
qr_mumps: a runtime-based sequential task
flow parallel solver

E. Agullo, A. Buttari, A. Guermouche, F. Lopez and I. Masliah

Journée Runtime, 20-01-2017 , Bordeaux

the multifrontal qr factorization

Linear Systems and Direct Methods

Sparse linear systems

Many applications from physics, engineering, chemistry, geodesy,
etc, require the solution of a linear system like

Ax = b, with A, rectangular, sparse and potentially large

m ≥ n minx ∥Ax− b∥2 → QR = A, z = QTb, x = R−1z
m < n min∥x∥2, Ax = b → QR = AT, z = R−Tb, x = Qz

A sparse matrix is mostly filled with zeros:
• Reduce memory storage.
• Reduce computational costs.
• Generate parallelism.

2

The Multifrontal QR method

The original multifrontal method by Duff & Reid ’83 can be
extended to QR factorization of sparse matrices.
This method is guided by a graph called elimination tree:
• each node is associated with a
relatively small dense matrix called
frontal matrix (or front) containing k
pivots to be eliminated along with all
the other coefficients concerned by
their elimination.

3

The Multifrontal QR method

The tree is traversed in topological order (i.e., bottom-up) and, at
each node, two operations are performed:

• assembly: coefficients from the
original matrix associated with the
pivots and contribution blocks
produced by the treatment of the
child nodes are stacked to form the
frontal matrix.

• factorization: the k pivots are
eliminated through a complete
dense QR factorization of the frontal
matrix. As a result we get:
◦ part of the global R and Q factors.
◦ a triangular contribution block that

will be assembled into the father’s
front.

3

The Multifrontal QR method

The tree is traversed in topological order (i.e., bottom-up) and, at
each node, two operations are performed:

• assembly: coefficients from the
original matrix associated with the
pivots and contribution blocks
produced by the treatment of the
child nodes are stacked to form the
frontal matrix.

• factorization: the k pivots are
eliminated through a complete
dense QR factorization of the frontal
matrix. As a result we get:
◦ part of the global R and Q factors.
◦ a triangular contribution block that

will be assembled into the father’s
front.

3

The Multifrontal QR method

Typically two sources of parallelism are exploited in the
multifrontal method

• tree-level parallelism: frontal
matrices located in independent
branches in the tree can be
processed in parallel.

• node-level parallelism: large frontal
matrices factorization may be
performed in parallel by multiple
threads.

3

The Multifrontal QR method

Typically two sources of parallelism are exploited in the
multifrontal method

• tree-level parallelism: frontal
matrices located in independent
branches in the tree can be
processed in parallel.

• node-level parallelism: large frontal
matrices factorization may be
performed in parallel by multiple
threads.

3

The Multifrontal QR method

Typically two sources of parallelism are exploited in the
multifrontal method

• tree-level parallelism: frontal
matrices located in independent
branches in the tree can be
processed in parallel.

• node-level parallelism: large frontal
matrices factorization may be
performed in parallel by multiple
threads.

3

runtime systems

Runtime systems

Application

Architecture

xPU0 xM0 yPU0 yM0xPU1 xM1

• The classical approach is based
on a mixture of technologies (e.g.,
MPI+OpenMP+CUDA) which.
◦ requires a big programming

effort.
◦ is difficult to maintain and update.
◦ is prone to (performance)

portability issues.

• runtimes provide an abstraction
layer that hides the architecture
details.

• the workload is expressed as a
DAG (Directed Acyclic Graph) of
tasks.

5

Runtime systems

Application

Runtime

Architecture

xPU0 xM0

Scheduling engine

Mem.
manager

xPU
driver

yPU
driver

A B
C

CB B

A

yPU0 yM0xPU1 xM1

Ax Ay

Bx Cx

• The classical approach is based
on a mixture of technologies (e.g.,
MPI+OpenMP+CUDA) which.
◦ requires a big programming

effort.
◦ is difficult to maintain and update.
◦ is prone to (performance)

portability issues.

• runtimes provide an abstraction
layer that hides the architecture
details.

• the workload is expressed as a
DAG (Directed Acyclic Graph) of
tasks.

5

Runtime systems

Application

Runtime

Architecture

xPU0 xM0

Scheduling engine

Mem.
manager

xPU
driver

yPU
driver

A B
C

CB B

A

yPU0 yM0xPU1 xM1

Ax Ay

Bx Cx

• The classical approach is based
on a mixture of technologies (e.g.,
MPI+OpenMP+CUDA) which.
◦ requires a big programming

effort.
◦ is difficult to maintain and update.
◦ is prone to (performance)

portability issues.

• runtimes provide an abstraction
layer that hides the architecture
details.

• the workload is expressed as a
DAG (Directed Acyclic Graph) of
tasks.

5

The Sequential Task Flow model: a simple example

Sequential code

sub_a(x,y); // R and W x and y
sub_b(x); // R x
sub_c(y); // R y
sub_d(x,y); // R and W x and y

Equivalent STF code

submit(sub_a,x:RW,y:RW);
submit(sub_b,x:R);
submit(sub_c,y:R);
submit(sub_d,x:RW,y:RW);
wait_tasks_completion();

sub_a

sub_b sub_c

sub_d

sub_b and sub_c can be executed in parallel. If sub_a is executed
on CPU and sub_b on GPU, x will be automatically transferred.

6

The Sequential Task Flow model: a simple example

Sequential code

sub_a(x,y); // R and W x and y
sub_b(x); // R x
sub_c(y); // R y
sub_d(x,y); // R and W x and y

Equivalent STF code

submit(sub_a,x:RW,y:RW);

submit(sub_b,x:R);
submit(sub_c,y:R);
submit(sub_d,x:RW,y:RW);
wait_tasks_completion();

sub_a

sub_b sub_c

sub_d

sub_b and sub_c can be executed in parallel. If sub_a is executed
on CPU and sub_b on GPU, x will be automatically transferred.

6

The Sequential Task Flow model: a simple example

Sequential code

sub_a(x,y); // R and W x and y
sub_b(x); // R x
sub_c(y); // R y
sub_d(x,y); // R and W x and y

Equivalent STF code

submit(sub_a,x:RW,y:RW);
submit(sub_b,x:R);

submit(sub_c,y:R);
submit(sub_d,x:RW,y:RW);
wait_tasks_completion();

sub_a

sub_b

sub_c

sub_d

sub_b and sub_c can be executed in parallel. If sub_a is executed
on CPU and sub_b on GPU, x will be automatically transferred.

6

The Sequential Task Flow model: a simple example

Sequential code

sub_a(x,y); // R and W x and y
sub_b(x); // R x
sub_c(y); // R y
sub_d(x,y); // R and W x and y

Equivalent STF code

submit(sub_a,x:RW,y:RW);
submit(sub_b,x:R);
submit(sub_c,y:R);

submit(sub_d,x:RW,y:RW);
wait_tasks_completion();

sub_a

sub_b sub_c

sub_d

sub_b and sub_c can be executed in parallel. If sub_a is executed
on CPU and sub_b on GPU, x will be automatically transferred.

6

The Sequential Task Flow model: a simple example

Sequential code

sub_a(x,y); // R and W x and y
sub_b(x); // R x
sub_c(y); // R y
sub_d(x,y); // R and W x and y

Equivalent STF code

submit(sub_a,x:RW,y:RW);
submit(sub_b,x:R);
submit(sub_c,y:R);
submit(sub_d,x:RW,y:RW);

wait_tasks_completion();

sub_a

sub_b sub_c

sub_d

sub_b and sub_c can be executed in parallel. If sub_a is executed
on CPU and sub_b on GPU, x will be automatically transferred.

6

The Sequential Task Flow model: a simple example

Sequential code

sub_a(x,y); // R and W x and y
sub_b(x); // R x
sub_c(y); // R y
sub_d(x,y); // R and W x and y

Equivalent STF code

submit(sub_a,x:RW,y:RW);
submit(sub_b,x:R);
submit(sub_c,y:R);
submit(sub_d,x:RW,y:RW);
wait_tasks_completion();

sub_a

sub_b sub_c

sub_d

sub_b and sub_c can be executed in parallel.

If sub_a is executed
on CPU and sub_b on GPU, x will be automatically transferred.

6

The Sequential Task Flow model: a simple example

Sequential code

sub_a(x,y); // R and W x and y
sub_b(x); // R x
sub_c(y); // R y
sub_d(x,y); // R and W x and y

Equivalent STF code

submit(sub_a,x:RW,y:RW);
submit(sub_b,x:R);
submit(sub_c,y:R);
submit(sub_d,x:RW,y:RW);
wait_tasks_completion();

sub_a

sub_b sub_c

sub_d

sub_b and sub_c can be executed in parallel. If sub_a is executed
on CPU and sub_b on GPU, x will be automatically transferred. 6

stf multifrontal qr

The task-based multifrontal QR factorization

forall fronts f in topological order

! compute front structure
call activate(f)
! allocate and initialize front
call init(f)

! front assembly
forall children c of f

call assemble(c, f)
! Deactivate child
call deactivate(c)

end do

! front factorization
call factorize(f)

end do

Sequential multifrontal QR code

8

The task-based multifrontal QR factorization

do f=1, nfronts ! in postorder
! compute front structure
call activate(f)
! allocate and initialize front
call init(f)

do c=1, f%nc ! for all the children of f
do j=1,c%n

! assemble column j of c into f
call assemble(c(j), f)

end do
! Deactivate child
call deactivate(c)

end do

do p=1, f%n
! panel reduction of column p
call _geqrt(f(p))
do u=p+1, f%n

! update of column u with panel p
call _gemqrt(f(p), f(u))

end do
end do

end do

Sequential multifrontal QR code with 1D block partitioning

9

The task-based multifrontal QR factorization

do f=1, nfronts ! in postorder
! compute structure and register handles
call activate(f)
! allocate and initialize front
call submit(init, f:RW)

do c=1, f%nc ! for all the children of f
do j=1,c%n

! assemble column j of c into f
call submit(assemble, c(j):R, f:RW)

end do
! Deactivate child
call submit(deactivate, c:RW)

end do

do p=1, f%n
! panel reduction of column p
call submit(_geqrt, f(p):RW)
do u=p+1, f%n

! update of column u with panel p
call submit(_gemqrt, f(p):R, f(u):RW)

end do
end do

end do
! wait for the tasks to be executed
call wait_tasks_completion()

• STF multifrontal QR code with 1D block partitioning
• Elimination tree is transformed into a DAG

10

The task-based multifrontal QR factorization

1 2

a

p1 u2 u3

p2 u3

p3

s2 s3

a

p1 u2 u3

u3

u4

u4

u4

s2 s3 s4

p2

p3

cc

3

a

p1 u2 u3

u3

u4

u4

u4

p4

s3 s4

p2

p3

c

d1
d2

d4

d5

d6d7

a

u

s

c

activate

p geqrt

gemqrt

assemble

deactivate

d3

do f=1, nfronts ! in postorder
! compute structure and register handles
call activate(f)
! allocate and initialize front
call submit(init, f:RW)

do c=1, f%nc ! for all the children of f
do j=1,c%n

! assemble column j of c into f
call submit(assemble, c(j):R, f:RW)

end do
! Deactivate child
call submit(deactivate, c:RW)

end do

do p=1, f%n
! panel reduction of column p
call submit(_geqrt, f(p):RW)
do u=p+1, f%n

! update of column u with panel p
call submit(_gemqrt, f(p):R, f(u):RW)

end do
end do

end do
! wait for the tasks to be executed
call wait_tasks_completion()

• Seamless exploitation of tree and node parallelism.
• Inter-level concurrency (father-child pipelining).

10

Experimental results

Matrices from the UF SParse Matrix Collection:

Matrix Mflops Ordering
12 hirlam 1384160 SCOTCH
13 flower_8_4 2851508 SCOTCH
14 Rucci1 5671282 SCOTCH
15 ch8-8-b3 10709211 SCOTCH
16 GL7d24 16467844 SCOTCH
17 neos2 20170318 SCOTCH
18 spal_004 30335566 SCOTCH
19 n4c6-b6 62245957 SCOTCH
20 sls 65607341 SCOTCH
21 TF18 194472820 SCOTCH
22 lp_nug30 221644546 SCOTCH
23 mk13-b5 259751609 SCOTCH

ADA supercomputer at IDRIS: Intel Sandy Bridge E5-4650 @ 2.7
GHz, 4× 8 cores

11

Experimental results: speedups

0

5

10

15

20

25

30

12 13 14 15 16 17 18 19 20 21 22 23

Matrix #

Speedup 1D -- 32 cores

1D

The task-based multifrontal method, implemented with a STF
parallel model on top of StarPU offers good speedups on 32
cores:
• speedup increases with problem size with very low speedup for
some problem such as matrix # 20

• we use a detailed performance analysis to determine the
limiting factors of the STF 1D approach 12

2D partitioning + CA front factorization

1D partitioning is not good for (strongly) overdetermined matrices:

▼ Most fronts are overdetermined

▲ The problem is mitigated by concurrent front factorizations

• 2D block partitioning (not necessarily square)
• Communication avoiding algorithms

▲ More concurrency

▼ More complex dependencies

▼ Many more tasks (higher runtime overhead)

▼ Finer task granularity (less kernel efficiency)

Thanks to the simplicity of the STF programming
model it is possible to plug in 2D methods for
factorizing the frontal matrices with a relatively
moderate effort

13

1D partitioning front factorization

do f=1, nfronts ! in postorder
! compute structure and register handles
call activate(f)
! allocate and initialize front
call submit(init, f:RW)

do c=1, f%nc ! for all the children of f
do j=1,c%n

! assemble column j of c into f
call submit(assemble, c(j):R, f:RW)

end do
! Deactivate child
call submit(deactivate, c:RW)

end do

do p=1, f%n
! panel reduction of column p
call submit(_geqrt, f(p):RW)
do u=p+1, f%n

! update of column u with panel p
call submit(_gemqrt, f(p):R, f(u):RW)

end do
end do

end do
! wait for the tasks to be executed
call wait_tasks_completion()

2D partitioning + CA front factorization

do f=1, nfronts ! in postorder
call activate(f) ! activate front
call submit(init, f:RW) ! init front

do c=1, f%nchildren ! for all the children of f
do i=1,c%m

do j=1,c%n
call submit(assemble, c(i,j):R, f:RW) ! assemble block(i,j) of c

end do
end do
call submit(deactivate, c:RW) ! Deactivate child

end do

ca_facto: do k=1, min(f%m,f%n)
do s=0, log2(f%m-k+1)

do i = k, f%n, 2**s
if(s.eq.0) then

call submit(_geqrt, f(i,k):RW)
do j=k+1, f%n

call submit(_gemqrt, f(i,k):R, f(i,j):RW)
end do

else
l = i+2**(s-1)
call submit(_tpqrt, f(i,k):RW, f(l,k):RW)
do j=k+1, front%n

call submit(_tpmqrt, f(l,k):R, f(i,j):RW, f(l,j):RW)
end do

end if
end do

end do
end do ca_facto

end do
call wait_tasks_completion() ! wait for the tasks to be executed

Experimental results: speedups

0

5

10

15

20

25

30

12 13 14 15 16 17 18 19 20 21 22 23

Matrix #

Speedup 2D -- 32 cores

1D

2D

The scalability of the task-based multifrontal method is enhanced
by the the introduction of 2D CA algorithms:

• Speedups are uniform for all tested matrices.
• We perform a comparative performance analysis wrt to the 1D
case to show the benefits of the 2D scheme.

16

More experimental results

1

4

8

12

16

20

1 4 8 12 16 20

407 Gflop/s

308 Gflop/s

Matrix #

Power8 -- Speedup 1-20 cores

Rucci1

ch8-8-b3

GL7d24

n4c6-b6

TF18

Credits: IBM, GENCI, IDRIS

On a 2 x Power8 machine 88% of parallel efficiency on 20 cores
17

More experimental results

200

400

600

800

1000

1200

73%
66%

57%

58%

39%
36%

TF18 -- Gflop/s

IBM Power8 (2x10)

Intel SB E5-4650 (4x8)

Intel HSW E5-2690 (2x12)

Intel BDW 2697v4 (2x18)

Intel KNL 7210 (1x64)

Intel KNL 7250 (1x68)

Credits: IBM, Intel, GENCI, CINES, IDRIS

• peak is inherently unattainable: see our (and S. Kumar’s and B.
Bramas’, and S. Nakov) work on computing meaningful
performance bounds and detailed performance analysis 18

memory-aware multifrontal method

Memory footprint in the multifrontal method

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200 250

M
e
m
o
r
y

(
M
B
)

Time (sec.)

Memory consumption profile

Sequential

• In sequential: the memory consumption varies greatly because
fronts are allocated and deallocated dynamically. The
maximum memory is referred to as the sequential peak Ms.

• In parallel: the peak memory consumption Mp can be much
higher because of tree parallelism.

20

Memory footprint in the multifrontal method

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200 250

M
e
m
o
r
y

(
M
B
)

Time (sec.)

Memory consumption profile

Sequential
6 threads, no constraint

• In sequential: the memory consumption varies greatly because
fronts are allocated and deallocated dynamically. The
maximum memory is referred to as the sequential peak Ms.

• In parallel: the peak memory consumption Mp can be much
higher because of tree parallelism.

20

Task scheduling under memory constraint

Memory-aware parallel execution

Objective: achieve efficient parallel execution within a prescribed
memory consumption Mp ≤ αMs, α ≥ 1. Method: suspend tasks
submission when no more memory is available and resume it
when enough memory has been freed by previously submitted
tasks.

Memory deadlock prevention by
ensuring fronts are allocated in
the same order as in sequential:
straightforward to achieved
thanks to the Sequential Task
Flow model. a b c

d

e

(1,4)

(8,1)

(3,0)

(2,1) (1,4)

See also related work by Agullo et al., Marchal et al. and
Amestoy et al. on memory-aware scheduling and memory
deadlock prevention. 21

Task scheduling under memory constraint

500

1000

1500

2000

2500

3000

3500

4000

50 100 150 200 250

M
e
m
o
r
y

(
M
B
)

Time (sec.)

Sequential
6 threads, no constraint
6 threads, Sequential*2.0

• Tighter memory bound → less concurrency → slower
execution.

• In practice the execution time is increased only for very small
matrices or very narrow/unbalanced elimination trees.

22

stf-based parallel multifrontal qr method
for heterogeneous architectures

GPU-based systems

• Very high computing power (O(1) Tflop/s)
• Very high memory bandwidth (O(100) GB/s)
• Very convenient Gflops/s/Watt ratio (O(10))

Objective

Exploit heterogeneity (i.e. take advantage of the diversity of
resources) to accelerate the multifrontal QR factorization.

Issues:
• Granularity: GPUs require coarser grained tasks to achieve full
speed;

• Scheduling: account for different computing capabilities and
different tasks characteristics while maximizing concurrency;

• Communications: minimize the cost of host-to-device data
transfers.

Frontal matrices partitioning strategies

• Fine grain partitioning provides high
concurrency but low tasks efficiency on
GPU

• Coarse grain partitioning achieves optimum
granularity for GPU but limited concurrency

Hierarchical, dynamic partitioning

▲ granularity and concurrency trade-off.

▲ heterogeneity to be exploited.

Panel

Update

nbgpunbcpu

The dynamic (un)partitioning of frontal matrices is achieved
through dedicated tasks rightarrow StarPU handles the
consistency among partitions.

25

HeteroPrio scheduler: extension 2/2

DAGs are irregular and alternate rich/poor concurrency regions

Our scheduler switches automatically between:
• Steady-state: # of ready tasks >> number of resources:
execute tasks where they are best suited i.e. best acceleration
factor (see HeteroPrio by Bramas et al.).

• Critical-state: # of ready tasks << number of resources:
reduce the time spent on the critical path.

In both states prefetching is implemented to reduce the overhead
of CPU-GPU communications.

26

HeteroPrio scheduler: extension 2/2

DAGs are irregular and alternate rich/poor concurrency regions
Steady State Critical State Steady State

Our scheduler switches automatically between:
• Steady-state: # of ready tasks >> number of resources:
execute tasks where they are best suited i.e. best acceleration
factor (see HeteroPrio by Bramas et al.).

• Critical-state: # of ready tasks << number of resources:
reduce the time spent on the critical path.

In both states prefetching is implemented to reduce the overhead
of CPU-GPU communications.

26

HeteroPrio scheduler: extension 2/2

DAGs are irregular and alternate rich/poor concurrency regions
Steady State Critical State Steady State

Our scheduler switches automatically between:
• Steady-state: # of ready tasks >> number of resources:
execute tasks where they are best suited i.e. best acceleration
factor (see HeteroPrio by Bramas et al.).

• Critical-state: # of ready tasks << number of resources:
reduce the time spent on the critical path.

In both states prefetching is implemented to reduce the overhead
of CPU-GPU communications. 26

Results

Haswell Intel Xeon E5-2680 @ 2.5 GHz, 2× 12 cores + Nvidia
K40 GPU

0

200

400

600

800

1000

12 13 14 15 16 18 19 21

G
F
l
o
p
/
s

Matrix #

Performance -- Sirocco

 1 GPU -- coarse

27

Results

Haswell Intel Xeon E5-2680 @ 2.5 GHz, 2× 12 cores + Nvidia
K40 GPU

0

200

400

600

800

1000

12 13 14 15 16 18 19 21

G
F
l
o
p
/
s

Matrix #

Performance -- Sirocco

 1 GPU -- coarse
 12 CPUs -- fine

27

Results

Haswell Intel Xeon E5-2680 @ 2.5 GHz, 2× 12 cores + Nvidia
K40 GPU

0

200

400

600

800

1000

12 13 14 15 16 18 19 21

G
F
l
o
p
/
s

Matrix #

Performance -- Sirocco

 1 GPU -- coarse
 12 CPUs -- fine
12 CPUs + 1 GPU -- hierarchical

27

Results

Haswell Intel Xeon E5-2680 @ 2.5 GHz, 2× 12 cores + Nvidia
K40 GPU

0

200

400

600

800

1000

12 13 14 15 16 18 19 21

G
F
l
o
p
/
s

Matrix #

Performance -- Sirocco

 1 GPU -- coarse
 12 CPUs -- fine
12 CPUs + 1 GPU -- hierarchical
 24 CPUs -- fine

27

Results

Haswell Intel Xeon E5-2680 @ 2.5 GHz, 2× 12 cores + Nvidia
K40 GPU

0

200

400

600

800

1000

12 13 14 15 16 18 19 21

G
F
l
o
p
/
s

Matrix #

Performance -- Sirocco

 1 GPU -- coarse
 12 CPUs -- fine
12 CPUs + 1 GPU -- hierarchical
 24 CPUs -- fine
24 CPUs + 1 GPU -- hierarchical

27

More experimental results

200

400

600

800

1000

1200

73% 66%
57%

58%

39%
36%

40%48%

TF18 -- Gflop/s

IBM Power8 (2x10)

Intel SB E5-4650 (4x8)

Intel HSW E5-2690 (2x12)

Intel BDW 2697v4 (2x18)

IBM Power8 (2x10) + Nvidia K40

Intel HSW E5-2680 (2x12) + Nvidia K40

Intel KNL 7210 (1x64)

Intel KNL 7250 (1x68)

Credits: IBM, Intel, GENCI, CINES, IDRIS

28

other features

Other runtime-based features

• Accurate and fast simulation through the StarPU+Simgrid
engine (see work by Stanisic et al.)

• Definition of meaningful performance bounds and detailed and
accurate performance profiling (see our work and S. Kumar’s
and B. Bramas’ and S. Nakov’s)

• The asynchronous execution model allows for easy
◦ Concurrent execution of different operations on different data
◦ Pipelined execution of different operations on the same data

30

commercials

The SOLHAR project

SOLvers for Heterogeneous Architectures using Runtimes
(ANR-13-MONU0007)

• Solvers (qr_mumps, PaStiX, Chameleon,...)
• Runtimes (StarPU)
• Scheduling
• Performance analysis

More at http://solhar.gforge.inria.fr
32

http://solhar.gforge.inria.fr

Get qr_mumps

Get qr_mumps at

http://buttari.perso.enseeiht.fr/qr_mumps

or install it using Spack

git clone https://github.com/fpruvost/spack.git
cd spack
git checkout morse
spack install qr_mumps

33

http://buttari.perso.enseeiht.fr/qr_mumps

conclusions and future work

Conclusions

Our experience:
• Modern runtime systems work great for implementing complex
applications on single-node, accelerated systems.

• Modern runtime systems can handle very efficiently complex,
heterogeneous workloads on heterogeneous architectures.

• Task-based programming models ease the development of
complex features and allow the programmer to focus more on
algorithms and methods than on how to implement them.

Task-based programming models and runtime systems fit all the
applications and methods? Still a research subject but we’re
moving forward...

35

Future work in qr_mumps

• Multi-GPU: currently possible but inefficient. Must develop
dedicated scheduling and mapping methods.

• Distributed-memory parallelism: data distribution and locality
must be addressed.

• Pivoting: the DAG varies dynamically at run time and thus tasks
submission must be controlled.

36

References I

[1] E. Agullo, G. Bosilca, A. Buttari, A. Guermouche, and F. Lopez. “Exploiting a
Parametrized Task Graph model for the parallelization of a sparse direct multifrontal
solver.” In: Euro-Par 2016: Parallel Processing Workshops. To appear. 2016.

[2] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez. “Implementing multifrontal
sparse solvers for multicore architectures with Sequential Task Flow runtime
systems”. In: ACM Transactions On Mathematical Software (2016). To appear.

[3] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez. “Multifrontal QR Factorization for
Multicore Architectures over Runtime Systems”. In: Euro-Par 2013 Parallel
Processing. Springer Berlin Heidelberg, 2013, pp. 521–532. isbn:
978-3-642-40046-9. url:
http://dx.doi.org/10.1007/978-3-642-40047-6_53.

[4] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez. “Task-Based Multifrontal QR
Solver for GPU-Accelerated Multicore Architectures.” In: HiPC. IEEE Computer
Society, 2015, pp. 54–63. isbn: 978-1-4673-8488-9.

[5] E. Agullo et al. Matrices Over Runtime Systems at Exascale. Poster at the
SuperComputing 2015 conference. 2015.

[6] A. Buttari. “Fine-Grained Multithreading for the Multifrontal QR Factorization of
Sparse Matrices”. In: SIAM Journal on Scientific Computing 35.4 (2013),
pp. C323–C345. eprint: http://epubs.siam.org/doi/pdf/10.1137/110846427.
url: http://epubs.siam.org/doi/abs/10.1137/110846427.

37

http://dx.doi.org/10.1007/978-3-642-40047-6_53
http://epubs.siam.org/doi/pdf/10.1137/110846427
http://epubs.siam.org/doi/abs/10.1137/110846427

References II

[7] L. Stanisic, E. Agullo, A. Buttari, A. Guermouche, A. Legrand, F. Lopez, and
B. Videau. “Fast and Accurate Simulation of Multithreaded Sparse Linear Algebra
Solvers”. In: Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st International
Conference on. Dec. 2015, pp. 481–490. doi: 10.1109/ICPADS.2015.67.

38

http://dx.doi.org/10.1109/ICPADS.2015.67

? Thanks!
Questions?

	The Multifrontal QR factorization
	Runtime systems
	STF Multifrontal QR
	Memory-aware multifrontal method
	STF-based parallel multifrontal QR method for heterogeneous architectures
	Other features
	Commercials
	Conclusions and future work

