 1000 operations

instead of about
1,000,000 iterations and 1,000,000,000 operations

33

How important is computational efficiency?
Suppose that we have three different algorithms for a
given problem, with different computational complexities
for input size N :

Algorithm 1: 106 N operations
Algorithm 2: 103 N2 operations
Algorithm 3: N3 operations

Suppose that the problem size, N, is such that Algorithm 1
requires one second.
How long do the others require?

34

Algorithm 3
O(N3)

Algorithm 2
O(N2)

Algorithm 1
O(N)

N
Computer

Speed
(ops/sec)

0.000001 sec 0.001 sec 1 sec 1 1M (~106)
(1980’s)

1 sec 1 sec 1 sec 1K 1G (~109)
(1990’s)

12 days 17 min 1 sec 1M 1T (~1012)
(2000’s)

31,710 years 12 days 1 sec 1G 1P (~1015)
(2010’s)

Stronger Computers

Greater Advantage of Efficient Algorithms!

35

The catch: in less trivial problems, we cannot
construct appropriate equations on the large
scales without first propagating information from
the small scales.
Skill in developing efficient multilevel algorithms
is required for:
1. Choosing a good local iteration.
2. Choosing appropriate coarse-scale
 variables.
3. Choosing inter-scale transfer operators.
4. Constructing coarse-scale approximations to
the fine-scale problem.

Slide 36

Multigrid is not the answer to everything!

+ Sparse, low dimension, large, stiff, elliptic PDE,
geometric, smooth long-range effects, structured,
isotropic, smoothly varying coefficients, symmetric
positive definite.

 ~ Nonlinear, disordered, anisotropic, discontinuous
coefficients, singular-perturbation and non-elliptic
PDE, PDE systems, non-symmetric, indefinite, non-
deterministic.

- Dense, high-dimensional, small, single-scale.

37

2D Model Problem

Find u which satisfies:

This is the 2D Poisson equation, with Dirichlet boundary conditions. It is an
elliptic partial differential equation which appears is many models.

(4)

ui,j =
1
4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1) for i, j = 1...n

Slide

Grid of wires

Solution at each node =
Average of neighboring values

Boundary values given.

This is the standard 5-point
discretization of the Laplace-
or Poisson-equation in 2D.

ui,j ui+1,jui-1,j

ui,j+1

ui,j-1

Example for Use of an Iterative Method

38

Slide

4

4

4

4

4

4

-1

-1
-1

-1

-1
-1

-1
-1

-1

-1
-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

u11

u1n

u21

unn

u2n

=

Matrix representation

39

Slide

Matrix free implementation of the Gauss-Seidel Method

 w=1: Gauss-Seidel; w>1: SOR

Iterative Methods

<(

40

Slide

Exact Solution (of PDE)
Boundary values to start the iteration

Graphical Illustration (Visualization)

41

Slide

Visualization of Convergence

after 2 iterations

after 1 iterations

after 10 iterations

before any iteration

42

Slide

Visualization of Convergence

after 100 iterations after 1000 iterations

overlayed with true
solution

overlayed with true
solution

43

Slide

View of iterative solution after 1000. Gauss-Seidel-Iterations
The Gauss-Seidel-method needs for this problem O(N) iterations, where N
(=n2) is the number of unknowns (grid points).

Beispiel: Iterations -- Visualisation

44

! = 1.0 ! = 1.5

! = 1.8 ! = 1.95

45

Slide SiWiR-II SS 2012 VL 2-3 Einführung

Gauss-Seidel-Method:
When N iterations are required, each of which needs O(N) operations then
the total cost is O(N2) operations
N=n2, n number of grid points in one mesh dimensions

SOR-method: only n=N1/2 iterations necessary, if the relaxation
parameter !>1 is chosen optimally.

For the model problem thsi can be shown mathmatically, see e.g. Stoer/
Bulirsch.

Be clear that there are different types of error:
Rounding errors (hier of secondary importance)
Iteration error: stopping the iteration after finitely many steps
Discretisation: even after " many iterationenan error relative to the partial
differential equation remains (discretization error: griod vs. plate)

Iterative Methods: Discussion of Example

46

Slide SiWiR-II SS 2012 VL 2-3 Einführung

Choose ordering of grid traversals more inteligently.
However this unfortunately only helps substantially, when
the problem at hand has a „preferred direction. (Physically
this corresponds to convection rather than diffusion)
Search systematically for equations/unknows which are far
from equlibrium (large residual) and iterate preferably on
those (search algorithm often too expensive)
Search for better initial guess:

interpolate boundary values
Start on coarser grid, compute a approximate solution
there, and interpolate to finer grid. (Cascade algorithm,
Nested iteration)

Ideas for improvement (1)

47

Slide SiWiR-II SS 2012 VL 2-3 Einführung

Acceleration possible?:
Store several iterates xi, xi+1, xi+2,... and search for
better solution by taking (linear) combinations ->
leads to the method of conjugate gradients with
preconditioning or more generally to Krylov-space
methods such as (GMRES, etc.)
Use coarser grids to accelerate fine grid iteration
process: Multigrid methods.
....

Many books, e.g.: Wolfgang Hackbusch: Iterative
Lösung großer schwachbesetzter Gleichungssysteme,
Teubner, Stuttgart, 2. Auflage (1993)

Ideas for accelerating the algorithms

48

49

Practical conclusion:
1. A smooth error can be approximated well on a coarser

grid.
2. A coarser grid implies less variables, hence less

computation.
3. On the coarser grid the error is no longer as smooth

relative to the grid, so relaxation may once again be
efficient.

Key Observation re-worded: Relaxation cannot be
generally efficient for reducing the error (i.e., the
difference field). But relaxation may be
extremely efficient for smoothing the error relative to the
grid.

50

The solution, uh, depends only on the equation and the
data, so it is not, of course, smoothed by relaxation. Only
the error is smoothed. Hence, we reformulate our
problem:
Denote

Recall

Subtract from both sides, and use the linearity of Lh
to obtain:

It is this equation that we shall approximate on the
coarse grids.

.~hhh uuv !=

.hhh fuL =

hhuL ~

hhhhhh ruLfvL !"= ~

51

As we have seen, we need to smooth the error on the fine
grid first, and only then solve the coarse-grid problem.
Hence, we need two types of intergrid transfer operations:

1. A Restriction (fine-to-coarse) operator:
2. A Prolongation (coarse-to-fine) operator:

For restriction we can often use simple injection, but full-
weighted (local averaging) transfers are preferable.
For prolongation, linear interpolation (bi-linear in 2D) is
simple and usually effective.

.HhI
.hHI

6

The HHG Framework Stencil performance Strong scaling & performance modeling Weak scaling

Two-grid cycle (correction scheme)

Department for Computer Science 10 (System Simulation)

52

Two-grid Algorithm

! Relax several times on grid h, obtaining

 with a smooth corresponding error.

! Calculate the residual:

! Solve approximate error-equation on the

 coarse grid:

! Interpolate and add correction:

! Relax again on grid h.

Multi-grid is obtained by recursion.

.~hhhh uLfr !=

.hH
h

HHH rIfvL !=

.~~ Hh
H

hh vIuu +!

53

Multi-grid Cycle

Let approximate , approximate the error on grid 2h, etc.

()

()

()

timesonRelax

Correct

timesonRelax

Correct

timesonRelax

Correct

Solve

Set

timesonRelax

Set

timesonRelax

Set

timesonRelax

2

2
2

2
222

42
4

22
2

444

84
8

44

84448
4

8
1

444

42224
2

4
1

222

222
1

0,

0,

0,

vfuL
uIuu

vfuL
uIuu
vfuL
uIuu

fuL

uuLfIf
vfuL
uuLfIf

vfuL
uuLfIf

vfuL

hhh

hh
h

hh

hhh

hh
h

hh

hhh

hh
h

hh

MhMhMh

hhhhh
h

h

hhh

hhhhh
h

h

hhh

hhhhh
h

h

hhh

=

+!

=

+!

=

+!

="

="=

=

="=

=

="=

=

!

!

()21,!!V
hu2

hv2 hu4

54

Remarks:
1. Simple recursion yields a V cycle. More generally, we

can choose a cycle index , and define a –cycle
recursively as follows: Relax; transfer to next coarser
grid; perform cycles; interpolate and correct; Relax.
(On the coarser grid define the cycle as an exact
solution).

2. The best number of pre-relaxation + post-relaxation
sweeps is normally 2 or 3.

3. The boundary conditions for all coarse-grid problems is
zero (because the coarse-grid variable is the error).
The initial guess for the coarse-grid solution must be
zero.

ã

ã

ã

Solution of Poisson‘s eqn

55

Dirichlet boundary conditions

56

After 2 steps of Gauss-Seidel smoothing

57

after 2 iterations

On the next coarser grid, approximate solution
(after „V-cycle“ recursion)

58

 File: c/c.4/u.26

 enorm = 1.38371516388512e-01

0

10

0

10

0

 5

 8

On finest grid, after coarse grid correction

59

 File: c/u.29

 enorm = 9.11869751280490e-02

0

10

20

0

10

20

30

0

 5

 10

 12

60

61

Multigrid vs. Relaxation

Iterations

E
rr

or

62

63

The cost of the V cycle in terms of computation and storage is
given by

Where d is the dimension and N is the number of variables on
the finest grid. Here, c is some constant that depends on the
discrete operators and the number of relaxation sweeps per
level.
Thus, for a 2D problem, the V-cycle with one pre-relaxation
and one post-relaxation requires approximately the same
number of operations as 3-5 relaxation sweeps.
The convergence rate of a V-cylce is <1 and bounded away
from one for a wide class of elliptic PDE independent of the
mesh size. In practice, we try (and often succeed) to achieve
µ ! 0.1.

64

The cost of the V cycle in terms of computation and storage is
given by

Where d is the dimension and N is the number of variables on
the finest grid. Here, c is some constant that depends on the
discrete operators and the number of relaxation sweeps per
level.
Thus, for a 2D problem, the V-cycle with one pre-relaxation
and one post-relaxation requires approximately the same
number of operations as 3-5 relaxation sweeps.
The convergence rate of a V-cylce is <1 and bounded away
from one for a wide class of elliptic PDE independent of the
mesh size. In practice, we try (and often succeed) to achieve
µ ! 0.1.

65

The Full Multi-Grid (FMG) Algorithm

The multigrid V-cycle is an iterative method, and
hence it requires an initial guess for the solution. This
initial approximation is obtained from a coarser grid,
and so on recursively.

The FMG algorithm combines the grid-refinement
approach with the V-cycle.

For many problems, FMG with just a single V-cycle
per level suffices to reduce the error below truncation
level. In this case, only O(N) operations are required
overall.

66

No relaxation

Coarsest grid

Finest grid

ProlongationRestrictionRelaxation

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation

High Performance Systems
(on the way to Exa-Flops)

67

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 68

How much is ExaFlops?
106 = 1 MegaFlops: Intel 486

 33MHz PC (~1989)
109 = 1 GigaFlops: Intel Pentium III

 1GHz (~2000)
If every person on earth computes one operation
every 7 seconds, all humans together have ~1
GigaFlops performance (less than a current laptop)

1012= 1 TeraFlops: HLRB-I
 1344 Proc., ~ 2000

1015= 1 PetaFlops
122 400 Cores (Roadrunner, 2008)
294 912 Cores (Jugene, Jülich, 1.44 1014

Bytes Memory)
155 000 Cores (SuperMuc, 3 PFlops, 3.33
1014 Bytes Memory)

If every person on earth runs a 486 PC, we all
together have an aggregate Performance of 7
PetaFlops.
ExaScale (~1018 Flops) around 2018?

HLRB-I: 2 TFlops
HLRB-II: 63 TFlops

SuperMuc: 3 PFlops

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation

Example Peta-Scale System:
Jugene @ Jülich

PetaFlops = 1015

operations/second
IBM Blue Gene
Theoretical peak
performance: 1.0027
Petaflop/s
294 912 cores
144 TBytes = 1.44 1014
#9 on TOP 500 List in
Nov. 2010

69

For comparison: Current fast desktop PC is ∼ 20.000 times slower
> 1 000 000 cores expected 2011
Exa-Scale System expected by 2018/19 ... likely with ~109 cores

Extreme Scaling Workshop 2010
at Jülich Supercomputing Center

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation

What will Computers Look Like in 2020?
Super Computer (Heroic Computing)

Cost: 200 Million "
Parallel Threads: 108 - 109

1018 FLOPS, Mem: 1015-1017 Byte (1-100 PByte)
Power Consumption: 20 MW

Departmental Server (Mainstream Computing for R&D)
Cost: 200 000 "
Parallel Threads: 105 - 106

1015 FLOPS, Mem: 1012-1014 Byte (1-100 TByte)
Power Consumption: 20 KW

(mobile) Workstation (Computing for the Masses)
... scale down by another factor 100

70

But remember: Predictions are difficult ...
especially those about the future

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation

What‘s the problem?
with four strong jet engines

or with 300,000
blow dryer fans?

71

Would you want to
propel a Superjumbo

Large Scale Simulation Software

Moderately Parallel Computing

Massively Parallel
MultiCore Systems

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation

What are the problems?

72

Unprecedented levels of parallelism
maybe billions of cores/threads needed

Hybrid architectures
standard CPU
vector units (SSE)
accelerators (GPU)

Memory wall
memory response slow: latency
memory transfer limited: bandwith

Power considerations dictate
limits to clock speed => multi core
limits to memory size (byte/flop)
limits to address references per operation
limits to resilience

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 73

Why Parallel Programming?
All standard processors are multicore processors

“The free lunch is over”
To exploit multicore performance, parallel
algorithms are essential
CPUs will have 2, 4, 8, 16, ..., 128, ..., ??? cores
Exa-Scale Systems will have many millions of
cores

Current Exa-Scale development dictated by
power consumption: 10 PicoJoule/Flop:

we cannot afford communication
we cannot afford memory access

fault tolerance
we must learn to live with system failures and
errors

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 74

What are the consequences?

For the application developers “the free lunch is
over”

Without explicitly parallel algorithms, the performance
potential cannot be used any more

For HPC
CPUs will have 2, 4, 8, 16, ..., 128, ..., ??? cores -
maybe sooner than we are ready for this
We will have to deal with systems with millions of cores

The memory wall grows higher

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 75

Towards Scalable FE Software

Scalable Algorithms
and Data Structures

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation

How Fast

should our simulations be

... and why they aren‘t

76

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 77

How fast can we make FE multigrid
Parallelize „plain vanilla“ multigrid for
tetrahedral finite elements

partition domain
parallelize all operations on all grids
use clever data structures
matrix free implementation

Do not worry (so much) about Coarse
Grids

idle processors?
short messages?
sequential dependency in grid hierarchy?

Elliptic problems always require global
communication. This cannot be
accomplished by

local relaxation or
Krylov space acceleration or
domain decomposition without coarse grid

Bey‘s Tetrahedral
Refinement

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 78

Regular tetrahedral refinement

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 79

Grid Partitioning - Communication Pattern

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 80

Hierarchical Hybrid Grids (HHG)
Joint work with
Frank Hülsemann (now EDF, Paris), Ben Bergen (now Los
Alamos), T. Gradl (Erlangen), B. Gmeiner (Erlangen)

HHG Goal: Ultimate Parallel FE Performance!

unstructured adaptive refinement grids with
regular substructures for
efficiency
superconvergence effects
matrix-free implementation

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 81

HHG refinement example

Input Grid

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 82

HHG Refinement example

Refinement Level one

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 83

HHG Refinement example

Refinement Level Two

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 84

HHG Refinement example

Structured Interior

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 85

HHG Refinement example

Structured Interior

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 86

HHG Refinement example

Edge Interior

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 87

HHG Refinement example

Edge Interior

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 88

Typical HHG Input mesh

10

The HHG Framework Stencil performance Strong scaling & performance modeling Weak scaling

The HHG input mesh is quite large on many cores...

- Each tetrahedral element (≈ 132k) was assigned to one Jugene
compute core.

Department for Computer Science 10 (System Simulation)

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 89

HHG for Parallelization
Use regular HHG patches for partitioning the domain

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 90

HHG Parallel Update Algorithm
for each vertex do
 apply operation to vertex
end for

for each edge do
 copy from vertex interior
 apply operation to edge
 copy to vertex halo
end for

for each element do
 copy from edge/vertex interiors
 apply operation to element
 copy to edge/vertex halos
end for

update vertex primary dependencies

update edge primary dependencies

update secondary dependencies

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 91

HHG Pros and Cons
Pro:

performance
• within node: SIMD, superscalar execution, etc.

better accuracy through local superconvergence effects
well suited for parallelization
tau-extrapolation for higher order
local line/plane smoothers for better efficiency

Con:
only restricted adaptivity possible
only limited ability to handle complex shapes
how to solve the coarse grid problem
high implementation effort
less flexible

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation

Performance Engineering
design - model - measure - revise - tune

node performance first!

92 16

The HHG Framework Stencil performance Strong scaling & performance modeling Weak scaling

Performance in MUnknowns/s per compute core for
different smoother variants on Jugene

!

"

#!

#"

$!

$"

%!

%"

&!

#! $! %! &! "! '! (!)! *! #!! ##! #$! #%! #&! #"! #'! #(! #)! #*! $!! $#! $$! $%! $&! $"!

+
,
-.

-/
0
-1
21
3

45673

893(:;/5-<

=43(:;/5-<

893#":;/5-<

>>=3#":;/5-<

Department for Computer Science 10 (System Simulation)

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation

System Performance Model
and Measurement

93

22

Strong scaling & performance modeling

BlueGene/P performance model

!"!!

!"!#

!"$!

!"$#

!"%!

!"%#

!"&!

!"&#

'#(#)() &*$#+ &)$&((%+'!*#%

,-
.
/0
12
30

4567/20

89:;<-;=> 5? 56.@A=9=-6: B/92A7/./:=

Department for Computer Science 10 (System Simulation)

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation 94

#Cores Coarse Grid Unkn (x 106) Crse Grd Its Tme to soln
128 1536 535 15 5,64

64256 3072 1070 20 5,66
512 6144 2142 25 5,69

1024 12288 4286 30 5,71
2028 24576 8577 45 5,75
4096 49152 17158 60 5,92
8192 98304 34326 70 5,86

16384 196608 68669 90 5,91
32768 393216 137355 105 6,17
65536 786432 274743 115 6,41

131072 1572864 549554 145 6,42
262144 3145728 1099276 280 6,82
294912 294912 824365 110 3,80

Parallel scalability
of scalar elliptic
problem in 3D
discretized by
tetrahedral finite
elements.

Times to solution
on Jugene.

Largest problem
solved:
1.099 x 1012 DOFS
(6 trillion
tetrahedra) on
262000 processors
in roughly 100
secs.

B. Bergen, F. Hülsemann, U. Rüde, G. Wellein: ISC Award 2006, also: „Is
1.7! 1010 unknowns the largest finite element system that can be solved
today?“, SuperComputing, Nov‘ 2005. Runs done on SGI Altix at LRZ.

? ? ?

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation

Conclusions

95

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation

Theory versus Practice
Assumptions:

Multigrid requires 27.5 Ops/unknown to solve an elliptic PDE (Griebel ´89
for Poisson)
A modern laptop CPU delivers >10 GFlops peak

Consequence:
We should solve one million unknowns in 0.00275 seconds
~ 3 ns per unknown

96

Revised Assumptions:
Multigrid takes 500 Ops/unknown to solve your favorite PDE
you can get 5% of 10 Gflops performance

Consequence: On your laptop you should
solve one million unknowns in 1.0 second
~ 1 microsecond per unknown

Consider Banded Gaussian Elimination on the Play Station (Cell Processor),
single Prec. 250 GFlops, for 1000 x 1000 grid unknowns

~2 Tera-Operations for factorization - will need about 10 seconds to factor
the system
requires 8 GB Mem.
Forward-backward substitution should run in about 0.01 second, except
for bandwidth limitations

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation

Pessimizing the Performance

97

Bring loops in wrong order, ignore caches, randomize
memory access, use many small MPI messages

1012 " 1011 unknowns
Do not use a matrix-free implementation (keep in
mind that a single multiplication with the mass and
stiffness can easily cost 50 mem accesses per
unknown):

1011 " 1010 unknowns
Gain additional flexibility by using unoptimized
unstructured grids (indirect mem access costs!)

1010 " 109 unknowns
Increase algorithmic overhead, e.g. permanently
checking convergence, use the most expensive error
estimator, etc. etc.

109 " 108 unknowns (... still a large system ...)

P
essim

ize #
O

pt
im

iz
e
#

Bü
ro

 fü
r G

es
ta

ltu
ng

 W
an

gl
er

 &
 A

be
le

 0
4.

 A
pr

il
20

11

Ulrich Rüde - Lehrstuhl für Simulation

Thank you for your attention!

Questions?

Slides, reports, thesis, animations available for download at:
www10.informatik.uni-erlangen.de

98

