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Context

Why considering Julia for scientific computing ?

Why considering Julia for scientific computing ?
Julia’s mathematical syntax makes it an ideal way to express
numerical algorithms.
Rich ecosystem for scientific computing with state-of-the-art
packages.
Julia is able to handle large volume of data efficiently.
Julia is designed for parallelism, and provides built-in primitives for
parallel computing at every level: instruction level parallelism,
multi-threading and distributed computing.
The Celeste.jl project [Regier et al, 2018] achieved 1.5
PetaFLOP/s on the Cori supercomputer at NERSC using 620,000
cores.
Julia won the 2019 James H. Wilkinson Prize for Numerical
Software.
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Context

Current challenges in high performance data analytics

Current challenges in high performance data analytics
Increasingly large amount of data in current applications (web
search, machine learning, social networks, genomics/proteomics
data, ⋯).
State-of-the-art deterministic methods of numerical linear algebra
were designed for an environment where the matrix fits into
memory (RAM) and the key to performance was to minimize the
number of floating point operations (FLOP) required.
Currently, communication is the real bottleneck

Moving data from a hard drive
Moving data between nodes of a parallel machine
Moving data between nodes of a cloud computer.

Ideally we should target for efficient algorithms scaling linearly with
the problem size and with minimal data movement.
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Context

Current challenges in high performance data analytics

Main features to analyze
Data distribution.
Load balancing property of the algorithm.
Weak and strong scalability properties of the algorithm.
Resiliency and fault-tolerant properties of the algorithm.

Distributed data analysis and scientific computing [Gittens et al,
2016]

Apache Hadoop Map/Reduce (RDD: Resilient Data Distribution).
Spark Apache MLlib.
Message Passing Interface (MPI).
R and Distributed R (Rmpi, RHadoop).
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Context

Map/Reduce algorithms

Map/Reduce algorithms
Framework for processing parallelizable problems across large
datasets using a large number of nodes on a cluster.
Methodology:

Map: Each worker node applies the ”map()” function to the local
data, and writes the output to a temporary storage. A master node
ensures that only one copy of redundant input data is processed.

Shuffle: Worker nodes redistribute data based on the output keys
(produced by the ”map()” function), such that all data belonging to
one key is located on the same worker node.

Reduce: Worker nodes now process each group of output data, per
key, in parallel.

An efficient distributed file system is usely required.

Xavier Vasseur (ISAE-SUPAERO, Toulouse) January 31 2019, Journée Julia 5 / 35



Context

Goals of the talk

Goals of the talk
Introduce map/reduce strategies available in Julia at an
introductory level.
Provide two illustrations with a main focus on the basic concepts.
Discuss an application using map/reduce strategies in a HPC
context.

My own experience in Julia
Used for teaching in numerical analysis since 2016.
Used for research in scientific computing (for its fast prototyping and
efficiency).
At a beginner level nevertheless !
Julia (v 1.0.3) has been used in this talk.
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Map/Reduce operations in Julia
Map, reduce and mapreduce operations
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Map/Reduce operations in Julia
Map, reduce and mapreduce operations

Map operation

1 help?> map

2 search: map map! mapfoldr mapfoldl mapslices mapreduce asyncmap asyncmap!

3

4 map(f, c...) -> collection

5

6 Transform collection c by applying f to each element. For multiple

7 collection arguments, apply f elementwise.

8

9 See also: mapslices

10

11 Examples

12 ≡≡≡≡≡≡≡≡≡≡

13

14 julia> map(x -> x * 2, [1, 2, 3])

15 3-element Array{Int64,1}:

16 2

17 4

18 6
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Map/Reduce operations in Julia
Map, reduce and mapreduce operations

Reduce operation

1 help?> reduce

2 search: reduce mapreduce

3

4 reduce(op, itr; [init])

5

6 Reduce the given collection itr with the given binary operator op. If

7 provided, the initial value init must be a neutral element for op that will

8 be returned for empty collections. It is unspecified whether init is used

9 for non-empty collections.

10

11 ...

12

13 Examples

14 ≡≡≡≡≡≡≡≡≡≡

15

16 julia> reduce(*, [2; 3; 4])

17 24

18

19 julia> reduce(*, [2; 3; 4]; init=-1)

20 -24
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Map/Reduce operations in Julia
Map, reduce and mapreduce operations

Reduce operation

The reduce operation operates on a collection (or iterable) (usually
the result of map) and reduces it to a single object.
Example: if a collection 𝑐 has 4 elements, 𝑟𝑒𝑑𝑢𝑐𝑒(𝑜𝑝,𝑐)
successively calculates

𝑜𝑝(𝑐1, 𝑐2),

𝑜𝑝( 𝑜𝑝(𝑐1, 𝑐2), 𝑐3),

𝑜𝑝( 𝑜𝑝( 𝑜𝑝(𝑐1, 𝑐2), 𝑐3), 𝑐4).

reduce computes the combination of the reduce result so far and a
new element in the collection returned from a map operation.
The associativity of the reduction operation is implementation
dependent.
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Map/Reduce operations in Julia
Map, reduce and mapreduce operations

Mapreduce operation

1 help?> mapreduce

2 search: mapreduce

3

4 mapreduce(f, op, itr; [init])

5

6 Apply function f to each element in itr, and then reduce the result using

7 the binary function op. If provided, init must be a neutral element for op

8 that will be returned for empty collections. It is unspecified whether init

9 is used for non-empty collections. In general, it will be necessary to

10 provide init to work with empty collections.

11

12 mapreduce is functionally equivalent to calling reduce(op, map(f, itr);

13 init=init), but will in general execute faster since no intermediate

14 collection needs to be created. See documentation for reduce and map.

15

16 Examples

17 ≡≡≡≡≡≡≡≡≡≡

18

19 julia> mapreduce(x->x^2, +, [1:3;]) # == 1 + 4 + 9

20 14
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Map/Reduce operations in Julia
Two simple examples
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Map/Reduce operations in Julia
Two simple examples

Midpoint rule integration (naive implementation)

1 function my_mapper_Integration_Midpoint_Rule(x)

2 return 4./(1 + x^2)

3 end

4

5 function my_reducer_Integration_Midpoint_Rule(s_x,s_y)

6 return s_x+s_y

7 end

8

9 function Integration_Midpoint_Rule(a, b, n)

10 h = (b-a)/float(n)

11 s = mapreduce((x)->my_mapper_Integration_Midpoint_Rule(x),

12 (x,y)->my_reducer_Integration_Midpoint_Rule(x,y),

13 [a + (i-0.5)*h for i=1:n])

14 return h*s

15 end

∫u�
u�

𝑓(𝑥)𝑑𝑥 ≈ (𝑏 −𝑎)
𝑛

u�
∑
u�=1

𝑓(𝑥u�) with 𝑥u� = 𝑎+(𝑖− 1
2 ) (𝑏 −𝑎)

𝑛
, 1 ≤ 𝑖 ≤ 𝑛.
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Map/Reduce operations in Julia
Two simple examples

Monte Carlo integration

1 function my_array_function(x)

2 return 4 ./ (1 .+ x.^2) # To favor array operations

3 end

4

5 function my_mapper_Monte_Carlo(array_sample)

6 return sum(my_array_function(array_sample))

7 end

8

9 function my_reducer_Monte_Carlo(s_x,s_y)

10 return s_x+s_y

11 end

12

13 function MonteCarlo(a, b, n, nsample)

14 s = mapreduce((x)->my_mapper_Monte_Carlo(x),

15 (x,y)->my_reducer_Monte_Carlo(x,y),

16 [rand(Uniform(a,b),1,n) for i=1:nsample])

17 return (b-a)/float(n*nsample)*s

18 end
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Map/Reduce operations in Julia
Distributed map operation

Distributed map operation

Distributed computing is available in Julia through the Distributed
package.
This allows to perform map operations in a distributed setting
using the notion of workers and tasks available in Julia.

1 help?> pmap

2 search: pmap promote_shape typemax PermutedDimsArray process_messages

3

4 pmap(f, [::AbstractWorkerPool], c...; distributed=true, batch_size=1,

5 on_error=nothing, retry_delays=[], retry_check=nothing) -> collection

6

7 Transform collection c by applying f to each element using available

8 workers and tasks.

9

10 For multiple collection arguments, apply f elementwise.

11

12 ...
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Map/Reduce operations in Julia
Distributed map operation

Distributed map operation: example

Performing independent linear algebra operations is then made easy
and efficient.

1 using LinearAlgebra

2 m, n = 1000, 500

3 M = [rand(m,n) for i=1:10]

4 pmap(svd,M)
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A first illustration: mean computation
Problem statement
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A first illustration: mean computation
Problem statement

Problem statement

Goal: computation of the mean of a possibly large array 𝑣 ∈ ℝu�

with the map/reduce concept.
Data decomposition: partition the array 𝑣 in ℓ contiguous chunks
of data 𝑣u� ∈ ℝu�u� (1 ≤ 𝑖 ≤ ℓ) to be able to perform independent
computations.
Map: perform local mean computation related to a local array
𝑤 ∈ ℝu�u� :

�̅� =
∑u�u�

u�=1 𝑤u�

𝑚u�
,

Reduce: Update the mean information by combining the current
result of the reducer with a result of a mapper function.
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A first illustration: mean computation
Implementation with Map/Reduce: analysis and results

Analysis

Data decomposition: partition the array 𝑣 in ℓ contiguous chunks
of data 𝑣u� ∈ ℝu�u�(1 ≤ 𝑖 ≤ ℓ) to be able to perform independent
computations.

Map: the mapper function performs local mean computation and
should return as output the (𝑚u�,𝜇u�) information (number of
elements in 𝑣u�, local mean, respectively.)

Reduce: the reducer function should combine two results (one
related to the reducer, the other to a result of a map) to yield an
update of the mean ((𝑚u�,𝜇u�)) as follows:

𝑚u� = 𝑚u� +𝑚u�,

𝜇u� =
𝑚u�𝜇u� +𝑚u�𝜇u�

𝑚u�
.
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A first illustration: mean computation
Implementation with Map/Reduce: analysis and results

Implementation of the mapper function in Julia

1 function my_mapper(x)

2 n = length(x)

3 average = sum(x)/float(n)

4 return (n,average)

5 end
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A first illustration: mean computation
Implementation with Map/Reduce: analysis and results

Implementation of the reducer function in Julia

1 function my_reducer(element_x,element_y)

2 n_x, average_x = element_x

3 n_y, average_y = element_y

4 n = n_x + n_y

5 average = (n_x * average_x + n_y * average_y )/float(n)

6 return (n,average)

7 end

1 function compute_average(x, nsub)

2 nchunks = Int64(ceil(length(x))/nsub)

3 s = mapreduce((x)->my_mapper(x), (e_x,e_y)->my_reducer(e_x,e_y),

4 [x[(i-1)*nchunks+1:min(i*nchunks, length(x))] for i=1:nsub])

5 return s

6 end
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A second illustration: communication avoiding Cholesky-QR2 factorization
Context and goals

Context: dimensionality reduction

Context
Given 𝐴 ∈ ℂu�×u� with 𝑝 = (𝑚,𝑛) we seek to compute a rank-𝑘
approximation, typically with 𝑘 ≪ 𝑝 (say 𝑚,𝑛 ∼ 104,106,108,⋯ and
𝑘 ≈ 10 or 102) as

𝐴 ≈ 𝐸 𝐹 u�, 𝐸 ∈ ℂu�×u�, 𝐹 ∈ ℂu�×u�.

Solving this problem usually requires algorithms for computing the
Singular Value Decomposition (SVD), which is marginally parallel
[Dongarra et al, 2018].

Goal: implement in Julia a simple communication-minimizing
factorization for tall and skinny matrices based on map/reduce
strategies.

Xavier Vasseur (ISAE-SUPAERO, Toulouse) January 31 2019, Journée Julia 19 / 35



A second illustration: communication avoiding Cholesky-QR2 factorization
Context and goals

Singular Value Decomposition

SVD [Beltrami, 1873], [Jordan, 1874], [Sylvester, 1889], [Picard,
1910]

Given 𝐴 ∈ ℂu�×u� with 𝑝 = (𝑚,𝑛), the full singular value
decomposition of 𝐴 reads:

𝐴 = 𝑈 Σ 𝑉 u�,

with 𝑈 ∈ ℂu�×u�, 𝑉 ∈ ℂu�×u� unitary (𝑈u�𝑈 = 𝐼u�, 𝑉 u�𝑉 = 𝐼u�) and
Σ ∈ ℝu�×u�.

Σ = 𝑑𝑖𝑎𝑔(𝜎1,⋯,𝜎u�) with 𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎u� ≥ 0.

𝜎u�, (𝑖 = 1,𝑝) are called singular values of 𝐴.
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A second illustration: communication avoiding Cholesky-QR2 factorization
Context and goals

R-SVD

R-SVD [Chan, 1982]
Idea: Perform an initial 𝑄𝑅 decomposition if the matrix is
sufficiently tall relative to its width (i.e. 𝑚 ≥ 𝑛 with at least by a
factor of 1.5): tall and skinny matrix.
First step: 𝑄𝑅 factorization of 𝐴 ∈ ℂu�×u� as 𝐴 = 𝑄𝑅 where
𝑄 ∈ ℂu�×u� has orthonormal columns (𝑄u�𝑄 = 𝐼u� and 𝑅 ∈ ℂu�×u� is
a triangular matrix).
Second step: 𝑆𝑉 𝐷 decomposition of 𝑅 as 𝑅 = 𝑈u�Σu�𝑉 u�

u� .
Final step: 𝐴 = 𝑈 Σu� 𝑉 u� with 𝑈 = 𝑄𝑈u� and 𝑉 = 𝑉u�.
Complexity: 4𝑚𝑛2 +22𝑛3.
Parallel performance: Tall and Skinny QR (𝑇 𝑆𝑄𝑅) algorithm
[Demmel et al, 2012] to be favored for the first step to obtain
parallel performance [Benson et al, 2013]
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A second illustration: communication avoiding Cholesky-QR2 factorization
Problem statement

Problem statement: Cholesky-QR factorization

Cholesky-QR [Golub and Van Loan, 2012]
𝐴 ∈ ℝu�×u� with 𝑚 >> 𝑛 of full column rank.
𝑄𝑅 factorization of 𝐴 ∈ ℝu�×u� as 𝐴 = 𝑄𝑅 where 𝑄 ∈ ℝu�×u� has
orthonormal columns (𝑄u� 𝑄 = 𝐼u� and 𝑅 ∈ ℝu�×u� is a triangular
matrix).
First step: Compute the symmetric positive definite matrix
𝐵 = 𝐴u� 𝐴.
Second step: Perform the Cholesky factorization of the 𝑛×𝑛
matrix 𝐵 as 𝐵 = 𝑅u� 𝑅, where 𝑅 ∈ ℝu�×u� is upper triangular. This
step provides the 𝑅 factor of the 𝑄𝑅 factorization.
Third step: To deduce the 𝑄 factor, we simply have to solve:

𝑅u� 𝑄u� = 𝐴u� .

Cholesky-QR is not numerically stable: deviation from
orthogonality ‖𝑄u� 𝑄−𝐼u�‖u� is proportional to 𝜅2(𝐴)2.
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A second illustration: communication avoiding Cholesky-QR2 factorization
Problem statement

Cholesky-QR2 factorization [Fukaya et al, 2014]

u�,u� ← CholeskyQR(u�), figure from [Huetter et al,
2019]

𝑄,𝑅1 ← CholeskyQR(𝐴),
𝑄,𝑅2 ← CholeskyQR(𝑄),
𝑅 ← 𝑅2𝑅1.
Deviation from orthogonality ‖𝑄u� 𝑄−𝐼u�‖u� is 𝑂(𝜀) if
𝜅2(𝐴) = 𝑂( 1√

u� ). [Yamamoto et al, 2015]
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A second illustration: communication avoiding Cholesky-QR2 factorization
Implementation with Map/Reduce: analysis and results

Analysis of Cholesky-QR

Data decomposition: partition the tall and skinny matrix
𝐴 ∈ ℝu�×u� into ℓ panels 𝐴u� ∈ ℝu�u�×u�(1 ≤ 𝑖 ≤ ℓ) with
∑ℓ

u�=1 𝑚u� = 𝑚.

Map: the mapper function should perform the local matrix-matrix
product 𝐴u�

u� 𝐴u�.

Reduce: the reducer function should combine the current result of
the reducer (𝐵) with a result of a mapper function related to panel 𝑗
to update the contribution block 𝐵 i.e. 𝐵 ← 𝐵 +𝐴u�

u� 𝐴u�.

Cholesky factorization of 𝐵 ∈ ℝu�×u� as 𝐵 = 𝑅u� 𝑅: this can be
performed straightforwardly without any map/reduce strategy.
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A second illustration: communication avoiding Cholesky-QR2 factorization
Implementation with Map/Reduce: analysis and results

Implementation of the mapper/reducer function
(computation of the triangular factor)

1 using LinearAlgebra

2

3 function my_mapper_R(M)

4 return (M'*M)

5 end

6

7 function my_reducer_R(P,Q)

8 return (P+Q)

9 end
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A second illustration: communication avoiding Cholesky-QR2 factorization
Implementation with Map/Reduce: analysis and results

Analysis of Cholesky-QR: computation of the
orthogonal factor

Data decomposition: partition the tall and skinny matrix
𝐴 ∈ ℝu�×u� into ℓ panels 𝐴u� ∈ ℝu�u�×u�(1 ≤ 𝑖 ≤ ℓ) with
∑ℓ

u�=1 𝑚u� = 𝑚.

Map: the mapper function performs the solution of the triangular
system of equations 𝑅u� 𝑄u�

u� = 𝐴u�
u� and returns 𝑄u� ∈ ℝu�u�×u�.

Reduce: the reducer function should combine the current result of
the reducer with a result of a mapper function (say 𝑄u� and 𝑄u�) i.e.
concatenate vertically [𝑄u�;𝑄u�] ∈ ℝ(u�u�+u�u�)×u�.

Xavier Vasseur (ISAE-SUPAERO, Toulouse) January 31 2019, Journée Julia 26 / 35



A second illustration: communication avoiding Cholesky-QR2 factorization
Implementation with Map/Reduce: analysis and results

Implementation of the mapper/reducer function
(computation of the orthogonal factor)

1 using LinearAlgebra

2

3 function my_mapper_R(M)

4 return (M'*M)

5 end

6

7 function my_mapper_Q(M)

8 return ((Tfactor')\(M'))'

9 end

10

11 function my_reducer_R(P,Q)

12 return (P+Q)

13 end

14

15 function my_reducer_Q(P,Q)

16 return [P;Q]

17 end
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A second illustration: communication avoiding Cholesky-QR2 factorization
Towards large-scale simulations with Cholesky-QR2

Outline

1 Context

2 Map/Reduce operations in Julia

3 A first illustration: mean computation

4 A second illustration: communication avoiding Cholesky-QR2
factorization

Context and goals
Problem statement
Implementation with Map/Reduce: analysis and results
Towards large-scale simulations with Cholesky-QR2

5 Conclusions
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A second illustration: communication avoiding Cholesky-QR2 factorization
Towards large-scale simulations with Cholesky-QR2

Towards large-scale simulations with Cholesky-QR2

Favor BLAS or LAPACK kernels for linear algebra operations: this
can be performed with the BLAS package of Julia.

Perform inplace operations to control allocations and memory
management.

Depending on your platform and installation of Julia, use
multithreading in the numerical linear algebra libraries.

Problems with 𝑚 ≈ 106 and 𝑛 ≈ 64 can be performed quite
efficiently on a laptop [Notebook].

Numerical results on Olympe (@CALMIP) to be discussed next.
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A second illustration: communication avoiding Cholesky-QR2 factorization
Towards large-scale simulations with Cholesky-QR2

Numerical experiments on Olympe

Olympe Cholesky-QR2
𝑛 = 64

𝑚 ‖𝐴−𝑄𝑅‖u� /‖𝐴‖u� ‖𝑄u� 𝑄−𝐼u�‖u� /
√

𝑛 𝜏 (seconds)
1024 3.30 10−16 1.45 10−15 0.002
16384 3.11 10−16 3.25 10−16 0.16
262144 3.22 10−16 3.21 10−16 2.6
1048576 3.24 10−16 8.61 10−16 11.6

Experiments on dense rectangular random matrices performed on a
single node of Olympe.
This uses Julia 1.0.2 with multithreaded OpenBLAS.
Use distributed computing through pmap for larger problem sizes !
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Conclusions

Summary

Summary

We have first discussed why map and reduce strategies are
increasingly popular in high performance data analytics.

We have then briefly reviewed map and reduce operations in Julia.

We have provided two instructional illustrations in Julia.

We have discussed numerical results related to a possible
implementation of a communication-minimizing factorization
method for dimensionality reduction.
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Conclusions

What we have learnt about Julia

What we have learnt about Julia
Clear mathematical high-level syntax: it is easy to express
numerical algorithms leading to short codes.

Map/Reduce: functional programming is great ! Other patterns
(collect, filter) are available in Julia.
Parallelism: built-in primitives for parallel computing at multiple
levels are available in Julia.

Thanks to CALMIP and Groupe Calcul @ CNRS.

Thank you for your attention !
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