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High performance algebraic computing

Domain of computation
@ Z,Q : variable size, multi-precision
e Z,,GF(p"): fixed size, specific arithmetic

Common belief : Slow
@ terrible complexities,
@ no need for all the precision

Example (Linear System solving over Q)

Method Complexity
Naive Gauss Elim over Q | O (2")

Gauss mod det O (n%)

Gauss mod p + CRT O (n*), 0 (nT)
p-adic Lifting O (n?),0 (n)

And fast software: LU over (Z/655217)3000%590 jn 3.8s (21.8Gfops on
1 Haswell core) 2/28




Gaussian elimination in computer algebra

Applications

Algebraic cryptanalysis: RSA, DLP =-LinSys, Krylov, I,

Comp. number theory: modular forms databases: Echelon over F,
Exact mixed-integer linear programming: =-LinSys over Q
Formal proof: Sums of squares =-Cholesky over Q

HPC building block

@ Dense linear algebra over Z/pZ log, p = 20 — 30 bits
@ MatlMul (fgemm) and GaussElim (PLUQ)

e triangular decomposition PLUQ (for LinSys, Det)
o linear dependencies (Krylov, Grobner basis)




FFLAS-FFPACK library

FFLAS-FFPACK features

@ High performance implementation of basic linear algebra
routines over word size prime fields

@ Exact alternative to the numerical BLAS library
@ Exact triangularization, Sys. solving, Det, Inv., CharPoly

Matrix multiplicaiton mod 65521 on Intel Sandy Bridge 2.6Ghz with OpenBLAS
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Exact vs numerical Gaussian elimination

Similarities
@ Reduction to gemm kernel (Matrix Multiplication)
=-Blocking: slab/tiled, iterative/recursive
@ Parallel blocking is constrained by pivoting

numeric: ensuring numerical stability
exact: able to reveal rank profile
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Exact vs numerical Gaussian elimination

Similarities
@ Reduction to gemm kernel (Matrix Multiplication)
=-Blocking: slab/tiled, iterative/recursive
@ Parallel blocking is constrained by pivoting

numeric: ensuring numerical stability
exact: able to reveal rank profile

Specificities
@ Recursive tasks (vs block iterative in numeric)
Modular reductions
Strassen’s algorithm
=tradeoff between total work and fine granularity
@ Pivoting strategies : no stability constraints, but rank profiles
@ Rank deficienices:

@ blocks have unpredictable size ( =-and positions)
e unbalanced task load

} efficiency increases with the granularity




Block algorithms
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Block algorithms

Tiled lterative Slab Recursive o Fesureive
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trsm: B+ BU™!,
gemm: C  C— A x B
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Need for a high level parallel programming

environment

Features required
Portability, Performance and Scalability. But more precisely:

@ Runtime system with good performance for recursive tasks.

@ Dataflow task synchronization

@ Handle efficiently unbalanced workloads.
@ Efficient range cutting for parallel for.
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Need for a high level parallel programming

environment

Features required

Portability, Performance and Scalability. But more precisely:
@ Runtime system with good performance for recursive tasks.
@ Dataflow task synchronization

@ Handle efficiently unbalanced workloads.
@ Efficient range cutting for parallel for.

— Wish to design a code independently from the runtime system
— Using runtime systems as a plugin
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Runtime systems

Runtime systems to be supported

OpenMP3.x and 4.0 supported directives: (using libgomp)

@ Data sharing attributes:

o OMP3 shared: data visible and accessible by all threads
o OMP3 firstprivate: local copy of original value
@ OMP4 depend: set data dependencies

@ Synchronization clauses: #pragma omp taskwait

xKaapi: via the libkomp [BDG12] library:
@ OpenMP directives — xKaapi tasks.
@ Re-implem. of task handling and management.
@ Better recursive tasks execution.

TBB: designed for nested and recursive parallelism
@ parallel_for

@ tbb::task_group, wait (), run() using C++11lambda
functions




Runtime systems

PALADIn

Parallel Algebraic Linear Algebra Dedicated Interface

Mainly macro-based keywords
@ No function call runtime overhead when using macros.
@ No important modifications to be done to original program.
@ Macros can be used also for C-based libraries.

Complementary C++ template functions
@ Implement the different cutting strategies.
@ Store the iterators

10/28



Runtime systems

PALADIn description: task parallelism

Task parallelization: fork-join and dataflow models
@ PAR BLOCK: opens a parallel region.

@ SYNCH_GROUP: Group of tasks synchronized upon exit.

@ TASK: creates a task.

@ REFERENCE (args...): specify variables captured by reference. By default all
variables accessed by value.

READ (args. ..): setvar. that are read only.

WRITE (args...): setvar. that are written only.

READWRITE (args. . .): setvar. that are read then written.

Example:

void axpy(const Element a, const Element b, Element &y){y += axx;}
SYNCH_-GROUP(

TASK(MODE(READ(a, x) READWRITE(y)),

\ axpy(a,x,y));

11/28



Matrix Multiplication

Outline
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Matrix Multiplication

Parallel matrix multiplication

Iterative variants

@ Fixed block size (FIXED, GRAIN)
o Better control of data mapping in memory
o Complexity: O(n?)

@ Fixed number of tasks (THREADS)

@ Less control of data mapping in memory
o Complexity: O(n*)

Recursive variants

@ Almost no control of data mapping in
memory

@ Complexity: O(n*) or O(n®)

=

iterative

G| G
G| c

recursive

13/28



Matrix Multiplication

Performance of pfgemm

pfgemm on 32 cores Xeon E4620 2.2Ghz with OpenMP
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Figure: Speed of MatMul variants using OpenMP tasks
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Matrix Multiplication

Performance of pfgemm

pfgemm on 32 cores Xeon E4620 2.2Ghz with TBB
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Matrix Multiplication

Performance of pfgemm

pfgemm on 32 cores Xeon E4620 2.2Ghz with libkomp
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Figure: Speed of MatMul variants using XKaapi tasks
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Matrix Multiplication

Parallel Matrix Multiplication: State of the art

HPAC server: 32 cores Xeon E4620 2.2Ghz (4 NUMA sockets)

effective Gfops

Comparison of our best implementations with the state of the art numerical librarie:
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Parallel Matrix Multiplication: State of the art

HPAC server: 32 cores Xeon E4620 2.2Ghz (4 NUMA sockets)

Effective Gfops =

effective Gfops

Comparison of our best implementations with the state of the art numerical librarie:
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TRSM

Parallel Triangular Solving Matrix

lterative variant:

[Xi| .. | X ]« L7"[Bi]|...] B ].

@ The computation of each X; +— L~'B, is independent
@ k sequential tasks set as the number of available threads
Recursive variant: 1
o)1 ] [
2. X + L 'B,
: X, < B, — L,X; // Parallel MatMul
: Xy« Ly 'BX,

—_

A~ oW
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TRSM

Parallel Triangular Solving Matrix

Iterative variant:

[ Xi| . | X ]« L7'[Bi]...| B ].

@ The computation of each X; +— L~!B, is independent

@ k sequential tasks set as the number of available threads
Recursive variant: 1

. ¢ L B

oon )= u] )
2. X + L 'B,
3: Xo «+ By — L,X, // Parallel MatMul
4 X, « Ly 'BX,

—_

Hybrid PFTRSM: column dimension of B small
@ use iterative splitting in priority
@ when #cols(X) < #proc: save some threads for recursive calls




TRSM

Parallel Triangular Solving Matrix Experiments
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Parallel Exact Gaussian elimination
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Parallel Exact Gaussian elimination

Gaussian elimination design

Reducing to MatMul: block versions

— Asymptotically faster (O(n“))
— Better cache efficiency

Variants of block versions

Split on one dimension:
— Row or Column slab cutting

Slab iterative Slab recursive

Split on 2 dimensions:
— Tile cutting

Tile iterative  Tile recursive
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Gaussian elimination design

Reducing to MatMul: block versions

— Asymptotically faster (O(n))
— Better cache efficiency

Variants of block versions

lterative:

@ Static — better data mapping

control

@ Dataflow parallel model — Slab iterative

less sync

Slab recursive

Recursive:

@ Adaptive

@ sub-cubic complexity

@ No Dataflow — more sync

Tile iterative

Tile recursive

4
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Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

2 x 2 block splitting
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Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

Recursive call
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Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

PTRSM: B < BU™!

TASK (MODE(READ(A) READWRITE(B)) ,
pftrsm (..., A, Ida, B, Idb));
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Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

2 independent recursive calls (concurrent — tasks)

TASK (MODE(READWRITE(A) ) ,
pplug (..., A, Ida));
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Recursive call
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Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

Puzzle game (block permutations)
Tile rec: better data locality and more square blocks for M.M.
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Parallel Exact Gaussian elimination

State of the art: exact vs numerical linear algebra

State of the art comparison:
@ Exact PLUQ using PALADIn language: best performance with xKaapi
@ Numerical LU (dgetrf) of PLASMA-Quark and MKL dgetrf

parallel dgetrf vs parallel PLUQ on full rank matrices
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Parallel Exact Gaussian elimination

Performance of parallel PLUQ decomposition

Low impact of modular reductions in parallel
— Efficient SIMD implementation

Performance of tile PLUQ recursive vs iterative on full rank matrices
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Parallel Exact Gaussian elimination

Performance of task parallelism: dataflow model

effective Gfops
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Parallel Exact Gaussian elimination

Performance of task parallelism: dataflow model

Performance of tile PLUQ recursive vs iterative on full rank matrices
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Parallel Exact Gaussian elimination

Performance of task parallelism: dataflow model

Performance of tile PLUQ recursive vs iterative on full rank matrices
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Possible improvement: implementation of the delegation of recursive tasks dependencies

(Postpone access mode in the parallel programming environments)
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Parallel Exact Gaussian elimination
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0 Runtime systems
© Matrix Multiplication
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Conclusion

Conclusion

Lessons learnt for the parallelization of LU over Z/pZ
@ Blocking impacts arithmetic cost =-fine granularity hurts
@ Rank deficiency can offer more parallelism (cf. separators)
@ sub-cubic perfs in parallel
@ requires a runtime efficient for recursive tasks (XKaapi)
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Conclusion

Perspectives

Data flow task dependencies

N

LU(A33)[
Time

@ already at use in tiled iterative algorithms (XKaapi)
@ new challenges for recursive tasks:

@ Recursive inclusion of sub-matrices
o Postponed modes (removing fake dependencies)

@ Distributed on small sized clusters
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