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Domain

History: Riemann Mapping Theorem PR e

" . . - - .. Martin J. Gand
Zwei gegebene einfach zusammenhangende Flachen konnen stets arein J. Gander

so aufeinander bezogen werden, dass jedem Punkte der einen ein
Invention of Schwarz

mit ihm stetig fortriickender Punkt entspricht...;"

(drawing M. Gutknecht 18.12.1975)

Proof: Riemann uses existence of harmonic functions
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Decomposition
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International Challenge
Find harmonic functions Au = 0 on any domain Q with

prescribed boundary conditions u = g for (x,y) € 0.
Solution easy for circular domain (Poisson 1815) ...
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Internatlonal Cha”enge Decomposition
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... and for rectangular domains (Fourier 1807): I e
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But existence of solutions of Laplace equation on
arbitrary domains appears hopeless !
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H.A. Schwarz (1870, Crelle 74, 1872) Uber einen
Grenziibergang durch alternierendes Verfahren Invention of Schwarz

“Die unter dem Namen Dirich-
letsches Princip bekannte Schluss-
weise, welche in gewissem Sinne
als das Fundament des von Rie-
mann entwickelten Zweiges der
Theorie der analytischen Functio-
nen angesehen werden muss, un-
terliegt, wie jetzt wohl allgemein
zugestanden wird, hinsichtlich der
Strenge sehr begriindeten Einwen-
dungen, deren vollstandige Entfer-
nung meines Wissens den Anstren-
gungen der Mathematiker bisher

= A_jf (= -
A AT G nicht gelungen ist" .



Classical Alternating Schwarz Method

Schwarz invents a method to proof that the infimum is
attained: for a general domain Q := Q; U Qy:
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Classical Alternating Schwarz Method

Schwarz invents a method to proof that the infimum is
attained: for a general domain Q := Q; U 5:

Au% =0 in €
ul=g ondQNMY
ul=0u) only

solve on the disk u9 =0
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Classical Alternating Schwarz Method ol

. . e . Martin J. Gander
Schwarz invents a method to proof that the infimum is

attained: for a general domain € := Q; U Qy:

Invention of Schwarz

Au} =0 inQ
uy =g ondNNQ

1_ 1
uy =uj on sy

solve on the rectangle



Classical Alternating Schwarz Method

Schwarz invents a method to proof that the infimum is
attained: for a general domain Q := Q; U 5:

]2_:0 ian o
=g ondQNY
u?=ul onTly

solve on the disk
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Classical Alternating Schwarz Method ol

. . e . Martin J. Gander
Schwarz invents a method to proof that the infimum is

attained: for a general domain € := Q; U Qy:

Invention of Schwarz

Aui3 =0 inQ
us=g ondNNQ
us = u? on

solve on the rectangle
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Classical Alternating Schwarz Method ol

. . e . Martin J. Gander
Schwarz invents a method to proof that the infimum is :

attained: for a general domain Q := Q; U Qy:

Invention of Schwarz

Q1 Ty >r1 Qs
\
o0
Auf =0 in £y Aug =0 in£
=g on 90N ul =g ondQNQ
ufzglonrl uj =uj onTly

solve on the disk solve on the rectangle



Classical Alternating Schwarz Method Decompostion
Schwarz invents a method to proof that the infimum is Martin & Gander

attained: for a general domain Q := Q; U Qy: S
Q1 Ty ) 1 Q,
\
o0
Auf =0 in £y Aug =0 in£
ul =g on 0Q N, 5 =g on QN
ufzglonrl uj =uj onTly
solve on the disk solve on the rectangle

» Schwarz proved convergence in 1869 using the
maximum principle.



Example: Heating a Room

solution
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Schwarz iterates
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Schwarz iterates
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Schwarz iterates
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Substructuring

Invented in the engineering community for the finite element
design of aircraft (Boeing)

Przemieniecki 1963: Matrix
structural analysis of substruc-
tures

The necessity for dividing a
structure into substructures
arises either from the require-
ment that different types of
analysis have to be used on dif-
ferent components, or because
the capacity of the digital
computer is not adequate to
cope with the analysis of the
complete structure.

Domain
Decomposition

Martin J. Gander

Invention of Schwarz
Substructuring
Waveform Relaxation

Alternating/Parallel
MS, AS and RAS
Preconditioning
Optimized

Primal Schur

Dual Schur

FETI and Neu-Neu
Dir-Neu and Neu-Dir

Scalability Problems
Coarse Spaces
Optimized Coarse
Natural Coarse

Is it possible?
Multiple Shooting
Schwarz WR
Parareal

General Method



Domain

Idea of Przemieniecki Decompesition
Martin J. Gander

Przemieniecki 1963: In the present method each substructure
is first analyzed separately, assuming that all common boundaries
with adjacent substructures are completely fixed: these boundaries
are then relaxed simultaneously and the actual boundary
displacements are determined from the equations of equilibrium of
forces at the boundary joints. The substructures are then analyzed
separately again under the action of specified external loading and
the previously determined boundary displacements.

Substructuring

Fic. 4. Typical substructure arrangement for conventional
areraft.

Fre. 3. Typical substructure arrangement for delta aircraft.



Domain

Historical Example of Przemieniecki Decompesition

Let P be the exterior forces, K the stiffness matrix, and U Martin J. Gander
the displacement vector satisfying

Substructuring

KU = P.

Partition U into U; interior in each substructure, and Uy on
the interfaces between substructures:

<ol =l ellul-[%]

Physical motivation of Przemieniecki:

[ p@ G)
p—plpB—| P Py
+ SR
[0 [ U
U= U@ 4 yb) = o .
+ ue | T u®




Domain

Two Physically Relevant Systems ol
By linearity, Przemieniecki obtains two systems Martin J. Gander
() : Kb Kpi 0 | _ P[(JO‘)
. KI K’ U’(a) P, Substructuring

Kob  Kbi }

Up P(B)
: — b
(5): [ K Ki || U¥ ] [ o |’
Rewriting the first one leads to

@) pla)
(0): {Kb,U,. =P,

KU = P,

Knowing the forces P; in each substructure, (a) permits to
compute the interior displacements keeping interfaces fixed:

U = k1P,

1 n

This uncovers the unknown splitting of the interface forces

P = KiK' Py,



Domain

Toward the Schur Complement System o R
Hence the remaining forces acting on the interfaces are Martin J. Gander

PP = py— P = Py — KK P;,

One can now solve the system

(/B) . KbbUb 4 Kbi U(B) P(’B)
' KiyUp + Ki; U,.(B) — 0,

which represents the response of the structures to the

(

interface loading Pbﬁ). The second equation gives the

internal displacement U,-(ﬂ)

displacement Up,

based on the boundary

U = =K Kip U,

and inserting this into the first equation, Przemieniecki
obtains the interface system

(Kb — KiK' Kip)Up = Py — Kpi Kz 2 P;,



Prlmal SChur MethOd Dec[Z::;(aJis?tion

This gives the complete interface displacement Martin J. Gander

Up = (Kb — KiiK:  Kip) "H(Py — KuiKi 1P, T —

and interior displacements are obtained by summing U,-(ﬂ)

and UI-(a) (OI’ solving KipUp + KiiU; = P; for U,').

Procedure of Przemieniecki:
. Invert the block diagonal matrix Kj;
. Invert the smaller matrix S = Kpp, — KpiKj; 1K,b

The matrix S is called Schur complement matrix after Emilie
Virginia Haynsworth (On the Schur complement 1968,
Basel) after a determinant lemma of Issai Schur.

Remark: The name Schur method is more precise than
substructuring, since any method can be substructured, also
Schwarz methods.



Waveform Relaxation

Emile Picard (1893): Sur I'application des méthodes

d’'approximations successives a I'étude de certaines équations

différentielles ordinaires

Les méthodes d’approximation
dont nous faisons usage sont
théoriquement susceptibles de
s'appliquer a toute équation,
mais elles ne deviennent vrai-
ment intéressantes pour |'étude
des propriétés des fonctions
définies par les équations
différentielles que si l'on ne
reste pas dans les généralités
et si l'on envisage certaines
classes d'équations.
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... Successive Approximations
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Detailed Historical Convergence Analysis e .
Ernest Lindelof (1894): Sur I'application des méthodes Martin J. Gander
d’'approximations successives a I'étude des intégrales réelles
des équations différentielles ordinaires

Waveform Relaxation

La présente étude a pour but de donner

une exposition succincte de la méthode

d’'approximations successives de M. Picard

en tant qu'elle s'applique aux équations

différentielles ordinaires.

Theorem (Superlinear Convergence (Lindelof 1894))

On bounded time intervals t € [0, T|, the iterates satisfy the
superlinear error bound

cT)"
v — v < LD — oy,
nl

where C is a positive constant.
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ClaSS|C3| Waveform Relaxatlon Decomposition
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Lelarasmee, Ruehli and Sangiovanni-Vincentelli (1982):
The Waveform Relaxation Method for Time-Domain
Analysis of Large Scale Integrated Circuits.

Waveform Relaxation

“The spectacular growth in the scale of integrated circuits
being designed in the VLSI era has generated the need for
new methods of circuit simulation. “Standard” circuit
simulators, such as SPICE and ASTAP, simply take too much
CPU time and too much storage to analyze a VLSI circuit”.

Nevanlinna and Odeh (1987): Remarks on the
Convergence of Waveform Relaxation Methods.

“Recently an approach called waveform relaxation methods
(WR) has captured considerable attention in solving certain
classes of large scale digital circuit equations.”



A Historical Example Domain

Decomposition

Example: a MOS ring oscillator (Lelarasmee et al 1982): Martin J. Gander
+5 +5 +5

o0 O

o= [% L

Waveform Relaxation

_T_||:

=
1<

The equations for such a circuit can be written in form of a
system of ordinary differential equations
%—‘t' = f(v), 0<t<T
vi0) = g



Waveform Relaxation Decomposition Decompostion
45 +5 +5 Martin J. Gander

Waveform Relaxation

1

&0

4
.= y[ y[

Iteration using subcircuit solutions only:

n+l

T (T
4 1

vh
2

n+1 __ n+1

Orvy LT fi(vy v21, vi)
n+ _ n+

Ot v. L fo(vi, vs 7v3’1’)
n+ _ n+

Orv = (v, v5,v37)

Signals along cables are called 'waveforms’, which gave the
algorithm its name Waveform Relaxation.



Historical Numerical Convergence Study

6.9 6.0
E v, Iteration #1 E 1A iteration §2
9 F
4.8F / 4.0f =
2.8 / 2.ef /
2.0 .ol &
8.0 1.0 2.0 3.8 9.9 1.9 ) 3,
(a) (b)
6.0_ i 6.0
v  lteration 43 A Iteration #4
4.9 ! //_’_ 4.0f /m /r\
2.0 : 2.0F..[ \\_/ \\
2.0 LT 8.00 . et
a.8 1.8 2.9 3.8 ¢.a 1.a .8 3.
© (d)

“Note that since the oscillator is highly nonunidirectional due to
the feedback from vz to the NOR gate, the convergence of the
iterated solutions is achieved with the number of iterations being

proportional to the number of oscillating cycles of interest”
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Alternating and Parallel Schwarz Method ol
For Lu=finQ=R? Q; = (—oo,L) X R, Martin J. Gander
Qz = (0, OO) x R

Alternating Schwarz method (Schwarz 1869):

Euf f’ |n Q]_ Eug — f’ |n Q2 Alternating/Parallel
n—1

n — — n — n —
uf = uy; ,onx=1L uy = wuf,onx=0

Parallel Schwarz method (P-L. Lions 1988):

The final extension we wish to consider concerns
“parallel” versions of the Schwarz alternating method
.., ut is solution of —Au! = f in Q; and

”+1—u on 9Q; N Q.

Lu] = f,in{y Lu] = f,in

n _ n—1 _ n  _ n—1 _
uf = uy; ,onx=1L uy = u; ,onx=0

Can solve with two processors in parallel, one computes for
Q7 and one computes for 25!
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Schwarz iterates
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Schwarz iterates
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Schwarz iterates
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Comparison of Alternating and Parallel Schwarz

7 X
(921 Q
2
For %u = 0: alternat-

ing Schwarz method red +
alternating Schwarz method
dashed = parallel Schwarz
method

y

Alternating Schwarz methods
with many subdomain can
also be parallel: solve red,
then yellow, then blue, then
green and so on.
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Convergence with Fourier Analysis Domain

Decomposition
For the model problem Lu:= (n— A)u=0on Q = R?,
Ql = (—OO, L) x R and Q2 = (0,00) x R,

Martin J. Gander

(n—A)uy =0 in Q, (n—A)uf =0 in Qy,
n_ ,n—1 _ n_ ,n —
u]- - u2 on x = L' u2 - ul on x = 0’ Alternating/Parallel

we obtain after a Fourier transform in y

u(x, k) = F(u'):= / e_ikyujf’(x,y)dy, k € R,
1 SSI
n _ —1/~n\ .__ iky ~n
UJ' (X,y) = F ( J) = %/;Ooe ij (X,k)dk,

the Schwarz iteration in the Fourier domain (note how
derivatives in y become multiplications by ik)

(k=05 )87 = 0 in Q1. (MHk*—0x)
o =0

n —
5 on x=1,



Domain

Convergence Ana|y5|s Decomposition
Now the ordinary differential equations Martin J. Gander

(n+ k% — 8xx)ﬁj’ =0
can easily be solved:
B7(x, k) = Afe\/mx I Bjne—\/m& F———

On domain Q1, solutions must stay bounded at —oo, hence

B0 (x, k) = AleV kX,
and on domain £25, solutions must stay bounded at oo,

B0 (x, k) = Be~VrHkx,
To determine the constants AJ’-7 and BJ!’, we use the
transmission conditions

BY(L, k) = 057 Y(L, k), B3(0, k) = 27(0, k),

which give

2 1 2 1 _ 2
A:rlwe 77+kL:B£ le 77+kL:A£7 le n+k L.



Domain

Convergence ReSUIt Decomposition

After one iteration of the alternating Schwarz method, we Martin J: Gander

obtain the convergence factor

n

A
p(n, kL) = —1o = e 2VmHkL

AN™ 1
1 Alternating/Parallel

Graph of p(k) forn =1, L = 1/10:
1

0.8
0.6
0.4

0.2

0720 40k 60 80 100

—> Low frequencies converge slowly, high frequencies fast
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Iteratlon ]. Decomposition

Martin J. Gander
Iteration #1

Alternating/Parallel
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solve on the left subdomain
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Iteratlon 2 Decomposition

Martin J. Gander

Iteration #2

Alternating/Parallel

solve on the right subdomain
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Iteration #3

Alternating/Parallel

X0
()
SR

COEL LY

)
o
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solve on the right subdomain
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Iteratlon 5 Decomposition
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Iteration #5

Alternating/Parallel

T
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solve on the left subdomain
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Iteratlon 6 Decomposition

Martin J. Gander
Iteration #6
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Iteration #8
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Iteratlon 9 Decomposition
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Iteration #9
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solve on the left subdomain
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Iteration #10
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The Multiplicative Schwarz Method (MS) pE

The discretized PDE Lu = f leads to the linear system Martin J. Gander
Au=f, A a large sparse matrix

With the restriction matrices

1 1 MS, AS and RAS

Rlz R2: .
1 1

and Aj = RJ-AF\’J-T the multiplicative Schwarz method is

u™: = u"+ RTATIRy(f — Au”)
un+1 — un+% 4 R2TA2_1R2(f _ Au"+%).
Questions:

» Is MS a discretization of a continuous Schwarz method?

» How is the algebraic overlap related to the physical one?



Relation with Alternating Schwarz
If the R; are non-overlapping, and we partition accordingly

i) ()
Aun A |’ f )’
we obtain from the first relation of MS, i.e.

u™z = u” + R AR (F — Au”)
an interesting cancellation:

Rl(f — Au”) = fl — Alu? — /412u§7
AR I(F— Au™) = A7H(fL — Apul) —uf

1
ult Y (u (AT (R - Aud) - uf
u”+% u; 0

2
AT (FL — Appul)
u;

Domain
Decomposition

Martin J. Gander

MS, AS and RAS

)



Domain

Relatlon Wlth Alternatlng SChWBrZ Decomposition
Similarly, from the second relation of MS, i.e. Martin J. Gander

un-‘rl — un—i—% + R2TA2—1R2(f o Aun—‘,-%)

< ug+i > _ < Agl(fl —A12u5)1 > MS, AS and RAS
u5+ A2_ (f2 — A21u'1’+ ) ’

which can be rewritten in the equivalent form

we obtain

Alu'1’+1 = fl - A12u5, A2ug+1 = f2 - A21u'1’+1

and is therefore a discretization of the alternating Schwarz
method from 1869,

EufJrl = f,in{ Eué’Jrl = f,in
n+1 n+1 n+1
uy = uj, only Uy = w7, onl

General proof for many subdomains (G 2008)



Domain

MS is also a block Gauss Seidel method Decompeition

MS is also equivalent to a block Gauss Seidel method, since Martin J. Gander
n+1 _ n+l _ n+1
Alul = fl — A12u5, A2u2 = f2 — A21u1

leads in matrix form to the iteration

A; 0 U;_H_l 0 —Ap UT fl MS, AS and RAS
n+1 = n +
A21 A2 u2 0 0 u, f2

So why the complicated R; notation ?

» With R;, one can also use overlapping blocks.
» With R;, there is a global approximate solution u”.

Note that even the algebraically non-overlapping case above
implies overlap at the PDE level:

R R>
| | | |
1 a b n
oo 9o 9o 0 0 o o o o — — X
0 a B 1




The Additive Schwarz Method (AS) pE

Martin J. Gander

M. Drjya and O. Widlund 1989:

The basic idea behind the additive form of the algorithm is

to work with the simplest possible polynomial in the

projections. Therefore the equation

(P1+ P>+...+ Pn)uy = gy is solved by an iterative method. MS, AS and RAS

Using the same notation as before, P; = RJ-TAJ._IRJ-A, the
preconditioned system is

(RYATIRL + Ry ASRy)Au = (R AR + R ASIR,)f
Writing this as a stationary iterative method yields
u” =u™t o+ (RIATIR + R AR (F — Au™ 1Y)

Question: Is AS equivalent to a discretization of Lions
parallel Schwarz method 7



- . Domain
Algebraically non-overlapping case PR e
If the R; are non-overlapping, we obtain now Martin J. Gander

( U;_H_l > _ ( Al_l(fl —A12u5) >
up ™! Ay (f2 — Axu]) )
which can be rewritten in the equivalent form Altermating Para

+1 n+1
Alui’ = fl — Alzug, A2u2 = f2 — Azluf.

This is a discretization of Lions' parallel Schwarz method
from 1988,

Lultt = f in X Luytt = f, in Q
n+1 _ n+l1 __
uy = uy, only Uy = wuf, onl>

In the algebraically non-overlapping case, AS is also
equivalent to a block Jacobi method,

Al 0 u'1’+1 0 —A12 u’l’ f1
n+1 = n +
0 A2 u2 —A21 0 u2 f2



Domain

What happens if the R; overlap 7 Decompesition

If the R; overlap, the cancellation is more complicated: Martin J. Gander
urt = gy (AT (= Avug)—uf ) [ 0

0 Ay (f2—Anug) —u3
In the overlap, the current iterate is subtracted twice, and a MS, AS and RAS

new approximation from the left and right solve is added.

Remarks:

» Method does not converge in the overlap: the spectral
radius of the AS iteration operator equals 1 for two
subdomains.

» The method converges outside of the overlap for two
subdomains.

» For more than two subdomains with cross points the
method diverges everywhere.

AS is thus not equivalent to a discretization of Lions parallel
Schwarz method for more than minimal physical overlap.
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Domain

Restricted Additive Schwarz (RAS) PRl

X. Cai and M. Sarkis 1998: Martin J. Gander
While working on an AS/GMRES algorithm in an Euler
simulation, we removed part of the communication routine
and surprisingly the “then AS” method converged faster in
both terms of iteration counts and CPU time.

MS, AS and RAS

Replace R/ in AS by ij:
u™t = 0"+ (RIATIRL + R AR (F — Au”)

R, ] 'R,
r ‘ R2
Rl 1 a b n
o —0 0 0 0 0 0 0 0 0
0 « 5 1
93] Q)
Remarks:

» RAS is equivalent to a discretization of Lions parallel
Schwarz method (Efstathiou, G. 2003, general G. 2008)

> the preconditioner is non symmetric, even if A; is
symmetric
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Domain

Idea Of Precondltlonlng Decomposition

Martin J. Gander

Let Au = f be a discretization of the PDE (n — A)u = f on
the unit square.

Solving this linear system using conjugate gradients leads to
the convergence factor estimate

Preconditioning

B k(A) —1
P A +1

For the discretized PDE,

R(A) = || Al 1A

Amax(A) 2 1
Amin(A) 7+ 272 h2

k(A) = = pcc =1— 0O(h)
For fast convergence, it would be better to solve the
preconditioned system M~1Au = M~1f with M s.t.
k(M71A) << K(A).



Domain

HOW tO ChOOSG M ? Decomposition

. Martin J. Gander
» M should be easy to invert

» M~1 should be close to A~1

Given a stationary iterative method for Au = f,

Mu™ = (M — A)u" — f,

Preconditioning

at convergence, the system
Mu=(M—-Au—f — MtAu=M"If

is solved. Hence every station-nary iterative method gives
raise to a preconditioner!

Example: Block Jacobi or Additive Schwarz without
algebraic overlap

Al 0 u’1’+1 0 —A12 ui’ f1
n+1 = n +
0 A2 u2 —A21 0 u2 f2



Does this Give a Good Preconditioner ?

The stationary iterative method
Mu™ = (M — A)u" — f,

converges fast, if p(/ — M~1A) << 1. This is equivalent to
saying that the spectrum of the preconditioned operator
M~1A is close to one. This implies, if the spectrum is real,
that

max(M_lA)

1 A
kK(M™A) = 7)\min(M_lA)

~ 1.

For Schwarz methods, there are two possibilities:
1. Preconditioning in volume (for AS, MS, RAS)

2. Substructured formulation (for iterations formulated on
the interfaces only)

Domain
Decomposition

Martin J. Gander

Preconditioning



Domain

Addltlve SChWarZ Precondltloner Decomposition

Martin J. Gander
i
-1._ T A—1p.
e =Y RIATR
i=1

10 T T T T T T T T

—O— lterative I
—+— CG

1 Preconditioning

'I

residual

0 2 4 6 8 10 12 14 16 18 20
iteration



Restricted Additive Schwarz Preconditioner

xS ZRTA 1R

10 T T T T T T T T
—O— lterative !
—4+—CG

10° < —&— GMRES

residual

N N N
0 2 4 6 8 10 12 14 16 18 20
iteration

Domain
Decomposition

Martin J. Gander

Preconditioning



Comparison of the Spectra of AS and RAS
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Decomposition

Martin J. Gander

Preconditioning



Comparison of the Spectra of AS and RAS Decompositon

Martin J. Gander
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Domain

SUbStrUCtU red FOl”mUlatlon Decomposition

G Martin J. Gander
1

0 G ) to the discretized

Applying the trace operator (

parallel Schwarz method

Al 0 ui’“ o 0 —A12 ui’ + fl
0 A2 n+1 - —A21 0 ug f2 Preconditioning
we get
Guuftt 0 —GIAT AR (uf GiIAT
nl | = -1 n )t -1
qu —G2A2 A21 0 u, GQA2 f2

Now since Ajpu] = A}, Gouj and Axju] = A); Giuf, we get
the substructured iteration

() Ladon ®47 () ()
gt —GA AL, 0 g? fy



Solving the Substructured System Decompestton

Martin J. Gander
/ GIAT A, ] < g > _ ( f; >
GaAy 1’4/21 / 1Y) 2

-2

—O— lterative
—— GMRES

L Preconditioning

residual
=
5

0 2 4 6 8 10 12 14 16 18 20
iteration



Domain

Problems of classical Schwarz: Overlap Necessary = oecompostion
P-L. Lions 1990: Martin J. Gander

However, the Schwarz method requires that the
subdomains overlap, and this may be a severe
restriction - without speaking of the obvious or intuitive
waste of efforts in the region shared by the subdomains.

Optimized

Lu="finQ 931 r Qo
\
oQ
Luf=f iny Luf=f in
(Onytp1)uf =(Ony+p1) Uy~ YonT (Onytp2)us =(Onytp2)uf on T

P-L. Lions 1990:
First of all, it is possible to replace the constants in the
Robin conditions by two proportional functions on the
interface, or even by local or nonlocal operators.



Domain

Other Problem: Lack of Convergence o R

Error of the Schwarz method on the left subdomain for the Martin J. Gander
Helmholtz problem after 1,2,3, and 8 iterations:

Optimized

¥ ¥

B. Després 1990:

L'objectif de ce travail est, aprés construction d’une
méthode de décomposition de domaine adaptée au
probleme de Helmholtz, d'en démontrerda convergence.



Domain

Further Problem: Convergence Speed o R

Martin J. Gander

T. Hagstrom, R. P. Tewarson and A. Jazcilevich 1988:
Numerical experiments on a domain decomposition
algorithm for nonlinear elliptic boundary value problems

In general, [the coefficients in the Robin transmission

conditions] may be operators in an appropriate space of Optimized
function on the boundary. Indeed, we advocate the use

of nonlocal conditions.

W.-P. Tang 1992: Generalized Schwarz Splittings

In this paper, a new coupling between the overlap[ping]
subregions is identified. If a successful coupling is
chosen, a fast convergence of the alternating process
can be achieved without a large overlap.



Comparison of Classical Schwarz with Multigrid

Comparison of MS with two subdomains as an iterative
solver and a preconditioner for a Krylov method, with a
standard multigrid solver:

10°

residual norm
8

= Classical Schwarz

= Classical Schwarz with Krylov
—— Multigrid without Krylov

1

20 40 60 80 100 120 140

iterations

160

Domain
Decomposition

Martin J. Gander

Optimized



Optimized Schwarz Methods Decompostion

Martin J. Gander

Lu="finQ T )Fl Q
\
002
Instead of the classical alternating Schwarz method
Optimized
Lu] = f,inQy Lud = f,in
uf = ult ony uj = uj, only

one uses transmission conditions adapted to the PDE,
BlUf = Blug_17 on r1 B2U5 = Bsz, on F2

Questions:

» is there an optimal choice for the transmission operators
B; ?

» does this optimal choice lead to a practical algorithm 7



Domain

Optlmal Tran5m|SS|On Condltlons Decomposition

Martin J. Gander

For the model problem Lu := (n — A)u =0 on Q = R?,
Q; = (—o0,L) xR and Q2 = (0,00) x R, we choose

(77 - A)Uf = 0 in er
(ax + Sl)Uf = (8)( + Sl)ug_l on x = Lv
(77 - A)Ué’ =0 in Q», il

(0x = S2)uf = (0x — S2)uf on x =0,

After a Fourier transform in y, we obtain

N+ k> —0x)0) = 0 in Q1,
(Ox +o1)i] = (O« + 01)05_1 on x =1L,

M+ k?>—0x)08 = 0 in Qo,
(0x —02)if = (0x — 02)0f on x =0,

where o} is the Fourier symbol of the operator §;.



Convergence Result with Fourier Analysis

As before, the solution of the ordinary differential equations
are

07 (x, k) = AfeVITRx - 58(x k) = Bfe™ VIR,

To determine the constants AJ’-7 and BJ!’, we use the
transmission conditions

(Ox +01)0f(L k) = (O« +o1)i5 (L, k),
(O — 02)05(0,k) = (dx — 02)07(0, k),
which give

ANV + K240q)eVTHRL = BV /i + k2+40p)e VITRL

and

an_l(—\/ n + k2 — 0'2) = Ag_l(\/ n + k2 — 0'2).

Domain
Decomposition

Martin J. Gander

Optimized



Domain

Convergence Result with Fourier Analysis e .

After one iteration of the optimized Schwarz method, we Martin J. Gander
obtain the convergence factor

\/7]+k2—0'1\/7]+k2—0'2_ 17+k2L
\/7]+k2+01\/7]+k2+02

» If the symbols o; := /1 + k2, then the convergence
factor equals 0: convergence after one double step, even
without overlap = Optimal Schwarz Method!

0(777 k7 L701>J2) =

Optimized

» This result can be generalized to convergence after /
steps for | subdomains, provided the subdomain
connections have no loops.

» This choice is optimal, but expensive, since the operator
associated with the symbol /7 + k? is non-local (it
represents the DtN operator for the equation)

» One is therefore interested in local approximations =
Optimized Schwarz Method!



Domain

Zeroth Order ApprOX|mat|0n Decomposition

Martin J. Gander
We approximate the symbols o; by a constant, o; := p,

p € R. The transmission conditions are therefore

(Ox + p)uf(L,y) = (Ox+p)us (L),
(0x — p)uz(0,y) = (9x —p)ui(0,y),

Optimized

like in Lions's algorithm.

Now in order to obtain a fast method, we should choose p to
make the contraction factor p as small as possible, i.e.

nt+k—p

: —24/n+k3L
min max —_— e .
pER keK («/77+k2—|—p>

The set K represents Fourier modes in the computations, for
example K := (kmim kmax)v with kmin = % and kmax = %,
and H denotes the interface length, and h the mesh size.



Optimized Choice in the Robin Condition Decompostion
If we choose the best p, we get a contraction factor Martin J. Gander
17
0.8 -
0.6 7 @y
04 1
02 1

o 1 T T o
20 40 Pi 60 80 100
> The contraction factor is uniformly bounded by 0.1

» We observe that at the optimum, we have
equioscillation
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Domain

Second Order ApprOX|mat|0n Decomposition

We approximate the symbols o; by a second degree Martin J. Gander
polynomial in ik, 0j := p — gk?, p,q € R. The transmission
conditions are therefore

(O + P+ a0y )uf(Ly) = (Ox+p+qdy)uy (L y),
(ax —pP— qayy)ug(ovy) = (ax —pP— anY)uf(()?y)'

0.1 - Optimized

0.08 1
0.06 1
0.04 -

0.02 1




Optimized Parameters for a Model Problem
For the self adjoint coercive problem

Lu=n—DNu=f

the asymptotically optimal parameters are (G 2006)

P q
2 1/4
hl/2 /
(kr%in + 77)1 ’
oop | TR, 0¥ /4
21/2h1/4 21/27-[-3/4(/(r%1in + 7])1/8
k2. 2/5 h 3/5
23/5(Ch)1/5 21/5(k§1in +77)1/5
TOO NG 0
1
TO2 —
Vi NG

Domain
Decomposition

Martin J. Gander

Optimized



Domain

Comparison of Optimized Schwarz with Multigrid = oecompestion
Comparison of MS as an iterative solver, as a preconditioner, Martin J. Gander
multigrid, and an optimized Schwarz methods used
iteratively and as a preconditioner:

10 T T T T T T
= Classical Schwarz
= Classical Schwarz with Krylov
i = Multigrid
10 F —— Optimized Schwarz
—— Optimized Schwarz with Krylov.

Optimized

residual norm

0 2 4 6 8 10 12 14 16 18 20
iterations



Schur Methods
1D model problem (n — A)u = f on Q = (0,1)
Non-overlapping subdomains Q; = (0, ) and Q, = (o, 1)

Finite difference discretization leads to Au = f

Domain
Decomposition

Martin J. Gander

Schur Methods

Au Air 0 uy f1
Ar1 At Ar ur | =1 fr
0 A Ax u2 f2
2 1
w T TR
1 .
r
2 1
w TR
1|2 1
TR R TR
1|2 1
TR R TR
1 -
s




Prlmal SChur MethOd Dec[Z::;(a)is?tion

Martin J. Gander

Rewriting the system by blocks yields

Anug + Arur =
Axup + Aorur = f
Ariur + Araup + Arrur = fr

Solving for the subdomain solutions gives
-1 -1 Primal Schur
up = Ay (f1 — Arrur),  ux = Ay (Fa — Aorur)
and introducing this into the last equation gives

(Arr—Ari A Air—Ar2Ay Aor)ur = fr—Ar A f1—ArAy o

the Schur complement system of Przemieniecki, based on
the primal Schur complement

Sp = Arr — AriArf Air — AraAg, Aor



Domain

Continuous Interpretation of Primal Schur Decompesition
The interface equation Arju; + Arauz + Arrur = frin 1D is Martin J. Gander

1 2 1
hz(ul)a 1+ (h2 +n)ur — h2(“2)1 = fr
and thus represents at the continuous level
1 2
—zti(a —h)+ (53 +n)ur up(a + h) = f(a) + O(h?)

or equivalently

1
h2
L (ua(a)—a(a—h)) s (a(ath) () e = F () +O(H?)

Using a Taylor expansion and the differential equation

du1 h2 d2U1 2
m(a—h) = u0)~ hKZ20) + @) + o)
dU1 2 2
= wu(a) — h—~(a) + 7 (nu(a) - f(a)) + o(h%)
Hence the interface equation is a d|scretization of
a2y — 9

dx(a dx()_0



Domain
Decomposition

Continuous Interpretation of Primal Schur
Martin J. Gander

The continuous formulation of
Arug + Ajrur = £
Axup + Aorur = >
Arius + Arauz + Arrur = frr

is therefore
_d2xlé1 +nuy = finQ Primal Schur
—OZIX%Z +nuy = f in Qo,
u(a) = w(a),  4(a)=%2(e)

where the first interface condition is explicitly enforced, i.e.
u(a) = w(a) = ur
What is then the primal Schur formulation at the continuous

level ?



Domain

Continuous Primal Schur Formulation Decompeition

Martin J. Gander
Assume the interface value ur is given, we solve for u; on £2;

and evaluate at the interface x = « the derivative, which
gives the DtN operators

duy dup
SPN (ur, f) = K(a)’ SPN (ur, f) = E(a)'

Setting these derivatives equal, we obtain by linearity

Sp ur == SPV (ur,0)=SPN (ur, 0) = —SPN(0, £)+SPN(0, f)

which is the continuous formulation of the primal Schur
complement system

(Arr—Ar1 A Air—AraAyy Aot Jur = fr—Ar1 A fi—Ara Ay o

Solving this system with a Krylov method, we are interested
in its condition number!



Domain

Condition Number Estimate with Fourier Analysis = becompesiion

For the model problem Lu:= (n— A)u=0on Q = R?, Martin J. Gander
Ql = (—O0,0) x R and Qz = (0,00) X R,
(T]—A)Ulzo in Ql (T]—A)UQZO ian
uvu=uronx=20 up=uronx=20

After a Fourier transform in y
(n+ k2 =04 )01 =0in Q1 (n+ k? — Oxx )2 = 01in
Primal Schur

We get @j(x, k) = dre®V**x and hence

8PN (or.0) = v/ + Kor, 8PN (0r,0) = —/n + K20

and therefore
SAP ur :gle(Ur,O)—SAzD Ur, _2\/77+k2U|'
The condition number of the Schur complement is thus
Vit Ry VNG 1
K(Sp) = ~ O(E)
V1 Kiin +(1)?

~I3



Numerical Experiment for the Heating Problem e .

10°

10

10

10

10°

residual norm

10°

10°

10"

Domain
Martin J. Gander
T
| =+ Primal Schur with CG Ii
1
3
3
Primal Schur
3
3
-
"
10 12

6
iterations

» Each iteration needs one subdomain solve each
» Original problem (7 — A)u = f had x = O(+%)

"



Domain

Dual SChur Complement MethOd Decomposition

Martin J. Gander

Starting again with the coupled problem

d?uy

— =3 +nup =1fin
d“2+17u2:fin§22

T dx?

u(e) = w(a),  L(a)=%(a)

instead of enforcing explicitly the first interface condition as
in the primal Schur complement method,

Dual Schur

u(a) = w(a) = ur

in dual Schur complement methods, the second one is
enforced explicitly,

duy
dx

(0) = 22(0) =

and then enforcing continuity gives the linear system.



Domain

Condition Number Estimate with Fourier Analysis = becompesiion

For the same model problem: Martin J. Gander
(n—A)u1:0 in Ql (U—A)UQZO inQQ
%:u/ronxzo %:UlronXZO
After a Fourier transform in y we get
hid 2
bi(x, k) = —F—=e*V1kx and hence
i(x. k) ++/n+K2

~/
ur

Ve

S (ar,0) = , 8P (r,0) = ~

\/ﬁ Dual Schur

and therefore

Sp uf = SYP(ur,0) — 8P (ur,0) =

Vi + k2
Condition number of the Dual Schur complement is
Vi + K2 n+(5)? 1
W(Sp) = Ve ~0(3)




Domain

Numerical Experiment for the Heating Problem e .

Martin J. Gander

| =+ Dual Schur with CG Ii

0°F 1

Dual Schur
107k

residual norm

10°F

10°F

10°

0 1 2 3 p s s 7 s s 10
iterations

» Each iteration needs one Neumann solve per Subdomain



Condition Number Comparison

10 ¢gr T T T T T T T T
-==A
= = = Primal Schur
----- Dual Schur
—_—1
~ ~ N h
S o — h—2
~
~
~
~
~
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o 10°F

0
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[
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Be]

S .

10
O

1071.9 1071.5 1071.7 1071 6 1071 5 1071.A 1071.3 1071.2 1071.1

mesh size h

Domain
Decomposition

Martin J. Gander

Dual Schur



Discrete Dual Schur Complement Method Domain

Decomposition
Writing the discrete derivatives as before, we get Martin J. Gander
Ura—t1a-1 h U2 a+1 — U2,a
7—’__(77“1,3_7(3) =

h
ur = h 2 = 5 (2= 1)

which gives the global, discrete coupled system

upj+1—2u1jtur -1
- 2

+nu; = fhy, 1<j<a-1
1 1 2 1 1
—fpura1+ 3N+ Zluna = St gur
Dual Schur
. U2,j+1—2U22’j+U2,j71 + n U2,j _ f2,j7 2t 1 §_j § J
1 1 2 1 1
_FU2,a+1+§(Tl+p)U2,a = Efa_Ful—

or in Matrix form
( Au Arr > < up > — < f1 >
Ar1 %Arr Ui a %fa + %u'r
<%Arr Am)(ug,a):(%fa—%u;)
Axr Az uy f,



Domain

Dlscrete Dual SChur Contlnued Decomposition

With the discrete trace operators Martin J. Gander

G - R? — R, (u1,...,us) > U,
G, : R/t 4R, (Uay. . yuy) U,

we extract uy , and up 5 from the equations
-1
= up = ( Au  Arr > < fi1 >
u = G = G
173 1 < u]'?a > 1 < Arl %Arr %fa + %ulr Dual Schur
., _5(”2,3)_5(%AFF Ar2>—1<%fa—%ulr>
2272w 2\ A Ax fa
Setting those two values equal, we obtain by linearity
-1 -1
= (Aun Arr > =7, = (lArr Ar2> p
G Gy +Gy| 2 Gl | u=
( ' (Al'l AT ! 2\ Aor Az 2 r

-1 1 -1 /1
= (A Arr ) <f1 ) = <—Arr Arz) <—f3>
hG +hGy| 2 2

1 <Ar1 %Arr %fa 2 A2r A22 f2



The FETI Method e

Finite Element Tearing and Interconnection, Farhat/Roux: Martin J. Gander
solution of —Au = f in Q with homogeneous bc minimizes

J(v):%/ﬂ\vwzdx—/ﬂfvdx

Decompose J on two non-overlapping subdomains €;:

1 1
Jl(V):E Q|Vv|2 dX—/QdeX, _/2(v):5 Q|Vv|2 dX—/QfV dx
1 1 5

2
FETI and Neu-Neu

minimize over (vi, v2) such that v; = v» on the interface I'.
This constraint optimization problem can be written with
the Lagrangian

,C(Vl, Vo, h) = J1(V1) + J2(V2) + /r h(V2 — V1) ds.

The minimum is attained at (u1, u2, g) s.t.

8V,.£(u1, U2,g) = 0, = 1,2 and 8h£(ul, U2,g) =0



Domain

FETI Derlvatlon Contlnued Decomposition

The derivatives are Martin J. Gander

O, L(ur,u2,8) - vi = / Vu;-Vvdx — / fvidx, i=1,2
Q; Q;

and
OgL(ur,u2,8) - h= / h(uy — u1) ds
r

This can be rewritten as

Vv € V1, Vu1Vvy dx — / FETI and Neu-Neu

fVldX—/gvld_s:O
Ql Ql r

Yvo € Vs, Vur,Vvs dx —/

fV2dX—/gV2dS=0
QQ QQ r

Vh on F,/h(uz—ul)ds:O
r

We recognize the weak formulation of the Dual Schur
complement method, once the first two equations are solved
and introduced into the last one.



Additional Ingredients of FETI Decompostion

. . . Martin J. Gander
Two additional ingredients:

1. Natural coarse grid using floating subdomains

2. The condition number of FETI is O(%), from the Dual
Schur complement operator in Fourier

20,
Vo

We have also seen that the Primal Schur complement
operator in Fourier is

SPAUr = 2\/ n—+ k2i\lr

Hence Primal Schur is the ideal preconditioner for FETI!

S
SDul-—

FETI and Neu-Neu

One can also invert the approach, using a Primal Schur
method preconditioned with the Dual Schur formulation,
which is called (balancing) Neumann-Neumann



Spectra and Condition Numbers

1

L2 S A
% Primal Schur
af 3 e
&  Primal*Dual
I *
T A0 &
osk Jolcksii
“ O O COOnNEEND
J A |Schur Primal|Schur Dual|Dual-Primal|Primal-Dual
10| 48.37 6.55 7.28 1.11 1.11
20(178.06 13.04 14.31 1.10 1.10
401680.62 25.91 28.26 1.09 1.09

Domain
Decomposition

Martin J. Gander

FETI and Neu-Neu



Domain

Dirichlet-Neumann and Neumann-Dirichlet Decomposition
Schwarz type relaxation for (n — A) on two half planes: Martin J. Gander

(m—A)uf = f, iny (n—A)ud = f, inQ
uf(0,y) = uf H0,y)  0u5(0,y) = duf~'(0,y)

Fourier analysis in y, f = 0 shows no convergence:

oy = 21 (0)eV I, i = —af TN (0)e VIR = jp| = 1

)

Remedy: Introduce relaxation parameters 1 and v, Dir-Neu and Neu-Dir

u(0,y) = mud H0,y) + (1 —y1)ul 10, y)
Oxuf(0,y) = 0xul H(0,y) + (1 — 72)0xus (0, y)

Theorem (Bjorstad, Widlund 1986): For 7> = 1 there
exist 1 for which the Dirichlet-Neumann algorithm
converges.

Theorem (Quarteroni, Valli 1999): For 71 = 1 there exist
~2 for which the Neumann-Dirichlet algorithm converges.



Domain

Convergence Analysis for the Model Problem PR e

i i : Martin J. Gand
Fourier transform in y, f = 0, parallel version artin J. Gander

()= P (%))

Minimizing the spectral radius using v1 and 72, /1 + k2
cancels:

1 =1%£ = p=0 Dir-Neu and Neu-Dir

1 1
= =1 F —=
V2 V2
which means convergence in two iterations !

If one ~; is fixed, then
Dirichlet-Neumann: v, = 1, best y; = 34+2/2
Neumann-Dirichlet: v; = 1, best 7, = 34+21/2

In an alternating version, one can also achieve p = 0 for this
symmetric case, the optimal parameter is then ~; = 1/2.



Numerical Example Heating a Room
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Domain

Interpretation of these Algorithms e .

The Dirichlet-Neumann algorithm in substructured form is Martin J. Gander

ot = o + 0 (SEP(SPN (o ), £) — uf)
This is a Richardson algorithm for the preconditioned system
Sé\/D(S%)N(UD f),f) = ur
and with Sﬁ\[D(Ssz(g, f),f) =g forall f, g, we get

Dir-Neu and Neu-Dir

SévD(SIDN(UD f) - SZDN(Urv f)> f) =0
the Primal Schur formulation preconditioned with Sévp.
Similarly, we get for the Neumann-Dirichlet algorithm

S%)N(S{\/D(u/ﬁ f) - Sé\/D(Ulra f)7 f) =0

the Dual Schur formulation preconditioned with SPV.



Domain

Coarse Grids Decompesition
Martin J. Gander
Strong Scalability: For a problem of fixed size, the time to
solution is inversely proportional to the number
of processors

Weak Scalability: The time to solution is constant, when the
number of processors is increased
proportionally to the problem size

One dimensional decomposition into many subdomains:

Q2 Q, oA [&7] Q; ﬂi aj—1 Q- ﬁ/,l Coarse Grids
1 — —+ —H H— — — X
a=0 Q1 A a3 Bi-1 Qi1 Bi—2 ar Q Bi=1

Important parameters:
» | number of subdomains
» H; := 3; — aj subdomain width

> §; := i — ajy1 overlap



Scalability Problems of DD Methods

error _

Ca—

* iferation ”
Strong: § constant

ECEG

° iteration
Weak: § constant

10

10

error _

10°]

Weak: ¢ diminishes with H

s

" iteration

EC

s

Strong: & diminishes with H

" iteration

E3

3

Domain
Decomposition

Martin J. Gander

Scalability Problems



Intuitive Explanation

Parallel Schwarz method with two subdomains

with sixteen s

X

ubdomains

[

Parallel Schwarz method

J

A

» Domain decomposition methods only communicate with
neighboring subdomains

» For PDEs whose solution depends globally on data,
domain decomposition methods can not be scalable

without additional components

Domain
Decomposition

Martin J. Gander

Scalability Problems



Borrow Idea from Multigrid Decompestton
Martin J. Gander

Need to define a global approximate solution u,.

Then introduce a coarse grid and compute

r,=f— Au,;
re = Rr,;
uc = A-lre;

u, =u, + Eu.;

Standard components:
» use for the extension E interpolation o G

» use for the restriction R the extension transposed

» use for the coarse matrix Ac = RAE (Galerkin)

Classical coarse grid choice: one (or a few) points per
subdomain



Domain

Fundamental Convergence Result for AS ol

Martin J. Gander

Theorem (M. Drjya and O. Widlund (1989))

The condition number of the additive Schwarz
preconditioned system with coarse grid satisfies

K(MasA) < C <1 + g) :

where the constant C is independent of § and H.

Here 0 is the overlap and H is the characteristic coarse mesh
size of a coarse grid correction

Coarse Spaces
n
. T a—1 T p—1
Mps := E Rj Aj Ri+ Ry Ay Ro
j=1

Hence AS can well be used as a preconditioner for a Krylov
method.



Domain
Decomposition

Martin J. Gander

"iferation © 7 iferation = *
Strong: § constant Strong: & diminishes with H

w07 o

Coarse Spaces

error

FT—T B

a5

* iteration ”

Weak: § constant Weak: ¢ diminishes with H

" iteration ”



Scalability with Coarse Grid and Krylov

o

With a coarse grid slightly different chosen with more insight:

g

"7 iferation

Strong: & diminishes with H  Weak: § diminishes with H

3

3

g

* " iteration

E 3

10°

10

° iteration

* iteration

Domain
Decomposition

Martin J. Gander

Coarse Spaces



Toward an Optimized Coarse Grid Domain

Decomposition

Martin J. Gander

Lions coarse

= = =Lions coarse Krylov
= AS coarse

= = = AS coarse Krylov

residual

~o Optimized Coarse

10 15

iteration



Domain

Coarse Grid for FETI and Neumann-Neumann Decompesition
Martin J. Gander

As we have seen, these methods have a natural coarse grid

component built in.

Theorem

The condition number of FETI (with natural coarse grid and
preconditioner) or balancing Neumann-Neumann (with
preconditioner) is bounded by

c(1 —|—|n(%))2

where C is a constant independent of H and h.

Natural Coarse

Proofs:

» For Neumann-Neumann see Drjya and Widlund (1995)
and Mandel and Brezina (1996)

» For FETI, see Mandel and Tezaur (1996)



Domain

Solving Evolution Problems in Parallel ? Decomposition

Martin J. Gander

Systems of ODEs, v’ = f(u), or PDEs 9¢ = L(u) + f.

space

f
o

to ty tn-1 ty time

Time discretization, with e.g. Forward Euler for the ODE
leads to
Upt1 = U + Atf(up).

Is it possible?

— There seems to be no time parallelism in this
recurrence relation.



History of Time Parallel Algorithms Decompestton
Martin J. Gander

J. Nievergelt (1964): Parallel Methods for Integrating
Ordinary Differential Equations

“For the last 20 years, one has tried to speed up numerical computation
mainly by providing ever faster computers. Today, as it appears that
one is getting closer to the maximal speed of electronic components,
emphasis is put on allowing operations to be performed in parallel. In the
near future, much of numerical analysis will have to be recast in a more
“parallel” form.”

\\ \ Is it possible?

to t1 t2 tn—1 tn time



Domain

Multiple Shooting for Initial Value Problems ol

Martin J. Gander

For the model problem
o =f(u), w(0)=u’ te]0,1]

one splits the time interval into subintervals [0, 3] [37 3

[3,1], and then solves on each subinterval

u6 = f(uo), ui = f(u), uy = f(u2),
up(0) = U, wm(d) = Ui, w(3) = U,

together with the matching conditions

Uo = UO, U1 = UO( Uo) U2 = u1( Ul)

3’

Multiple Shooting

— FU)=0, U= (U U, U)T.



Example: first iteration
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Example: second iteration

Ur

U
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Example: third iteration

Ur

U>

=

2/3

Domain
Decomposition

Martin J. Gander

Invention of Schwarz
Substructuring

Waveform Relaxation

Alternating/Parallel
MS, AS and RAS
Preconditioning

Optimized

Primal Schur

Dual Schur

FETI and Neu-Neu
Dir-Neu and Neu-Dir

Scalability Problems
Coarse Spaces
Optimized Coarse
Natural Coarse

Is it possible?
Multiple Shooting
Schwarz WR
Parareal

General Method



Using Newton's Method Decompositon

Martin J. Gander

Solving F(U) = 0 with Newton's method leads in the
general case with N intervals, t, = nAT, AT =1/N to the
time parallel shooting method

ou,

k+1 __ k
Un+1 - u”(tn+17 Un) ou,

- (ta1, U (U = UR).

Theorem (Chartier and Philippe 1993)

If the initial guess U° is close enough to the solution, then
under appropriate regularity assumptions, the multiple
shooting algorithm converges quadratically.

Multiple Shooting



Parallel Time Stepping 1

Domain
Decomposition

Martin J. Gander

W. Miranker and W. Liniger (1967): Parallel Methods for
the Numerical Integration of Ordinary Differential Equations

“It appears at first sight that the sequential nature of the numerical meth-
ods do not permit a parallel computation on all of the processors to be
performed. We say that the front of computation is too narrow to take
advantage of more than one processor... Let us consider how we might

widen the computation front.”

redict ot redict
/ l p - p
e correct L correct
th—1 th 3 tn+ 1 th _,'i th tn+ 1

Multiple Shooting



Domain
Decomposition

Parallel Time Stepping 2
D. Womble (1990): A time-stepping algorithm for parallel Martin J. Gander

computers.
» For implicit time discretizations, e.g. Backward Euler:

Unt1 = Up + Atf(upy1) <= F(upt1,un) =0
> Each time step uses an iterative solver, e.g. Newton:
k+1 __ k 1(. .k -1,k

Upi1 = Unpr — F'(Upprs un) ™ F'(Upys, un)
> lteration starts at the next time step, before the
previous time step result u, is obtained accurately

A

time

Multiple Shooting

space



Domain

A Negative Result for Parallel Time Stepping ol

Martin J. Gander

Deshpande, Malhotra, Douglas, Schultz (1995):
Temporal Domain Parallelism: Does it Work ?

Results:
» if a good solver is used on each time step, no parallel
speedup is possible.
» if a very slow solver is used on each time step, a small
parallel speedup can be achieved.

Quote from the tech report (1993):

“We show that this approach is not normally
useful”.

Multiple Shooting



Schwarz Waveform Relaxation for PDEs Do e
Martin J. Gander
For a given evolution PDE, t
Lu=f, inQx(0,T) — {

with initial condition
u(x,0) = wo,

the Schwarz waveform
ation algorithm is:

Luf
uln('v '70)

u;

The global iterate is u”

= u in Q; x [0, T

X2
reIaX— %-:Zé 0
x1 J rl' Qi
f in Q; x (0, T),
Up in Q,‘,
uj’_l on[;x(0,T)

Schwarz WR



Domain

Convergence Results for Diffusive Problems PR e

Martin J. Gander
Lu=0wu+(a-V)u—vAu+bu=1f, inQx(0,T)

Theorem (Linear Convergence (Daoud, G 2003))
On arbitrary time intervals, the iterates u* satisfy

a2 — ul| < (y(m, L))" ||u® — u],

where y(m, L) < 1, L measures the overlap, and m is related
to the number of subdomains.

Theorem (Superlinear Convergence (Daoud, G 2003))

On bounded time intervals t € [0, T < c0), the iterates
satisfy

Schwarz WR

nL
2v/dvT

[lu" = ull < (C(v,a, L))" erfc( )lu® = ull.



Numerical Experiments

Error of 3 consecutive iterates at the end of the time interval:

At T =5, Where the algorithm is in the linear convergence
regime

&
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At T = 0.01, algorithm in the superlinear convergence
regime
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Domain
Decomposition

Martin J. Gander

Schwarz WR



Domain

Example of two Different Convergence Regimes e .

Martin J. Gander

maximum error

0 s . . 0 5
Iteration n

= Transition from linear to the superlinear convergence Schwarz WR



Comparison with WR for ODEs Decompositon

Martin J. Gander

The superlinear convergence rate found for classical
waveform relaxation algorithms is

(CT)n _ 1 -1 —nlnn+(1+In(CT))n—% Inn —nlnn
a7 + O(n e 2" e

The superlinear convergence rate for diffusive PDEs is

an)_<ﬁ

2

Clerfe(

-2 —C—§n2+|n(C1)n—|nn —n
T C2\/E+O(n ))e 7 e

The improvement is due to the particular diffusion stemming Schviarz WR
from the heat kernel.



Domain

Convergence Result for the Wave Equation PR e

Martin J. Gander

Lu:=0yu—*(x)Au = f, inQx(0,T)
ulx,r) = u°
Oru(x,”) = u?
u(x,t) = g(x,t), ondQx(0,T)

X

y
.

Theorem (Finite Step Convergence (G, Halpern 2005))
For given initial conditions u® € H*(Q), u? € L?(Q), forcing
function f € L%(0, T; L?(RQ)), boundary condition

g € L2(0, T; Hz(T')) and initial guess ug € L2(0, T; H(Q)),
the classical overlapping Schwarz waveform relaxation
algorithm for the wave equation has converged in

L2(0, T; HY(Q)) as soon as the number of iterations n

satisfies
TE Schwarz WR
T T := sup c(x).

xeN



Graphical Convergence Proof

no error in u

no error in Uy

3

1
1

characteristics

no error in u

2
2

2
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Convergence Speed for Waveform Relaxation

Milne (1953): “Actually this method of continuing the computation

is highly inefficient and is not recommended”

Olavi Nevanlinna (1989): “Since the topic of this paper is to use
Picard-Lindelof iterations, | want to claim that the very large size of the
systems solved today and the development of new machine
architectures have made the approach competitive.”

“In practice one is interested in knowing what subdivisions yield fast
convergence for the iterations.”

“The splitting into subsystems is assumed to be given. How to split in
such a way that the coupling remain “weak” is an important question.
The emphasis in this paper is in the superlinear effect - which allows
one to iterate roughly speaking without exactly knowing how much is
“weak”; if you do not see convergence even in short subintervals [...],

then we can say that the couplings are not weak.”

Domain
Decomposition

Martin J. Gander

Schwarz WR



Domain

Optimized Schwarz Waveform Relaxation Decomposition

Martin J. Gander

Like in the case of optimized Schwarz methods:

» Methods can be used with and without overlap

» lteration cost the same as classical method

Mathematical results:

» Wave propagation problems (G, Halpern, Nataf 2003,
G, Halpern 2004)

» Maxwell's equations (G, Courvoisier 2011)

» Advection reaction diffusion problems: (G, Halpern
2007, Bennequin, G, Halpern 2009)

» Circuit Simulation (Al-Khaleel, G, Ruehli, 2010,/2008,
G, Ruehli, 2004) Schwarz WR



Domain
Decomposition

Cyclogenesis Test

1on

Global Weather Simulat

Martin J. Gander

with C6té and Qaddouri 2006)
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On the Yin-Yang grid

Invention of Schwarz

Substructuring

i
i

it
Y ety
7/
)
ya s

Waveform Relaxation

DR
RS
RS

R
N

S

i

%
oy

% %
o2t
1
A

o

%
G
5
it

oS
ORI SS

SOOI,
SRS

o

K} =
= w ]
S ow =
o & .E - 2
®E S, = 5=
5 0= @ $ 52
mwn 2N e s
c< §E TN °
- 95 E
2491 -
<32a 0 a0ow
S
RS N,
e Y
NN
IR LR
S N
RIS syeasii
eI
SIS et

Dir-Neu and Neu-Dir

«
=
g
o
2
a
>
5
&
©
i
)

Coarse Spaces

Optimized Coarse

Natural Coarse

==

S
= N
eI

2
2L
2

S
S

Is it possible?

SN

Multiple Shooting
Schwarz WR

Parareal

General Method

7

7

77/

L

% 177
AL



The Parareal Algorithm Decompostion

Martin J. Gander

J-L. Lions, Y. Maday, G. Turinici (2001): A “Parareal’
in Time Discretization of PDEs

The parareal algorithm for the model problem
v = f(u)
is defined using two propagation operators:

1. G(tp,t1,u1) is a rough approximation to u(tp) with
initial condition u(t1) = vy,

2. F(t,t1,u1) is a more accurate approximation of the
solution u(tp) with initial condition u(t;) = u.

Starting with a coarse approximation U9 at the time points
ti, ta, ..., ty, parareal performs for k =0,1,... the
correction iteration

Urljj-_% = G(tn—i-ly th, Url;“‘l)—i—F(t,H_l, ty, Urlw()_G(tn-l-L th, Url;) Parareal



Algorithmic Equivalences

Theorem (G, Vandevalle 2003)
The parareal algorithm

Ull;——ii-_]? - F(tn-i—l) tn, Url;)—i_G(tn-l—lv tn, UrI;+1)_G(tn+1> tn, Url;)’

is a multiple shooting method

Oup,

k+1 __ k
Un+1 - n(tn-',-l, Un) 8U

- (tas1, U (U = UR).
with an approximation of the Jacobian on a coarse time grid.

Theorem (G, Vandewalle, 2003)

The parareal algorithm is a time multigrid method with
aggressive time coarsening.

Domain
Decomposition

Martin J. Gander



Domain

A General Convergence Result for Parareal PR e
Martin J. Gander

For the non-linear IVP ' = f(u), u(ty) = wo.

Theorem (G, Hairer 2005)

Let F(tni1,tn, UX) denote the exact solution at t,,1 and
G(tns1, tn, UX) be a one step method with local truncation
error bounded by C;ATPTL. If

|G(t+ AT, t,x)— G(t+AT,t,y)| < (1+ GAT)|x — y|,

then
K AT N-1—k
 max, u(ts)—U,| < ki(l—&—C SAT) H(N —J)  max |u(tn) Ul

Jj=1

K
< (a7 e@(T=HDAT) A TPK max lu(tn) — U°|
-kl 1<n<n N i

Parareal

Superlinear Convergence estimate like for Waveform
Relaxation



Results for the Lorenz Equations

—0X + oy
= —XZ+mxx-—-y

z = xy—bz

Parameters: ¢ =10, r =28 and b = % = chaotic regime.

Initial conditions: (x,y,z)(0) = (20,5, —5)
Simulation time: t € [0, T = 10]
Discretization: Fourth order Runge Kutta, AT = %,
At = 1.
1800
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Domain

Parareal Schwarz Waveform Relaxation PR e
Given an initial condition up and boundary conditions g~ Martin J. Gander
and g™, we define Fi,(up, g ,g") and Gjp(up, g~ ,g™") to be
fine and coarse approximations of the solution at t = t, 1 of

Oru = Owu,  x€(x; +) t € (tn, tay1)
u(x,tp) = wo € (x,x")
B u(x ,t) = g~ t € (tn, tht1)
B,Jru(x t) = gt t € (tn, tht1)
A Parareal Schwarz Waveform Relaxation Algorithm:
Given initial conditions u(’iin(x) and boundary conditions
B uf ; ,(t) and B uf; ,(t), we compute

LAl uf™ = Fin(uf i, B; uk
2. Compute new initial conditions using

+ K :
b 1n,Bi ui+17n) in parallel

k+1 ok -k + k
Ugjpnt1 = Fm(“o,imB; ui—l,mBi ui+1,n)
General Method

i k+1 12— k+1 + k+1 +, .k
+Gln(u0,n7B i— 1naB :+1n) Gln(UOImB uj_ lnﬂBi Ui+1,n)



Dependence on the Overlap

Q=(0,6), T=3}, Ax =
2Ax,4Ax,8Ax,16 Ax overlap, decomposition into 6 spatial
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Domain

An Optlmlzed Varlant Decomposition
Q=(0,6), T=3}, Ax = 1—10, At = %, 2Ax overlap, Martin J. Gander
decomposition into 6 spatial subdomains, and 10 time
subdomains
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Domain

CO n Cl USIO nS Decomposition

Martin J. Gander

» Schwarz Methods:

» need overlap, except for optimized ones
> easy to program and use, also algebraically

» Schur complement methods:

Primal and dual variants (Neumann-Neumann, FETI)
Have natural coarse grids

Need additional preconditioner

Dirichlet-Neumann and Neumann Dirichlet Methods are
very much related to Schur complement methods
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» Space-Time methods

Small scale parallel methods
Waveform Relaxation methods
Multiple Shooting/Parareal algorithm
Combinations
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Reference: Méthodes de décomposition de domaines, G.
and Halpern, Encyclopédie des Techniques de I'Ingénieur, to s
appear 2012,
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