Multigrid Methods on Parallel Computers

U. Rude (LSS Erlangen, ruede@cs.fau.de)

Lehrstuhl fiir Informatik 10 (Systemsimulation)
Universitat Erlangen-Nurnberg

www10.informatik.uni-erlangen.de

CEMRACS’12
Numerical Methods and Algorithms for
High Performance Computing
CIRM, Marseille
July 17,2012

Ulrich Rude - Lehrstuhl fUr Simulation

Overview

Motivation
* A tutorial intro to Multigrid (based on Irad Yavneh's tutorial)
= Sergeant Jacobi's” soldier alignment problem
= The multigrid algorithm
= How fast should our solvers be
How fast are parallel computers today:
= The race to Exa-Scale
:* Scalable Parallel Multigrid

Matrix-Free Multigrid FE solver: Hierarchical Hybrid Grids (HHG)

:* Conclusions

Ulrich Rude - Lehrstuhl fUr Simulation

A (too) brief introduction
to Multigrid

following the wonderful tutorial and
using slides by I. Yavneh

Ulrich Rude - Lehrstuhl fUr Simulation %

Further Acknowledgements

- Multigrid Lecture Notes by S. McCormick

* Slides from Multigrid Tutorial by V. Henson

« ,Why Multigrid Methods are so Efficient” by |. Yavneh
 Multigrid Tutorial by B. Briggs, S. McCormick, V. Henson
* ,The Multigrid Guide” by A. Brandt

What is ,Multigrid™?

A framework of efficient iterative methods for solving
problems with many variables and many scales.

Framework: common concept, different methods.

Efficient: usually O(N) or O(N log N) operations

The importance of efficient methods becomes greater as
computers grow stronger!

Iterative: most nontrivial problems in our field cannot be solved
directly efficiently.

Solving: approximately, subject to appropriate convergence
criteria, constraints, etc.

Many variables: the larger the number of variables, the greater
the gain of efficient methods

Many scales: typical spatial and/or temporal sizes.

What can multigrid achieve?

Solve elliptic PDE in asymptotically optimal complexity
Poisson's eqn in 2D: <30 FLOPs per unknown
— Cheaper than computing

u; ; = sin(x;) sin(y,)
Solve FE problems (linear, scalar, elliptic PDE) with
more than 10'2tetrahedral elements

— on a massively parallel supercomputer
— reminder: 1012# 2 x 106

Basic Concepts: Local vs. Global processing.

Imagine a large number of soldiers who need to be
arranged in a straight line and at equal distances from

each other.
The two soldiers at the ends of the line are fixed. Suppose

we number the soldiers 0 to N , and that the length of the
entire line is L.

Initial Position

Final Position

Global processing. Let soldier number j stand on the
line connecting soldier 0 to soldier N at a distance jL/N
from soldier number 0.

10

11

Global processing. Let soldier number j stand on the line
connecting soldier O to soldier N at a distance jL/N from
soldier number 0.

This method solves the problem directly, but it requires a

high degree of sophistication: recognition of the extreme
soldiers and some pretty fancy arithmetic.

12

13

A step in the right direction

14

15

Slow convergence

16

17

Fast convergence

18

19

Slow convergence

20

Local solution: damping

21

Local solution: damping

22

Local solution: damping

23

Local solution: damping

The multiscale idea: Employ the local processing with
simple arithmetic. But do this on all the different scales.

24

Yol
AN

26

Large scale

27

Large scale

28

Intermediate scale

29

Intermediate scale

Small scale

30

1
™

How much work do we save?

Jacobi’s method requires about N? iterations and N2 *N =
N3 operations to improve the accuracy by an order of
magnitude.

The multiscale approach solves the problem in about
Log,(N) iterations (whistle blows) and only about N

operations.

Example: for N = 1000 we require about:
10 iterations and 1000 operations
instead of about
1,000,000 iterations and 1,000,000,000 operations

Slide 32

How important is computational efficiency?
Suppose that we have three different algorithms for a
given problem, with different computational complexities
for input size N :

Algorithm 1: 10 N operations

Algorithm 2: 103 N2 operations

Algorithm 3: N° operations
Suppose that the problem size, N, is such that Algorithm 1
requires one second.
How long do the others require?

33

Computer

Algorithm 3 |Algorithm 2 |Algorithm 1 N Speed

O(N?) O(N?) O(N) (ops/sec)
0.000001 sec| 0.001 sec 1 sec 1 1M (~1069)
(1980’s)

1 sec 1 sec 1 sec 1K 1G (~109)
(1990’s)

12 days 17 min 1 sec 1M 1T (~1012)
(2000’s)

31,710 years 12 days 1 sec 1G 1P (~1015)
(2010’s)

Stronger Computers —

34

Greater Advantage of Efficient Algorithms!

35

The catch: in less trivial problems, we cannot

construct appropriate equations on the large

scales without first propagating information from

the small scales.

Skill in developing efficient multilevel algorithms

IS required for:

1. Choosing a good local iteration.

2. Choosing appropriate coarse-scale
variables.

3. Choosing inter-scale transfer operators.

4. Constructing coarse-scale approximations to

the fine-scale problem.

Multigrid is not the answer to everything!

+ Sparse, low dimension, large, stiff, elliptic PDE,
geometric, smooth long-range effects, structured,
iIsotropic, smoothly varying coefficients, symmetric
positive definite.

~ Nonlinear, disordered, anisotropic, discontinuous
coefficients, singular-perturbation and non-elliptic
PDE, PDE systems, non-symmetric, indefinite, non-
deterministic.

- Dense, high-dimensional, small, single-scale.

Slide 36

2D Model Problem

Find u which satisfies:

Lu=u_+u, =f(x,y) (y)EQ
u=glx.y), (x.y)E0Q

This is the 2D Poisson equation, with Dirichlet boundary conditions. It is an
elliptic partial differential equation which appears is many models.

37

Example for Use of an Iterative Method

1 o
Uj,j = Z(uz’—l,j + Uig1,j + Wij—1 + Ui j+1) fori,j=1..n
Grid of wires
*—0—0—0—0—o¢ Solution at each node =
Uijii Average of neighboring values
O —90 900 0 ¢
Uirj U Uir1, :
Boundary values given.
* —0—0—0 0§
Ui
o o o o o o This is the standard 5-point
discretization of the Laplace-
o—o—o oo or Poisson-equation in 2D.

Slide 38

Matrix representation

~ = — = =
T et T QN e N L =
S S S S S
|
: [| |
v NA
/
yas
Pl Y ¢
/ 4 O 7
7 7 4\ /
\\ / /
/ -— < Yy
y; [~ _ |
[| 4_
\ ’ ’
/ A ’
\ \ 7’ \
7 y / 4
/ 2P
/. \\ \\
\\ \\\ ¥
/
—
P | | s |
/
/ / /
7/ / /
/ / /
/ / 7/
/ / /
/ / /
7/ vV 4
\\
—
_ =T —
- _\ 4
2% ;) 7
/ &k 4
/ /
/ PR P y;
/ A 7
/ N, /
/ ad 7/
—
| | < _ /
1
| 44_ 4_ \\
7/
\\\\4 \\ /
/ / 7/ /s
A A /
y C R e
V5 /
SR /
v s/ /

39

Slide

Iterative Methods

Matrix free implementation of the Gauss-Seidel Method

real u[N+1] [N+1]; /* initialisieren mit Randwerten, im Inneren
"0" oder Mittelwert der Randwerte */

for (int it=0; it<MAXIT; it++) {
real udiff=0;
for (int i=1; i<N; i++)
for (int j=1; j<N; j++) {
real un = 0.25%(uli-1] [j1+uli+1] [j1+uli] [j+1]1+uli]l[j-11);
udiff += fabs(ul[i][j]l-un);
uli] [j] = wkun + (1-w) * ul[i] [j];
+
if((udiff / NxN) < TOL) break; ()

w=1: Gauss-Seidel; w>1: SOR

Slide 40

Graphical lllustration (Visualization)

u = sinh(x) sin(y)

e

S 5 :“‘
OSSR
SIS AT AT AT
=t
s SRS

‘a‘.o‘?’?‘::‘“::‘“‘ 20
i

c/t

@
a7

)
a7

:/u

Exact Solution (of PDE)
Boundary values to start the iteration

Slide 41

Visualization of Convergence

(A
r' !,”p‘
'l}'{‘('”"“
[N}

J gf” “

—
——
— e

tion of Convergence

IZa

Visual

»

w0

43

Slide

Beispiel: lterations -- Visualisation

c/u.10

View of iterative solution after 1000. Gauss-Seidel-lterations

s The Gauss-Seidel-method needs for this problem O(¥) iterations, where N
(=n?) is the number of unknowns (grid points).

Slide 44

Iterative Methods: Discussion of Example

52 Gauss-Seidel-Method:

= When N iterations are required, each of which needs O(N) operations then
the total cost is O(N?) operations

@ N=n?, n number of grid points in one mesh dimensions

SOR-method: only n=N'2iterations necessary, if the relaxation
parameter w>1 is chosen optimally.

« For the model problem thsi can be shown mathmatically, see e.g. Stoer/
Bulirsch.

s Be clear that there are different types of error:
« Rounding errors (hier of secondary importance)
= |teration error: stopping the iteration after finitely many steps

« Discretisation: even after .o many iterationenan error relative to the partial
differential equation remains (discretization error: griod vs. plate)

SIWIR-II SS 2012 VL 2-3 EinfGhrung Slide 46

|deas for improvement (1)

s Choose ordering of grid traversals more inteligently.
However this unfortunately only helps substantially, when
the problem at hand has a ,preferred direction. (Physically
this corresponds to convection rather than diffusion)

s Search systematically for equations/unknows which are far
from equlibrium (large residual) and iterate preferably on
those (search algorithm often too expensive)

s Search for better initial guess:
= Interpolate boundary values

= Start on coarser grid, compute a approximate solution
there, and interpolate to finer grid. (Cascade algorithm,
Nested iteration)

SIWIR-II SS 2012 VL 2-3 EinfGhrung Slide 47

|deas for accelerating the algorithms

s Acceleration possible?:

» Store several iterates x/, xi*1, x/*2,... and search for
better solution by taking (linear) combinations ->
leads to the method of conjugate gradients with
preconditioning or more generally to Krylov-space
methods such as (GMRES, etc.)

= Use coarser grids to accelerate fine grid iteration
process: Multigrid methods.

-

s# Many books, e.g.: Wolfgang Hackbusch: lterative
Losung grolBer schwachbesetzter Gleichungssysteme,
Teubner, Stuttgart, 2. Auflage (1993)

SIWIR-II SS 2012 VL 2-3 EinfGhrung Slide 48

Key Observation re-worded: Relaxation cannot be
generally efficient for reducing the error (i.e., the
difference field #”" —u"). But relaxation may be
extremely efficient for smoothing the error relative to the
grid.

Practical conclusion:

1. A smooth error can be approximated well on a coarser
grid.

2. Acoarser grid implies less variables, hence less
computation.

3. On the coarser grid the error is no longer as smooth
relative to the grid, so relaxation may once again be
efficient.

49

50

The solution, u”, depends only on the equation and the
data, so it is not, of course, smoothed by relaxation. Only
the error is smoothed. Hence, we reformulate our

problem:

h h ~h
Denote V =uU —Uu .

Recall L'u”" = f".

Subtract L'7" from both sides, and use the linearity of L
to obtain:

h h phe~h _
Lv'=f"-L'u" =r

It is this equation that we shall approximate on the
coarse grids.

As we have seen, we need to smooth the error on the fine
grid first, and only then solve the coarse-grid problem.
Hence, we need two types of intergrid transfer operations:

1. A Restriction (fine-to-coarse) operator:. [/ ,f[:
2. A Prolongation (coarse-to-fine) operator: 77,.

For restriction we can often use simple injection, but full-
weighted (local averaging) transfers are preferable.

For prolongation, linear interpolation (bi-linear in 2D) is
simple and usually effective.

91

Two-grid Algorithm
< Relax several times on grid h, obtaining

with a smooth corresponding error.

<> Calculate the residual:

< Solve approximate error-equation on the

coarse grid:

< Interpolate and add correction:

< Relax again on grid /1.

Multi-grid is obtained by recursion.

~ h
U
h h h~h
r'=f"-L'u”.
H_ H H H _ h
L'y = £ = 1yt
~h ~h h H
u" <—u +1,v".
AV
1) Presmoothing / / / //_/'k/:/'f 7) Postsmoothing
) Residuat Vs Level k X |
esidua /j/ 6) Correction
L
3) Restriction of the residual 5) Prolongation of the error
\/ Level k-1 /

52

4) Solving the error equation

Multi-grid Cycle V(Vl, %)

Let 2° approxmate v 4happroximate the error on grid 2h, etc.

Relax on L”uh = /" v, times
Set 12" =I§h(f}z _Lhuh) 42" — 0
Relax on L*"u”" = 7" v, times
Set f 4 — 3 (th _LZthh) 4 — 0
Relax on L'y = £*" v, times
Set " — 15 (f4h _L4hu4h) 4% — 0

Solve L"" —y™" = 5™

Correct u*" < u*" + 1}/'u®"

Relax on L'y = %" v, times
Correct u”" <— u?" + 17/u?"
Relax on L*"u?" = 2" v, times
Correct u”" < u”" + 1, u’

Relax on L"u” = f” v, times

53

Remarks:

1.

94

Simple recursion yields a V cycle. More generally, we
can choose a cycle index a, and define a a—cycle
recursively as follows: Relax; transfer to next coarser
grid; perform a cycles; interpolate and correct; Relax.
(On the coarser grid define the cycle as an exact
solution).

The best number of pre-relaxation + post-relaxation
sweeps is normally 2 or 3.

The boundary conditions for all coarse-grid problems is
zero (because the coarse-grid variable is the error).
The initial guess for the coarse-grid solution must be
Zero.

55

Solution of Poisson’s egn

56

Dirichlet boundary conditions

S7

After 2 steps of Gauss-Seidel smoothing

after 2 iterations

58

On the next coarser grid, approximate solution
(after ,V-cycle” recursion)

enorm = 1.38371516388512e-01

On finest grid, after coarse grid correction

= 9.11869751280490e-02

enorm

=

=
s

=——
<>

——
=

=
=
==

—
—

—
———

—

—

c/u.29

File:

59

Fines: grid

Cosrsest grid

60

V cycle

.\\

RELAXATION

RESTRICTION

PROLONGATION

Error

61

Residual convergence histories, 128 by 128 grid

| |
— V(1,1) Cycles
—— Red-Black Relaxation

30 40 50 60 70
lterations

Multigrid vs. Relaxation

80 90

100

Oolhevn Niew

o s A AT NIDEAY 1050 -0

(ra

9

clu

WANMA e -0

e cicAruny

> \
' / !
.h— |
1 ' ‘\
O e e
e e ¥
=y - _— -
D e e G Sy
& NN e 4
0‘“ s
T cle diong
"Io
Y
o =
P N
o~

Fhe: oic ASuBle V2w 3

Fan

Opdant

ovorve » WS THERSS Y TH04 00 O F

orm

fs O

e w4

P /o dde s
0 :
L) _
| / 4
i
1 —— \
—
L -
>)
-0 4= -~ . - S L
- . e "
Ny &
o 7,
a T oic A/e i 70
A
- e
——
-

The cost of the V cycle in terms of computation and storage is
given by

levels —1 2 d

cN Zz—dk <cN—
= 29 -1

Where d is the dimension and N is the number of variables on
the finest grid. Here, ¢ is some constant that depends on the
discrete operators and the number of relaxation sweeps per
level.

Thus, for a 2D problem, the V-cycle with one pre-relaxation
and one post-relaxation requires approximately the same
number of operations as 3-5 relaxation sweeps.

The convergence rate of a V-cylce is <1 and bounded away
from one for a wide class of elliptic PDE independent of the
mesh size. In practice, we try (and often succeed) to achieve
u=0.1.

63

The cost of the V cycle in terms of computation and storage is
given by

levels —1 2 d

cN Zz—dk <cN—
= 29 -1

Where d is the dimension and N is the number of variables on
the finest grid. Here, ¢ is some constant that depends on the
discrete operators and the number of relaxation sweeps per
level.

Thus, for a 2D problem, the V-cycle with one pre-relaxation
and one post-relaxation requires approximately the same
number of operations as 3-5 relaxation sweeps.

The convergence rate of a V-cylce is <1 and bounded away
from one for a wide class of elliptic PDE independent of the
mesh size. In practice, we try (and often succeed) to achieve
u=0.1.

64

65

The Full Multi-Grid (FMG) Algorithm

The multigrid V-cycle is an iterative method, and
hence it requires an initial guess for the solution. This
initial approximation is obtained from a coarser grid,
and so on recursively.

The FMG algorithm combines the grid-refinement
approach with the V-cycle.

For many problems, FMG with just a single V-cycle
per level suffices to reduce the error below truncation
level. In this case, only O(N) operations are required
overall.

Finest grid

o—0

(
0<o<<\‘o
AN
<“—— <

2

.
.

Coarsest grid

@ Relaxation l Restriction / Prolongation
@ No relaxation

66

High Performance Systems
(on the way to Exa-Flops)

Ulrich Rude - Lehrstuhl fUr Simulation 67

How much is ExaFlops?

108 = 1 MegaFlops: Intel 486
33MHz PC (~1989)

10° = 1 GigaFlops: Intel Pentium Il
1GHz (~2000)

= |If every person on earth computes one operation
every 7 seconds, all humans together have ~1

GigaFlops performance (less than a current Iaptop; 7!
1012= 1 TeraFlops: HLRB-I § -

1344 Proc., ~ 2000
1015= 1 PetaFlops
122 400 Cores (Roadrunner, 2008)

294 912 Cores (Jugene, Jilich, 1.44 104
Bytes Memory)

155 000 Cores (SuperMuc, 3 PFlops, 3.33
1074 Bytes Memory)

If every person on earth runs a 486 PC, we all
together have an aggregate Performance of 7
PetaFlops.

i# ExaScale (~10'8 Flops) around 20187

B s Ulrich Riide - Lehrstuhl fur Simulation 68

Example Peta-Scale System:
Jugene @ Julich

:# PetaFlops = 10"
operations/second

IBM Blue Gene

> Theoretical peak
performance: 1.0027
Petaflop/s

294 912 cores
144 TBytes = 1.44 1014

o Fxtreme ScallngWorkshop 2010 < #9 on TOP 500 List in
at Julich Supercomputing Center Nov. 2010

i# For comparison: Current fast desktop PC is ~ 20.000 times slower

:# > 1000 000 cores expected 2011
i+ Exa-Scale System expected by 2018/19 ... likely with ~10° cores

B s Ulrich Riide - Lehrstuhl fur Simulation 69

What will Computers Look Like in 20207

2 Super Computer (Heroic Computing)
= Cost: 200 Million €

= Parallel Threads: 108- 10°

= 10'8 FLOPS, Mem: 10"-10"'" Byte (1-100 PByte)
= Power Consumption: 20 MW

2 Departmental Server (Mainstream Computing for R&D)
= Cost: 200 000 €

= Parallel Threads: 10°- 10°

= 10" FLOPS, Mem: 10"%-10"4 Byte (1-100 TByte)
= Power Consumption: 20 KW

i* (mobile) Workstation (Computing for the Masses)
= ... scale down by another factor 100

But remember: Predictions are difficult ...
especially those about the future

Ulrich Rude - Lehrstuhl fUr Simulation 70

What's the problem?

with four strong jet engines

Moderately Paral-lel Computing

Would you want to
propel a Superjumbo

or with 300,000
blow dryer fans?

e\ SR Bl S -_—
== | \q’—‘ qﬁ‘ pem—=———
— i T T e

:';,;%\ (-5"*.-5—‘\ v ".‘
;‘/(%Y(/'r'ﬁ o~y

Massively ParaIIeI |
Multhore Systems

What are the problems?

iz Unprecedented levels of parallelism
* maybe billions of cores/threads needed
2 Hybrid architectures
» standard CPU
= vector units (SSE)
= accelerators (GPU)

:* Memory wall

* memory response slow: latency
= memory transfer limited: bandwith

:* Power considerations dictate
= limits to clock speed => multi core
= limits to memory size (byte/flop)
= limits to address references per operation
= limits to resilience

B s Ulrich Riide - Lehrstuhl fur Simulation 72

Why Parallel Programming?

:# All standard processors are multicore processors
= “The free lunch is over”

= To exploit multicore performance, parallel
algorithms are essential

= CPUs will have 2, 4, 8, 16, ..., 128, ..., ??? cores

= Exa-Scale Systems will have many millions of
cores

Current Exa-Scale development dictated by

«# power consumption: 10 PicoJoule/Flop:
= we cannot afford communication
= we cannot afford memory access

«# fault tolerance

= we must learn to live with system failures and
errors

. & Ulrich Rude - Lehrstuhl fUr Simulation

73

IS E IO

Sk tad et B “
- G

o
- -

What are the consequences?

¢ For the application developers “the free lunch is
over”

= Without explicitly parallel algorithms, the performance
potential cannot be used any more

For HPC

= CPUs will have 2, 4, 8, 16, ..., 128, ..., ??? cores -
maybe sooner than we are ready for this

* We will have to deal with systems with millions of cores
:* The memory wall grows higher

Ulrich Rude - Lehrstuhl fUr Simulation 74

Towards Scalable FE Software

Scalable Algorithms
and Data Structures

Ulrich Rude - Lehrstuhl fUr Simulation 75

How Fast

should our simulations be

... and why they aren't

Ulrich Rude - Lehrstuhl fUr Simulation 76

How fast can we make FE multigrid

2 Parallelize ,plain vanilla® multigrid for
tetrahedral finite elements
partition domain
parallelize all operations on all grids
use clever data structures
matrix free implementation
* Do not worry (so much) about Coarse
Grids
* idle processors?
» short messages?
= sequential dependency in grid hierarchy?
« Elliptic problems always require global
communication. This cannot be
accomplished by
* |ocal relaxation or
* Krylov space acceleration or
* domain decomposition without coarse grid
*N

B s Ulrich Riide - Lehrstuhl fur Simulation 77

Bey's Tetrahedral
Refinement

Regular tetrahedral refinement

Ulrich Rude - Lehrstuhl fUr Simulation

Grid Partitioning - Communication Pattern

B inner points

@ (macro) vertex points
@ (macro) edge points
e e ghost points

'0

.~ communication

Ulrich Rude - Lehrstuhl fUr Simulation 79

Hierarchical Hybrid Grids (HHG)

« Joint work with

«# Frank Hulsemann (now EDF, Paris), Ben Bergen (now Los
Alamos), T. Gradl (Erlangen), B. Gmeiner (Erlangen)

HHG Goal: Ultimate Parallel FE Performance!

:* unstructured adaptive refinement grids with
i regular substructures for
:+ efficiency
i superconvergence effects
:* matrix-free implementation

B s Ulrich Riide - Lehrstuhl fur Simulation 80

HHG refinement example

Input Grid

Ulrich Rude - Lehrstuhl fUr Simulation toll

HHG Refinement example

Refinement Level one

Ulrich Rude - Lehrstuhl fUr Simulation 82

HHG Refinement example

Refinement Level Two

Ulrich Rude - Lehrstuhl fUr Simulation 83

HHG Refinement example

Structured Interior

Ulrich Rude - Lehrstuhl fUr Simulation 84

HHG Refinement example

Structured Interior

Ulrich Rude - Lehrstuhl fUr Simulation 85

HHG Refinement example

Edge Interior

Ulrich Rude - Lehrstuhl fUr Simulation 86

HHG Refinement example

Edge Interior

Ulrich Rude - Lehrstuhl fUr Simulation 87

Typical HHG Input mesh

AN AVAYAVAVAY Yoy . v
VA: ‘v‘r‘V‘VAV‘VAV‘V‘v‘ Y, ‘{. ATA
YU Av‘nv‘v"‘v""l""v‘v"""‘vAv ATATAYA

A AT A AV A T AT AV AYAYAVAVAVAVAY VLY oY AT

A A AT AT AV A A AT AVAVAYAVAVAVAVAY AT AV AT AY. .
TN ATA VAN AV AVATAVAVAVAVAYAVAYATAVAVAVATA A%
AT YAV PYAVA AYAVAVAVAVAYATATATL
Y TAvA IVANAVAVAVAVAYAA™
W 3 : (VAN AVAYLTa T,

- Each tetrahedral element (/ 132k) was assigned to one Jugene

compute core.

Ulrich Rude - Lehrstuhl fUr Simulation 88

HHG for Parallelization

¢ Use regular HHG patches for partitioning the domain

Ulrich Rude - Lehrstuhl fUr Simulation 89

HHG Parallel Update Algorithm

for each vertex do
apply operation to vertex
end for
update vertex primary dependencies

for each edge do
copy from vertex interior
apply operation to edge
copy to vertex halo
end for
update edge primary dependencies
for each element do
copy from edge/vertex interiors
apply operation to element
copy to edge/vertex halos
end for
update secondary dependencies

Ulrich Rude - Lehrstuhl fUr Simulation

HHG Pros and Cons

* Pro:
= performance
- within node: SIMD, superscalar execution, etc.
better accuracy through local superconvergence effects
well suited for parallelization
tau-extrapolation for higher order
local line/plane smoothers for better efficiency

2 Con:
= only restricted adaptivity possible
= only limited ability to handle complex shapes
* how to solve the coarse grid problem
high implementation effort

less flexible

Ulrich Rude - Lehrstuhl fUr Simulation 91

Performance Engineering
design - model - measure - revise - tune

node performance first!

== RB 7-point
- GS 7-point

25

RB 15-point
== « HHG 15-point

U
SN
(7))
[
3
220
=
[
-}

M
[y
(6

[y
o

5

0

10 20 30 40 50 60 70 80 90 100110120130 140 150160170 180 190 200 210 220 230 240 250
Size

Ulrich Rude - Lehrstuhl fUr Simulation 92

System Performance Model
and Measurement

*

37158 361344 2890752
#iCores

m Bandwidth m CG m Computation 4 Measurement

Ulrich Rude - Lehrstuhl fUr Simulation 93

#Cores

Coarse Grid

Unkn (x 109)

Crse Grd Its

Tme to soln

77?7

1536

535

15

5,64

256

3072

1070

20

5,66

512

6144

2142

A

5,69

1024

12288

4286

30

5,71

2028

24576

8577

45

5,75

4096

49152

17158

60

5,92

8192

98304

34326

70

5,86

16384

196608

68669

90

5,91

32768

393216

137355

105

6,17

65536

786432

274743

115

6,41

131072

1572864

949554

145

6,42

262144

3145728

1099276

280

6,82

294912

294912

824365

110

3,80

B. Bergen, F. Hulsemann, U. Rude, G. Wellein: ISC Award 2006, also: ,/s
1.7% 1079 unknowns the largest finite element system that can be solved

today?“, SuperComputing, Nov‘ 2005. Runs done on SGI Altix at LRZ.

Ulrich Rude - Lehrstuhl fUr Simulation

Parallel scalability
of scalar elliptic
problem in 3D
discretized by
tetrahedral finite
elements.

Times to solution
on Jugene.

Largest problem
solved:

1.099 x 1072 DOFS
(6 trillion
tetrahedra) on
262000 processors
in roughly 100
SEecs.

Conclusions

Ulrich Rude - Lehrstuhl fUr Simulation 95

Theory versus Practice

Assumptions:

= Multigrid requires 27.5 Ops/unknown to solve an elliptic PDE (Griebel "89
for Poisson)

* A modern laptop CPU delivers >10 GFlops peak
Consequence:
* We should solve one million unknowns in 0.00275 seconds
* ~ 3 ns per unknown
Revised Assumptions:
= Multigrid takes 500 Ops/unknown to solve your favorite PDE
= you can get 5% of 10 Gflops performance
Consequence: On your laptop you should
* solve one million unknowns in 1.0 second
*= ~ 1 microsecond per unknown

Consider Banded Gaussian Elimination on the Play Station (Cell Processor),
single Prec. 250 GFlops, for 1000 x 1000 grid unknowns
i# ~2 Tera-Operations for factorization - will need about 10 seconds to factor
the system
requires 8 GB Mem.
Forward-backward substitution should run in about 0.01 second, except
for bandwidth limitations

Ulrich Rude - Lehrstuhl fUr Simulation 96

Pessimizing the Performance

* Bring loops in wrong order, ignore caches, randomize
memory access, use many small MPl messages

= 10'2=> 10" unknowns

i Do not use a matrix-free implementation (keep in
mind that a single multiplication with the mass and
stiffness can easily cost 50 mem accesses per
unknown):

= 10" => 109 unknowns
2 Gain additional flexibility by using unoptimized
unstructured grids (indirect mem access costs!)
= 109> 10° unknowns

Increase algorithmic overhead, e.g. permanently
checking convergence, use the most expensive error
estimator, etc. etc.

= 10°=> 108 unknowns (... still a large system ...)
* N

B s Ulrich Riide - Lehrstuhl fur Simulation 97

Thank you for your attention!

Slides, reports, thesis, animations available for download at:
www10.informatik.uni-erlangen.de

B s Ulrich Riide - Lehrstuhl far Simulation 98

