Task based parallelization of recursive linear
algebra routines using Kaapi

Clément PERNET
joint work with Jean-Guillaume DUMAS and Ziad SULTAN

Université Grenoble Alpes, LIK-CASYS

January 20, 2017

Journée Runtime, Paris.

Supported by OpenDreamKit Horizon 2020 European
Research Infrastructures project (# 676541)

http://opendreamkit.org/
https://ec.europa.eu/programmes/horizon2020/
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/european-research-infrastructures-including-e-infrastructures
http://cordis.europa.eu/project/rcn/198334_en.html

High performance algebraic computing

Domain of computation
@ Z,Q : variable size, multi-precision
e Z,,GF(p"): fixed size, specific arithmetic

Common belief : Slow
@ terrible complexities,
@ no need for all the precision

Example (Linear System solving over Q)

Method Complexity
Naive Gauss Elim over Q | O (2")

Gauss mod det O (n%)

Gauss mod p + CRT O (n*), 0 (nT)
p-adic Lifting O (n?),0 (n)

And fast software: LU over (Z/655217)3000%590 jn 3.8s (21.8Gfops on
1 Haswell core) 2/28

Gaussian elimination in computer algebra

Applications

Algebraic cryptanalysis: RSA, DLP =-LinSys, Krylov, I,

Comp. number theory: modular forms databases: Echelon over F,
Exact mixed-integer linear programming: =-LinSys over Q
Formal proof: Sums of squares =-Cholesky over Q

HPC building block

@ Dense linear algebra over Z/pZ log, p = 20 — 30 bits
@ MatlMul (fgemm) and GaussElim (PLUQ)

e triangular decomposition PLUQ (for LinSys, Det)
o linear dependencies (Krylov, Grobner basis)

FFLAS-FFPACK library

FFLAS-FFPACK features

@ High performance implementation of basic linear algebra
routines over word size prime fields

@ Exact alternative to the numerical BLAS library
@ Exact triangularization, Sys. solving, Det, Inv., CharPoly

Matrix multiplicaiton mod 65521 on Intel Sandy Bridge 2.6Ghz with OpenBLAS

2n3/10%t

fgemm+Strassen
jgemm
fgemm ——

. . . . !

0 1000 2000 3000 4000 5000 6000 7000

n

28

Exact vs numerical Gaussian elimination

Similarities
@ Reduction to gemm kernel (Matrix Multiplication)
=-Blocking: slab/tiled, iterative/recursive
@ Parallel blocking is constrained by pivoting

numeric: ensuring numerical stability
exact: able to reveal rank profile

Exact vs numerical Gaussian elimination

Similarities
@ Reduction to gemm kernel (Matrix Multiplication)
=-Blocking: slab/tiled, iterative/recursive
@ Parallel blocking is constrained by pivoting

numeric: ensuring numerical stability
exact: able to reveal rank profile

Specificities
@ Recursive tasks (vs block iterative in numeric)

5/28

Exact vs numerical Gaussian elimination

Similarities
@ Reduction to gemm kernel (Matrix Multiplication)
=-Blocking: slab/tiled, iterative/recursive
@ Parallel blocking is constrained by pivoting

numeric: ensuring numerical stability
exact: able to reveal rank profile

Specificities
@ Recursive tasks (vs block iterative in numeric)

Modular reductions
Strassen’s algorithm
=tradeoff between total work and fine granularity

} efficiency increases with the granularity

5/28

Exact vs numerical Gaussian elimination

Similarities
@ Reduction to gemm kernel (Matrix Multiplication)
=-Blocking: slab/tiled, iterative/recursive
@ Parallel blocking is constrained by pivoting

numeric: ensuring numerical stability
exact: able to reveal rank profile

Specificities
@ Recursive tasks (vs block iterative in numeric)

Modular reductions
Strassen’s algorithm
=tradeoff between total work and fine granularity

@ Pivoting strategies : no stability constraints, but rank profiles

} efficiency increases with the granularity

5/28

Exact vs numerical Gaussian elimination

Similarities
@ Reduction to gemm kernel (Matrix Multiplication)
=-Blocking: slab/tiled, iterative/recursive
@ Parallel blocking is constrained by pivoting

numeric: ensuring numerical stability
exact: able to reveal rank profile

Specificities
@ Recursive tasks (vs block iterative in numeric)
Modular reductions
Strassen’s algorithm
=tradeoff between total work and fine granularity
@ Pivoting strategies : no stability constraints, but rank profiles
@ Rank deficienices:

@ blocks have unpredictable size (=-and positions)
e unbalanced task load

} efficiency increases with the granularity

Block algorithms

Tiled lterative Slab Recursive Tiled Recursive

getrf:A— L,

Block algorithms

Tiled lterative Slab Recursive Tiled Recursive

trsm: B+ BU!,
gemm: C <~ C—AXB

Block algorithms

Tiled lterative Slab Recursive Tiled Recursive

getrf:A— L,
trsm: B+ BU!,
gemm: C<~ C—AXB

Block algorithms

Tiled lterative Slab Recursive Tiled Recursive

getrf:A— L,
trsm: B+ BU!,
gemm: C<~ C—AXB

Block algorithms

e Slab Recursive Tiled Recursive

getrfiA— L,

Block algorithms

Tiled lterative Slab Recursive o Fesureive

. _

trsm: B+ BU™!,
gemm: C C— A x B

Block algorithms

Tiled lterative Slab Recursive Tiled Recursive

getrf:A— L,

Block algorithms

Tiled lterative Slab Recursive Tiled Recursive

trsm: B+ BU!,
gemm: C<~ C—AXB

Block algorithms

Tiled lterative Slab Recursive Tiled Recursive

getrf:A— L,

Block algorithms

Tiled lterative Slab Recursive Tiled Recursive

trsm: B+ BU!,
gemm: C<~ C—AXB

Block algorithms

Tiled lterative Slab Recursive Tiled Recursive

getrf:A— L,

Block algorithms

Tiled lterative Slab Recursive Tiled Recursive

getrf:A— L,

Block algorithms

Tiled lterative Slab Recursive Tiled Recursive

trsm: B+ BU!,
gemm: C<~ C—AXB

Block algorithms

Tiled lterative Slab Recursive Tiled Recursive

getrf:A— L,

Block algorithms

Tiled lterative Slab Recursive Tiled Recursive

trsm: B+ BU!,
gemm: C<~ C—AXB

Block algorithms

Tiled lterative Slab Recursive Tiled Recursive

getrf:A— L,
trsm: B+ BU!,
gemm: C<~ C—AXB

Block algorithms

Tiled lterative Slab Recursive Tiled Recursive

getrf:A— L,

Need for a high level parallel programming

environment

Features required
Portability, Performance and Scalability. But more precisely:

@ Runtime system with good performance for recursive tasks.

@ Dataflow task synchronization

@ Handle efficiently unbalanced workloads.
@ Efficient range cutting for parallel for.

28

Need for a high level parallel programming

environment

Features required

Portability, Performance and Scalability. But more precisely:
@ Runtime system with good performance for recursive tasks.
@ Dataflow task synchronization

@ Handle efficiently unbalanced workloads.
@ Efficient range cutting for parallel for.

— Wish to design a code independently from the runtime system
— Using runtime systems as a plugin

Runtime systems

Outline

0 Runtime systems

Runtime systems

Runtime systems to be supported

OpenMP3.x and 4.0 supported directives: (using libgomp)

@ Data sharing attributes:

o OMP3 shared: data visible and accessible by all threads
o OMP3 firstprivate: local copy of original value
@ OMP4 depend: set data dependencies

@ Synchronization clauses: #pragma omp taskwait

xKaapi: via the libkomp [BDG12] library:
@ OpenMP directives — xKaapi tasks.
@ Re-implem. of task handling and management.
@ Better recursive tasks execution.

TBB: designed for nested and recursive parallelism
@ parallel_for

@ tbb::task_group, wait (), run() using C++11lambda
functions

Runtime systems

PALADIn

Parallel Algebraic Linear Algebra Dedicated Interface

Mainly macro-based keywords
@ No function call runtime overhead when using macros.
@ No important modifications to be done to original program.
@ Macros can be used also for C-based libraries.

Complementary C++ template functions
@ Implement the different cutting strategies.
@ Store the iterators

10/28

Runtime systems

PALADIn description: task parallelism

Task parallelization: fork-join and dataflow models
@ PAR BLOCK: opens a parallel region.

@ SYNCH_GROUP: Group of tasks synchronized upon exit.

@ TASK: creates a task.

@ REFERENCE (args...): specify variables captured by reference. By default all
variables accessed by value.

READ (args. ..): setvar. that are read only.

WRITE (args...): setvar. that are written only.

READWRITE (args. . .): setvar. that are read then written.

Example:

void axpy(const Element a, const Element b, Element &y){y += axx;}
SYNCH_-GROUP(

TASK(MODE(READ(a, x) READWRITE(y)),

\ axpy(a,x,y));

11/28

Matrix Multiplication

Outline

© Matrix Multiplication

12/28

Matrix Multiplication

Parallel matrix multiplication

Iterative variants

@ Fixed block size (FIXED, GRAIN)
o Better control of data mapping in memory
o Complexity: O(n?)

@ Fixed number of tasks (THREADS)

@ Less control of data mapping in memory
o Complexity: O(n*)

Recursive variants

@ Almost no control of data mapping in
memory

@ Complexity: O(n*) or O(n®)

=

iterative

G| G
G| c

recursive

13/28

Matrix Multiplication

Performance of pfgemm

pfgemm on 32 cores Xeon E4620 2.2Ghz with OpenMP

500 I I I T \
400 ~
300 ~
%)
[oR
2
(O]
200 -
// iter(BLOCK-THREADS) —+—
100 L rec(TWO-D) |
rec(TWO-D-ADAPT) ——
rec(THREE-D)
: : : : rec(TI‘-iREE—D—AIZ‘)APT) —C—
0
0 2000 4000 6000 8000 10000 12000 14000

matrix dimension

Figure: Speed of MatMul variants using OpenMP tasks

14/28

Matrix Multiplication

Performance of pfgemm

pfgemm on 32 cores Xeon E4620 2.2Ghz with TBB

500 I I I I
:
400 ~
300 ~
%)
[oR
2
(O]
200 -
iter(BLOCK-THREADS) —+—
100 L rec(TWO-D) |
rec(TWO-D-ADAPT) ——
rec(THREE-D)
: : : : rec(TI‘-iREE—D—AIZ‘)APT) —C—
0
0 2000 4000 6000 8000 10000 12000 14000

matrix dimension

Figure: Speed of MatMul variants using IntelTBB tasks

14/28

Matrix Multiplication

Performance of pfgemm

pfgemm on 32 cores Xeon E4620 2.2Ghz with libkomp

500 I I I I
’
K
400 ~
300 ~
%)
[oR
2
(O]
200 -
iter(BLOCK-THREADS) —+—
100 L rec(TWO-D) |
rec(TWO-D-ADAPT) —*—
rec(THREE-D)
: : : : rec(TI‘-iREE—D—AIZ‘)APT) —0‘—
0
0 2000 4000 6000 8000 10000 12000 14000

matrix dimension

Figure: Speed of MatMul variants using XKaapi tasks

14/28

Matrix Multiplication

Parallel Matrix Multiplication: State of the art

HPAC server: 32 cores Xeon E4620 2.2Ghz (4 NUMA sockets)

effective Gfops

Comparison of our best implementations with the state of the art numerical librarie:

T T T T T T

600 -
500
400
300
200
MKL dgemm
100 - OpenBlas dgemm
PLASMA-QUARK dgemm —e—
| ; | BensoInBaIIard (Sltrassen)
0
0 5000 10000 15000 20000 25000 30000

matrix dimension

15/28

Matrix Multiplication

Parallel Matrix Multiplication: State of the art

HPAC server: 32 cores Xeon E4620 2.2Ghz (4 NUMA sockets)

Effective Gfops =

effective Gfops

Comparison of our best implementations with the state of the art numerical librarie:

600

500

400

300

200

100

of field ops using classic matrix product

time

n3 peak performance on 32 cores =
WinogradPar->classicPar<double> ——

ClassicPar->WinogradSeq<double>
MKL dgemm

=% OpenBlas dgemm
</ PLASMA-QUARK dgemm —e—
| ; | BensclmBaIIard (Sltrassen)
5000 10000 15000 20000 25000 30000

matrix dimension

15/28

Outline

© TRsM

16/28

TRSM

Parallel Triangular Solving Matrix

lterative variant:

[Xi| .. | X]« L7"[Bi]|...] B].

@ The computation of each X; +— L~'B, is independent
@ k sequential tasks set as the number of available threads
Recursive variant: 1
o)1] [
2. X + L 'B,
: X, < B, — L,X; // Parallel MatMul
: Xy« Ly 'BX,

—_

A~ oW

17/28

TRSM

Parallel Triangular Solving Matrix

Iterative variant:

[Xi| . | X]« L7'[Bi]...| B].

@ The computation of each X; +— L~!B, is independent

@ k sequential tasks set as the number of available threads
Recursive variant: 1

. ¢ L B

oon)= u])
2. X + L 'B,
3: Xo «+ By — L,X, // Parallel MatMul
4 X, « Ly 'BX,

—_

Hybrid PFTRSM: column dimension of B small
@ use iterative splitting in priority
@ when #cols(X) < #proc: save some threads for recursive calls

TRSM

Parallel Triangular Solving Matrix Experiments

150

effective Gfops
N
o
o

100

50

pftrsm on 32 cores Xeon E4620 2.2Ghz: solving LX=B where B is 10000 x n

>

{

D
I
»o

c‘ u" |
w}‘.‘%hreshold = 256 using libkomp —+— |
AA o

Hybrid threshold = 256 using libgomp

[Iterative using libkomp —x— 7]
7/ mb Iterative using libgomp
*‘»“ Intel-MKL dtrsm —e—
‘PLASMA—Q}JARK dtrsm —h—

0 1000 2000 3000 4000 5000 6000 7000

n: column dimension of B

Figure: Comparing the Iterative and the Hybrid variants for parallel FTRSM
using libkomp and libgomp. Only the outer dimension varies: B and X are

10000 X n.

18/28

Parallel Exact Gaussian elimination

Outline

0 Parallel exact Gaussian elimination

19/28

Parallel Exact Gaussian elimination

Gaussian elimination design

Reducing to MatMul: block versions

— Asymptotically faster (O(n“))
— Better cache efficiency

Variants of block versions

Split on one dimension:
— Row or Column slab cutting

Slab iterative Slab recursive

Split on 2 dimensions:
— Tile cutting

Tile iterative Tile recursive

20/28

Parallel Exact Gaussian elimination

Gaussian elimination design

Reducing to MatMul: block versions

— Asymptotically faster (O(n))
— Better cache efficiency

Variants of block versions

lterative:

@ Static — better data mapping
control

@ Dataflow parallel model —
less sync

Slab iterative | Slab recursive

Recursive:

@ Adaptive

@ sub-cubic complexity

@ No Dataflow — more sync

Tile iterative Tile recursive

<
20/28

Parallel Exact Gaussian elimination

Gaussian elimination design

Reducing to MatMul: block versions

— Asymptotically faster (O(n))
— Better cache efficiency

Variants of block versions

lterative:

@ Static — better data mapping

control

@ Dataflow parallel model — Slab iterative

less sync

Slab recursive

Recursive:

@ Adaptive

@ sub-cubic complexity

@ No Dataflow — more sync

Tile iterative

Tile recursive

4
20/28

Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

2 x 2 block splitting

21/28

Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

Recursive call

21/28

Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

PTRSM: B < BU™!

TASK (MODE(READ(A) READWRITE(B)) ,
pftrsm (..., A, Ida, B, Idb));

21/28

Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

pTRSM: B+ L™'B

TASK (MODE(READ(A) READWRITE(B)) ,
pftrsm (..., A, Ida, B, Idb));

21/28

Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

pfgemm: C <~ C—A X B

TASK (MODE(READ(A,B) READWRITE(C)) ,
pfgemm (..., A, Ida, B, Idb));

21/28

Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

pfgemm: C <~ C—A X B

TASK (MODE(READ(A,B) READWRITE(C)) ,
pfgemm (..., A, Ida, B, Idb));

21/28

Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

pfgemm: C < C—A X B

TASK (MODE(READ(A,B) READWRITE(C)) ,
pfgemm (..., A, Ida, B, Idb));

21/28

Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

2 independent recursive calls (concurrent — tasks)

TASK (MODE(READWRITE(A)) ,
pplug (..., A, Ida));

21/28

Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

PTRSM: B < BU™!

TASK (MODE(READ(A) READWRITE(B)) ,
pftrsm (..., A, Ida, B, Idb));

21/28

Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

pTRSM: B+ L™'B

TASK (MODE(READ(A) READWRITE(B)) ,
pftrsm (..., A, Ida, B, Idb));

21/28

Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

pfgemm: C <~ C—A X B

TASK (MODE(READ(A,B) READWRITE(C)) ,
pfgemm (..., A, Ida, B, Idb));

21/28

Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

pfgemm: C <~ C—A X B

TASK (MODE(READ(A,B) READWRITE(C)) ,
pfgemm (..., A, Ida, B, Idb));

21/28

Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

pfgemm: C <~ C—A X B

TASK (MODE(READ(A,B) READWRITE(C)) ,
pfgemm (..., A, Ida, B, Idb));

21/28

Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

Recursive call

21/28

Parallel Exact Gaussian elimination

Parallel tile recursive PLUQ algorithm

Puzzle game (block permutations)
Tile rec: better data locality and more square blocks for M.M.

21/28

Parallel Exact Gaussian elimination

State of the art: exact vs numerical linear algebra

State of the art comparison:
@ Exact PLUQ using PALADIn language: best performance with xKaapi
@ Numerical LU (dgetrf) of PLASMA-Quark and MKL dgetrf

parallel dgetrf vs parallel PLUQ on full rank matrices

400 ' ! ! ! ! !
350
300
a
) 250 -
(G}
'g 200
5
e 150 |
(]
100 - explicit synch pluq<double> e
MKL dgetrf
50 - PLASMA-Quark dgetrf tiled storage (k=212) —»—
i | IPLASMA—Q%Jark dgetrf|(k=212) —v—
0
0 5000 10000 15000 20000 25000 30000

matrix dimension
22/28

Parallel Exact Gaussian elimination

Performance of parallel PLUQ decomposition

Low impact of modular reductions in parallel
— Efficient SIMD implementation

Performance of tile PLUQ recursive vs iterative on full rank matrices
400 T T T T T T

AT

350

300 [» » ~ ~
250 | » » /

w
o
L
[G)
2 200 - » » /..,//
.
(V]

100 |- /

50 i i explicit synch plug rec<double> —e—

g g exlplicit synchlpluq rec<1|31071> |
0 | |
0 5000 10000 15000 20000 25000 30000

matrix dimension

23/28

Parallel Exact Gaussian elimination

Performance of task parallelism: dataflow model

effective Gfops

400

350

300

250

200

150

100

50

Performance of tile PLUQ recursive vs iterative on full rank matrices

explicit synch PLUQ rec<131071>
explicit synch PLUQ iter<131071>
1 1 1

5000 10000 15000 20000 25000 30000
matrix dimension

24/28

Parallel Exact Gaussian elimination

Performance of task parallelism: dataflow model

Performance of tile PLUQ recursive vs iterative on full rank matrices
400 T T T T T T

350

300

250

200

150

effective Gfops

100

explicit synch PLUQ rec<131071>
50 5 £ dataflow synch PLUQ iter<131071> —a—
: explicit synch PLUQ iter<131071>

1 1 1

0 -l i
0 5000 10000 15000 20000 25000 30000

matrix dimension

24/28

Parallel Exact Gaussian elimination

Performance of task parallelism: dataflow model

Performance of tile PLUQ recursive vs iterative on full rank matrices

400 T T T T T T
350
300
[
S 250
(G)
_g 200
g
(]
100 explicit synch PLUQ rec<131071>
dataflow synch PLUQ iter<131071> —a—
50 dataflow synch PLUQ rec<131071> —e—
explicit synch PLUQ iter<1|31071> \
0 X 1 1
0 5000 10000 15000 20000 25000 30000

matrix dimension

Possible improvement: implementation of the delegation of recursive tasks dependencies

(Postpone access mode in the parallel programming environments)
24/28

Parallel Exact Gaussian elimination

Outline

0 Runtime systems
© Matrix Multiplication
© TRsM

0 Parallel exact Gaussian elimination

25/28

Conclusion

Conclusion

Lessons learnt for the parallelization of LU over Z/pZ
@ Blocking impacts arithmetic cost =-fine granularity hurts
@ Rank deficiency can offer more parallelism (cf. separators)
@ sub-cubic perfs in parallel
@ requires a runtime efficient for recursive tasks (XKaapi)

26/28

Conclusion

Perspectives

Data flow task dependencies

N

LU(A33)[
Time

@ already at use in tiled iterative algorithms (XKaapi)
@ new challenges for recursive tasks:

@ Recursive inclusion of sub-matrices
o Postponed modes (removing fake dependencies)

@ Distributed on small sized clusters

27/28

Thank you

	Runtime systems
	Matrix Multiplication
	TRSM
	Parallel exact Gaussian elimination

