From mathematics to a nice figure in a LATEX document: a post-processing chain

Matthieu Haefele

High Level Support Team

Max-Planck-Institut für Plasmaphysik, München, Germany

Autrans, 26-30 Septembre 2011, École d'été Masse de données : structuration, visualisation

A post-processing chain

Learn Python in 1 slide!

Main Python packages to do numerics

- numpy: implementation of n-d arrays
- matplotlib/pylab: 1D, 2D graphics
- scipy: package based on numpy that soves different dedicated problems
- h5py: Python bindings for the HDF5 library
- f2py, swig: tools to automate the creation of Python bindings from C/F90 codes
- ...

Correction of exo1 in Python

```
import numpy
import h5py

tab = numpy.zeros((22,20), dtype=numpy.int32)
f = h5py.File('myfile.hdf5', 'w')
f["MyDataset"]=tab
tab = numpy.ones((8,8), dtype=numpy.int32)
f["MyDataset"][3:11,2:10] = tab
f.close()
```

Gnuplot

- open source software
- can produce 2D and 3D plots
- analytic or numeric functions

Using gnuplot interactively

```
set_xrange_[0:4*3.14159]
plot_sin(x),_sin(x-3.14159/2),_"data.txt"_u_1:2_w_1
pause_-1
```

- $x \in [0:4\pi]$
- plot on the same figure:
 - \circ $\sin(x)$
 - $\sin(x-\frac{\pi}{2})$
 - The second column of the file named data.txt, and plot with lines (w l)
- pause -1 means: do not close the window before I hit the Enter key

Using gnuplot non interactively

```
set_terminal_svg
set_output_"myfig.svg"
set_xrange_[0:4*3.14159]
plot_sin(x),_sin(x-3.14159/2),_"data.txt"_u_1:2_w_1
```

- Same figure
- A svg file is created instead of opening a window

Resulting picture

Inkscape software

- Free and open source software
- Vector graphics edition/creation
- Standard Vector Graphics format based (SVG), the W3C standard
- Similar capacities as Illustrator, Freehand, CorelDraw or Xara X

Vector (svg, ps, ...) vs Raster (png, jpg, tiff, ...)

Raster is an array of dots that "appear" to be shapes

- Pro: With sufficient resolution can be photo-realistic
- Con: Takes up lots of space even for simple geometric representations
- Con: Difficult to split into component pieces for further editing

Vector is real 2D shapes

- Pro: Geometric representations scalable to any resolution
- Pro: Easy to edit component pieces
- Con: Difficult to do photo-realistic images at small file sizes

A post-processing chain

Hands on

Let us consider the following magnetic diffusion equation

$$\frac{\partial B_{y}(x,t)}{\partial t} = \eta \nabla^{2} B_{y}(x,t)$$

with an initial discontinuous field given by

$$B_y(x,0) = \left\{ \begin{array}{ll} B_0 & \text{for} & x > 0 \\ -B_0 & \text{for} & x < 0 \end{array} \right.$$

Please find the analytical solution and produce a LATEX generated pdf file containing figures that illustrates this diffusion.

Hands on correction

The analytical solution is

$$B_{y}(x,t) = B_0 erf(\xi)$$

with $\xi = x/\sqrt{4\eta t}$ and the error function

$$erf(\xi) = \frac{2}{\pi^{1/2}} \int_0^{\xi} e^{-u^2} du$$

Illustration with $\eta = 1$ and $B_0 = 2$

Part of the process in numerical science

