
In-situ Visualization

Computational Steering

Dr. Jean M. Favre

Scientific Computing Research Group

30-09-2011

Outline

 In-situ visualization with VisIt’s libsim

– Examples for all grid types

– The 2D Jacobi solver with parallel partitioning

– Source code instrumentation

– Specify ghost-nodes

– Single stepping through the execution

– Debugging

 Computational Steering

– The mandelbot example

– A custom GUI widget

In-situ Visualization - Motivations

Having a real-time monitoring capability on all
supercomputing resources is essential to avoid
wasting valuable time on computational
resources…

Techniques such as in situ analysis and online data
reduction and transformation for reducing the
demands on the storage system must be pursued…

Run-time reduction of the raw simulation data
before visualization and interactive discovery will
be routine…

In-situ Visualization with libsim

 The libsim allows the visualization of simulation data

in situ to avoid the high costs of I/O associated with

writing and then reading the data

 Simulation codes are instrumented (source code is

added) to create an interface to the full feature set

of VisIt

 Libsim implements a tight-coupling, sharing the

memory space and the execution thread of the

simulation

In-situ Visualization

 Simulations use a data

adapter layer to make the

data suitable for VisIt’s

engine process

 Operate directly on the

simulation’s data arrays

when possible

Simulation

data

Data Adapter

VisIt Engine

In-situ Visualization

 Front end library lets VisIt connect to the simulation

 The GUI client requests data on demand

 VisIt’s engine gains access to the data through user-

supplied Data Access Code callback functions

n
e
tw

o
rk

 c
o
n
n
e
c
ti
o
n

Libsim
Runtime

M
P

I

Front
end

Parallel Cluster Local VisIt Clients

D
at

a
D

at
a

D
at

a

Simulation Code

Simulation Code

Simulation Code

Data
Access
Code

Libsim
Runtime

Front
end

Data
Access
Code

Libsim
Runtime

Front
end

Data
Access
Code

Code instrumentation

Additions to the source code are usually minimal, and

follow three incremental steps:

Initialize Libsim

and alter the

simulation’s

main iterative

loop to listen

for connections

from VisIt.

Create data

access

callback

functions so

simulation can

share data with

Libsim.

Add control

functions that

let VisIt steer

the simulation.

1) Adapt the main iterative loop

Connection to the

visualization library

is optional

Execution is step-

by-step or in

continuous mode

Live connection

can be closed and

re-opened later

Exit

Initialize

Check for

convergence

Solve next

time-step

Visualization

requests

Complete VisIt

Connection

Process VisIt

Commands

Process

Console Input

VisIt-Detect-

Input

2) Create data access callback

GetMetaData(void *cbdata) {

simulation_data *sim = (simulation_data *) cbdata;

VisIt_SimulationMetaData_setCycleTime(

 md, sim->cycle, sim->time);

VisIt_MeshMetaData_setName(mmd, "mesh2d");

VisIt_MeshMetaData_setMeshType(mmd,

 VISIT_MESHTYPE_RECTILINEAR);

VisIt_MeshMetaData_setTopologicalDimension(mmd, 2);

VisIt_MeshMetaData_setSpatialDimension(mmd, 2);

VisIt_MeshMetaData_setNumDomains(mmd, sim->par_size);

VisIt_VariableMetaData_setName(vmd, "pressure");

VisIt_VariableMetaData_setMeshName(vmd, "mesh2d");

VisIt_VariableMetaData_setType(vmd,

 VISIT_VARTYPE_SCALAR);

VisIt_VariableMetaData_setCentering(vmd,

 VISIT_VARCENTERING_ZONE);

VisIt_SimulationMetaData_addVariable(md, vmd); }

Simulation Buffer

grid mesh

data fields

2) Create data access callback

// Example Data Access Callback

visit_handle

GetVariable(int domain, char *name,

void *cbdata)

{

 visit_handle h = VISIT_INVALID_HANDLE;

 SimData_t *sim = (SimData_t *)cbdata;

 if(strcmp(name, "pressure") == 0)

 {

 VisIt_VariableData_alloc(&h);

 VisIt_VariableData_setDataD(h,

 VISIT_OWNER_SIM,

 1, sim->nx*sim->ny,

 sim->pressure);

 }

 return h;

}

SimData_t
 Nx=6

 Ny=8

 pressure

Pass simulation

buffer to Libsim

Simulation Buffer

2) Data access enable all mesh types

 Mesh Types

• Structured meshes

• Point meshes

• CSG meshes

• AMR meshes

• Unstructured & Polyhedral meshes

 Materials

 Species

 Variables

• 1 to N components

• Zonal and Nodal

3) Add control functions for steering

 The simulation

provides

commands to

which it will

respond

 Commands

generate user

interface controls

in Simulations

Window

Compilation details

 Run ccmake and check:

 VISIT_DATA_MANUAL_EXAMPLES = ON

 If compiling with VISIT_FORTRAN = ON, the silo

plugin will give you problems =>

 Reconfigure and install silo without the –disable-

fortran option

Solving a PDE and visualizing the execution

Full source code solution is given here:

 http://portal.nersc.gov/svn/visit/trunk/

src/tools/DataManualExamples/Sim

ulations/contrib/pjacobi/

 C, F90 and Python subdirectories

http://portal.nersc.gov/svn/visit/trunk/src/tools/DataManualExamples/Simulations/contrib/pjacobi/
http://portal.nersc.gov/svn/visit/trunk/src/tools/DataManualExamples/Simulations/contrib/pjacobi/
http://portal.nersc.gov/svn/visit/trunk/src/tools/DataManualExamples/Simulations/contrib/pjacobi/

A PDE with fixed boundary conditions

Update grid with solver

Fixed boundary conditions

Laplace equation: Δu = 0

Total grid size is (m+2)*(m+2)

sin(π . x)

sin(π . x) . sin(- π)

0 0

2D grid partitioning and initialization

• The grid is partitioned along the Y

direction

• Locall grid size is (m+2)*(mp+2)

• Boundary conditions are set

• A single line of ghost-nodes insure

that the 5-point stencil is

continuous across MPI task

boundaries

I/O patterns

(mp) grid lines to read/write

(mp) grid lines to read/write

(mp) grid lines to read/write

(mp+2) grid lines to read/write

Check-pointing and restart

(m+2) columns to write

Ghost data exchange

Overlap Send and Receive

Proc. 0 does not receive from “below”

Proc. (N-1) does not send “above”

Iteration tasks for one timestep

1. oldTemp <= Temp

2. Execute stencil operation to

evaluate new temperature array

“Temp”

3. Exchange ghost data in Temp

4. Visualize Temp

--

“oldTemp” is the old timestep

“Temp” is the new timestep

VisIt’s libsim implements a tight coupling

Desktop Machine Parallel Supercomputer

node220

node221

node222

node223

simulation

code VisIt

library
VisIt GUI

and Viewer

simulation

code

simulation

code

simulation

code

commands

images

M
P

I
M

P
I

M
P

I

VisIt

library

VisIt

library

VisIt

library

• Link simulation source code

with visualization library.

• Data is shared via pointers.

The source code needs to be instrumented

1. The execution flow needs to check for

Visualization Requests

2. Once connected, the simulation code needs to

advertize what data/meshes are available, and

3. Provide pointers to data, or wrap data into the

expected form/shape

Source code examples are instrumented with:

#ifdef _VISIT_

#endif

Application’s flow diagram (before and after)

Connection to the

visualization

library is optional

Execution is step-

by-step or in

continuous mode

Live connection

can be closed

and re-opened at

later time

Exit

Initialize

Check for

convergence

Solve next

time-step

Visualization

requests

Complete VisIt

Connection

Process VisIt

Commands

Process

Console Input

VisIt-Detect-

Input

Step-by-step or continuous execution

 A simulation would normally not wait for a connection and

execute as fast as possible.

These examples however, pause immediately, so they

won’t finish before you have time to connect!

The call visitdetectinput(bool blocking, -1) instructs the

simulation to wait for a connection at init time.

The examples also block after each timestep so you have

time to request multiple plots.

Use VisIt https://wci.llnl.gov/codes/visit

Users select simulations to

open as if they were files

The Simulation’s

window shows

meta-data about

the running code

Control commands

exposed by the code

are available here

All of VisIt’s existing

functionality is accessible

Data sharing

 The VisIt Data API has just a few callbacks

– GetMetaData()

– GetMesh()

– GetScalar(), GetVector()

– Each MPI rank provides the full mesh/data (with ghost

regions) marked in a way similar to HDF5 hyperslabs or

MPI_Type_create_subarray().

grid mesh for in situ graphics

(mp+1) lines to send

(mp+1) lines to send

(mp+1) lines to send

(mp+2) lines to send

VisitRectMeshSetRealIndices(h, minRealIndex, maxRealIndex)

Use ghost-nodes to prevent overlaps

At least two entry points to the execution

Execution of the

next step can be

triggered by:

• normal

program flow,

• on-demand

single-stepping

from the GUI,

• console input.

Exercise 1.1

Compiler et executer une simulation pjacobi, en C ou en F90

Avec sortie fichier (use BOV reader):

mpiexec –n 4 pjacobi

Avec couplage in-situ:

mpiexec –n 4 pjacobi_visit

cd $HOME/.visit/simulations and ouvrez le fichier *sim2

Visualiser la variable Temperature

Exercise 1.2

Faite une copie (-r) dans votre repertoire prive

/softs/VisIt/Exercise/pjacobi

Lire le fichier README.txt

rm /tmp/Jacobi.bin, execute pjacobi, visualize the result using

the BOV reader

https://wci.llnl.gov/codes/visit/2.0.0/GettingDataIntoVisIt2.0.0.pdf

Page 9-12

https://wci.llnl.gov/codes/visit/2.0.0/GettingDataIntoVisIt2.0.0.pdf
https://wci.llnl.gov/codes/visit/2.0.0/GettingDataIntoVisIt2.0.0.pdf
https://wci.llnl.gov/codes/visit/2.0.0/GettingDataIntoVisIt2.0.0.pdf

Exercise 1.3

A quelle iteration sommes nous?

Visualizer les ghost-zones, le Processor Id

Visualizer l’iteration courante ET celle d’avant.

Creez une expression pour visualizer la difference entre les

2 pas de temps.

Vous devez ecrire du code supplementaire.

Exercise 2: Computational Steering

Lancer la demo mandelbrot in

build_directory/tools/DataManualExamples/Simulations

Se connecter, et utiliser la ligne de commande pour:

Changer la resolution du maillage

Avancer, step-by-step

At the console:

command> help

Open the custom widget

from the GUI panel

Exercise 2: Computational Steering

Copier ce fichier dans $HOME/.visit/ui

http://portal.nersc.gov/svn/visit/trunk/src/tools/DataManual

Examples/Simulations/mandelbrot.ui

The main loop (see mandelbrot.C)

defines which callbacks to

associate with the button’s actions

(clicked(), valueChanged(), etc…)

The programmer writes these

callbacks to modify the simulation’s

parameters.

The merits of libsim

 The greatest bottleneck (disk I/O) can be eliminated

 Not restricted by limitations of any file format

 No need to reconstruct ghost-cells from archived data

 All time steps are potentially accessible

 All problem variables can be visualized

 Internal data arrays can be exposed or used

 Step-by-step execution will help you debug your code and

your communication patterns

 Custom GUI widgets enable computational steering

The end

Brad Whitlock (LLNL), Jeremy Meredith (ORNL), Hank

Childs (NERSC) have contributed greatly.

Reading:

http://portal.nersc.gov/svn/visit/trunk/docs/Presentations/

EGPGV2011_InSituPaper.pdf

Merci de votre attention

http://portal.nersc.gov/svn/visit/trunk/docs/Presentations/EGPGV2011_InSituPaper.pdf
http://portal.nersc.gov/svn/visit/trunk/docs/Presentations/EGPGV2011_InSituPaper.pdf

