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1.1
Runtime Systems



Why use runtime systems for HPC applications?
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Examples of Runtime Systems

Graphics
DirectX, Direct3D (Microsoft Windows)
OpenGL

Networking
MPI (Message Passing Interface), Global Arrays
GASPI / GPI-2
GASNet, CCI
Distributed Shared Memory systems
SHMEM

I/O
MPI-IO
HDF5 libraries
Database engines

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 5



Examples of Runtime Systems

Graphics
DirectX, Direct3D (Microsoft Windows)
OpenGL

Networking
MPI (Message Passing Interface), Global Arrays
GASPI / GPI-2
GASNet, CCI
Distributed Shared Memory systems
SHMEM

I/O
MPI-IO
HDF5 libraries
Database engines

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 5



Examples of Runtime Systems

Graphics
DirectX, Direct3D (Microsoft Windows)
OpenGL

Networking
MPI (Message Passing Interface), Global Arrays
GASPI / GPI-2
GASNet, CCI
Distributed Shared Memory systems
SHMEM

I/O
MPI-IO
HDF5 libraries
Database engines

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 5



Examples of Runtime Systems

Graphics
DirectX, Direct3D (Microsoft Windows)
OpenGL

Networking
MPI (Message Passing Interface), Global Arrays
GASPI / GPI-2
GASNet, CCI
Distributed Shared Memory systems
SHMEM

I/O
MPI-IO
HDF5 libraries
Database engines

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 5



Why use runtime systems for HPC applications?

The Role(s) of Runtime Systems:

Portability

Control

Adaptiveness

Optimization
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The Role(s) of Runtime Systems: Portability

Abstraction
– Uniform front-end layer
– Device-independent API
– Targeted by applications

Drivers, plugins
– Device-dependent backend layer
– Targeted by vendors and/or device specialist

Decoupling applications from device specific matters
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The Role(s) of Runtime Systems: Control

Resource mapping
– Deciding which hardware resource to use/not to use for some application

workload
– Spatial work mapping

Scheduling
– Deciding when and in which order to perform some application workload
– Temporal work mapping

Plan application workload execution
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The Role(s) of Runtime Systems: Adaptiveness

Discovering, sampling, calibrating
– Detecting qualitative hardware capabilities
– Providing fallbacks, when possible
– Detecting quantitative hardware capabilities

Monitoring, load balancing
– Throttling workload feed
– Reacting to hardware status changes

Cope with effective hardware aptitude and performance level
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The Role(s) of Runtime Systems: Optimization

Capitalize on workload look-ahead to bring performance-oriented added
value

– Requests aggregation
– Resource locality
– Computation offload
– Computation/transfer overlap

Take advantage of the cross-cutting point of view of the runtime system
– Perform global optimizations when possible

Out-weight the cost of an extra, intermediate software layer

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 10



The Role(s) of Runtime Systems: Optimization

Capitalize on workload look-ahead to bring performance-oriented added
value

– Requests aggregation
– Resource locality
– Computation offload
– Computation/transfer overlap

Take advantage of the cross-cutting point of view of the runtime system
– Perform global optimizations when possible

Out-weight the cost of an extra, intermediate software layer

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 10

Application 

Hardware Devices 



The Role(s) of Runtime Systems: Optimization

Capitalize on workload look-ahead to bring performance-oriented added
value

– Requests aggregation
– Resource locality
– Computation offload
– Computation/transfer overlap

Take advantage of the cross-cutting point of view of the runtime system
– Perform global optimizations when possible

Out-weight the cost of an extra, intermediate software layer

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 10

Application 

Hardware Devices 



The Role(s) of Runtime Systems: Optimization

Capitalize on workload look-ahead to bring performance-oriented added
value

– Requests aggregation
– Resource locality
– Computation offload
– Computation/transfer overlap

Take advantage of the cross-cutting point of view of the runtime system
– Perform global optimizations when possible

Out-weight the cost of an extra, intermediate software layer

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 10

Application 

Hardware Devices 



O. Aumage – Journée Runtimes 11

1.2
Runtime Systems for Computing



Evolution of Computing Hardware

Rupture
The “Frequency Wall”

– Processing units cannot run anymore faster

Looking for other sources of performance

Hardware Parallelism
Multiply existing processing power

– Have several processing units work together

Not a new idea. . .
. . . but definitely the key performance factor now
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Problematics

Unified computing runtime system for heterogeneous platforms
Portability of performance

– Abstraction
– Adaptiveness
– Execution Control
– Optimization

Need a way to abstract application execution. . .

. . . into elementary, manageable objects
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1.3
Abstracting Application Workload



Thread Scheduling

Reasoning on Thread objects?

Thread
One instruction flow

– Unbounded flow
– Parallel activity

One state/context per thread
– Stack
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Threads: Resources vs Needs

Lack of abstraction
Threads express explicit resource request
instead of application requirements
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Threads: Resources Miss-subscription

Software vs hardware mismatch
Over-subscription
Under-subscription
Fixed number of threads
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Threads: Lack of Semantics

What does a thread really do?
Resource usage?
Inter-thread constraints
Chaining constraints, ordering?

Planning Issues
Unbounded computation
System-controlled context switches

Consequences
Heavy synchronizations: barriers
User-managed fine-grain synchronizations: locks, mutexes
Little to no help from runtime system
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Threads: Load Balancing Issues

Keeping every hardware unit busy
Irregular application, workload
Uncontrolled synchronization shift
Heterogeneous platforms: accelerators, GPU
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Threads: Networking and I/O Issues

Computation/communication overlapping?
Bulk I/O / network transfer mitigation?
Thread-level idle time reduction?
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Threads: Outcome

Perhaps not the right semantics for end-user application development

Over-constrained concept for application programming

Awkward object to manipulate at the runtime system level

Not well suited to leverage theoretical scheduling results
– Completion?
– Other metrics?
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Task Scheduling
Reasoning on Task objects

Common definition

Elementary computation
– Numerical kernel
– BLAS call
– ...

→ Potential parallel work

Shared (often fixed) pool of worker threads
→ Decoupled engine, to realize a potentially parallel execution

Constraints (with some programming models)
– Input needed
– Output produced
– → Dependencies
– No side effect (no hidden dependencies)

→ Degrees of Freedom in realizing the potential parallelism
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Tasks: Resources vs Needs?

A task expresses what to do (e.g. which computation)
The runtime remains free to decide the amount of resources to execute a task

Rationalize resource consumption
– Thread and associated stack reused among several tasks

Enforce separation of concerns
– Management code brought out of the application

Open the way to resource allocation optimization
– Cross-cutting view of the application requirements
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Tasks: Resources Miss-subscription?

The runtime system may initialize a pool of worker threads according to the
hardware capabilities

The application submit tasks independently to the runtime, independently of the
hardware capabilities

Tasks submitted by the application according to its natural algorithm
– Abstraction with respect to hardware

Workers allocated according to hardware resource, topology
– Typically one thread per core or per hardware thread

Operating system scheduler interference largely eliminated
– No competition between worker threads
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Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

Optimize spatial resource usage
– Decide which computing resource is best suited for a given task

Optimize temporal resource usage
– Decide in which order to execute tasks

Optimize concurrent resource usage
– Decide which pairs of tasks to execute in parallel

No lock directly manipulated by the application
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Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

Flexibility
– No need for all tasks to have a uniform duration
– Naturally opens the way to heterogeneous computations, accelerated offloads

Transparency
– No need for explicit yield
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Tasks: Networking and I/O Issues?

Potential 1-to-1 relationship between tasks and network/IO requests

Network/IO request may start as soon as the task producing the data has
been completed

Tasks may be triggered as the result of network/IO requests completion

Significant difference with fork-join models, MPI+X
– Transparent interoperability
– Avoid deferred network/IO requests until next join
– Avoid custom network/IO requests management inside the application code
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Tasks: Outcome

Task = Characterizable work

Well-defined
– Workload
– Completion
– Dependencies
– Similar to the pure function concept from Functional programming domain

Suitable object for modelling
– Constraints
– Degrees of freedom
– Large corpus of task scheduling theory

Enforcing separation of concerns
– Application specialist
– Kernel(s) specialist
– Scheduling theoretician specialist
– Runtime-system specialist
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Programming Modern Platforms using Tasks

Expressing tasks?
Divide and conquer: Cilk (recursive tasks)
OpenMP 3.x and 4.x
Dependencies compiler: PaRSEC (parameterized task graph)
Sequential task flow: StarPU (directed acyclic task graph)
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1.4
The Forerunner Task Model: Cilk



Cilk

The two “all-time” goals in parallel programming

Programming parallel applications
– Easily

Running parallel applications
– Efficiently

The Cilk language and framework played an anticipative role
in reaching these goals for some classes of applications
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Cilk

Cilk in a Few Words

A programming environment
– A language and compiler: keyword-based extension of C
– An execution model and a run-time system

Developed at the MIT
– Supertech Research Group
– Charles E. Leiserson’s team
– Mid-90’s
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History

Academic Era — Cilk
– 1994: Cilk 1
– 1998: The Implementation of the Cilk-5 Multithreaded Language paper

by Matteo Frigo, Charles E. Leiserson, and Keith H. Randall, at PLDI’98

Start-up Era — Cilk++
– 2006: Launch of “Cilk Arts” company
– 2008: Cilk++ version 1.0

Intel Era — Cilk Plus
– 2009: Intel acquires Cilk Arts
– 2010: Intel Cilk Plus released as part of the Intel C++ Compiler
– 2012: Release of the Cilk Plus support for the GNU GCC Compiler,

implemented by Intel
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Context

Middle of nineties

Hardware
SMP: Symmetric Multi-Processors
Need for parallel programming models

Software
Notion of threads: concurrent processing contexts within single process
How to efficiently/easily express application parallelism using threads?

Program Easily?
Parallel program quickly derived from sequential program
Concurrency expressed safely (correctness, consistency)

Run Efficiently?
No over/under-subscription
Load-balancing
Low overhead
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– The C elision of a Cilk program is
a valid C program
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Cilk Tasks

Notion of frame
State of the current cilk function being executed
Live local variables, function arguments
“Program Counter” (PC)

A Frame is a Task
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Task Spawn

Upon a spawn, the worker. . .
. . . suspends the parent function
. . . saves the state of the parent function in its frame
. . . pushes the parent frame on its task list

. . . before calling the spawned child function

When the child function completes and returns, the worker. . .
. . . pops the parent frame
. . . restores the state of the parent function from its frame
. . . resumes the parent function

This is more or less what regular functions do. . .

Where is the parallelism?
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Example: Deque Management on Spawn
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Parallelism

Work Stealing paradigm
Idle workers steal work. . .
. . . from other worker’s queues

Work stolen as frame/task
A thief resumes a suspended parent task. . .
. . . while a victim runs its child

Load balancing: Idle workers steal from busy workers

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 41



Parallelism

Work Stealing paradigm
Idle workers steal work. . .
. . . from other worker’s queues

Work stolen as frame/task
A thief resumes a suspended parent task. . .
. . . while a victim runs its child

Load balancing: Idle workers steal from busy workers

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 41



Parallelism

Work Stealing paradigm
Idle workers steal work. . .
. . . from other worker’s queues

Work stolen as frame/task
A thief resumes a suspended parent task. . .
. . . while a victim runs its child

Load balancing: Idle workers steal from busy workers

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 41



Task Spawn [UPDATED]

Upon a spawn, the worker. . .
. . . suspends the parent function
. . . saves the state of the parent function in its frame
. . . pushes the parent frame on its task list

. . . before calling the spawned child function

When the child function completes and returns, the worker. . .
. . . attempts to pop the parent frame
if it succeeds, it. . .

– . . . restores the state of the parent function from its frame
– . . . resumes the parent function
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Work Stealing Implementation

Task lists implementation. . .
Doubly-ended queue
Head H

Tail T

. . . with the following rules
Workers push/pop work at the Tail side T of their own deque
An idle worker (thief) steals work at the Head side H of another worker
(victim) deque
T >= H under normal conditions
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Example: Work Stealing
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Cilk’s Keywords Summary
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spawn: launch of a potentially
parallel routine
sync: wait for completion of
launched routines

inlet : special function to aggregate
results (reduction)
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Intel Cilk Plus

URL: http://www.cilkplus.org/

Changes
Supports C and C++
No need to declare Cilk functions

Main keywords
cilk_spawn: similar to original Cilk’s spawn
cilk_sync: similar to original Cilk’s sync
cilk :: reducer <...>
– Template parameterized with a reduction op
– Replacement for inlets

cilk_for : parallel loop
Fortran inspired Array Notation
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http://www.cilkplus.org/


Intel Cilk Plus

URL: http://www.cilkplus.org/

Changes
Supports C and C++
No need to declare Cilk functions

Main keywords
cilk_spawn: similar to original Cilk’s spawn
cilk_sync: similar to original Cilk’s sync
cilk :: reducer <...>
– Template parameterized with a reduction op
– Replacement for inlets

cilk_for : parallel loop
Fortran inspired Array Notation

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 46

http://www.cilkplus.org/


Cilk Plus Parallel Loop

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 47

Work-Stealing Loop

cilk_for keyword
Potentially parallel loop
Recursively divided range
Work-stealing load balancing

1 i n t i ;
2

3 f o r ( i =0; i<N; i++) {
4 f ( i ) ;
5 }
6

7 /∗ − − − − ∗/
8

9 f o r ( i =0; i<N; i++) {
10 c i lk_spawn f ( i ) ;
11 }
12 c i l k_ s ync ;
13

14 /∗ − − − − ∗/
15

16 c i l k _ f o r ( i =0; i<N; i++) {
17 f ( i ) ;
18 }



Other Cilk Plus Ports

Cilk Plus / GCC
Integrated in GCC 4.9.2+

– Tasks
– Array notation
– No cilk_for keyword yet

Usage

1 g++ − f c i l k p l u s − l c i l k r t s −o f i b f i b . cpp

Cilk Plus / LLVM
URL: http://cilkplus.github.io/
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Programming Modern Platforms using Tasks

Expressing tasks?
Divide and conquer: Cilk (recursive tasks)
OpenMP 3.x and 4.x
Dependencies compiler: PaRSEC (parameterized task graph)
Sequential task flow: StarPU (directed acyclic task graph)
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1.5
Tasks for the Masses: OpenMP



OpenMP

Parallel programming with threads and tasks

Consortium: OpenMP Architecture Review Board (ARB)
C/C++ and Fortran annotations

History
OpenMP 1.x (1997-98), OpenMP 2.x (2000-02)

– Thread-based fork-join programming model design
OpenMP 3.x (2008-11)

– Independent tasks
OpenMP 4.x (2013-15)

– Task with dependencies
– Accelerators / devices

(OpenMP 5.x)
– On-going work
– Support for instrumenting tools (OMPT)
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OpenMP Fork-Join Model

Thread-based parallel regions

1 {
2 #pragma omp p a r a l l e l
3 {
4 p r i n t f ( " th r ead ␣number␣%d␣ o f ␣%d\n" , omp_get_thread_num ( ) ,

, omp_get_num_threads ( ) ) ;
5 }
6 }

Team of threads launched during parallel region
Synchronizations using barriers, critical regions or locks
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OpenMP Fork-Join Model

Thread-based parallel loops:

1 {
2 i n t i ;
3

4 #pragma omp p a r a l l e l f o r
5 f o r ( i =0; i<n ; i++) {
6 b [ i ] = ( a [ i ] + a [ i −1]) / 2 . 0 ;
7 }
8 }

Team of threads launched during parallel region
Parallel loop mapped on multiple threads
Notion of worksharing
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OpenMP 3.x Independent Tasks Support

Initial task support in OpenMP
Inspired by Cilk
Integrates tasks in the Fork-Join model
Notion of implicit tasks

– Each thread in a parallel region executes one implicit task

Explicit tasks can be created by the pragma omp task
Notion of scheduling point

– Pause / resume point for tasks
– Recursive tasks
– Task synchronization using pragma +omp taskwait, critical regions, locks
– Barriers wait for all tasks created in the parallel region
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OpenMP 3.x Example: Independent Tasks
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1 i n t i t em [N ] ;
2

3 vo id g ( i n t ) ;
4

5 vo id f ( )
6 {
7 #pragma omp p a r a l l e l
8 {
9 #pragma omp s i n g l e
10 {
11 i n t i ;
12 f o r ( i =0; i<N; i++)
13 #pragma omp task un t i e d
14 g ( i tem [ i ] ) ;
15 }
16 }
17 }



OpenMP 3.x Example: Independent Tasks
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1 vo id p r o c e s s_ l i s t _ i t em s ( s t r u c t l i s t _ i t em ∗ l i s t )
2 {
3 #pragma omp p a r a l l e l
4 {
5 #pragma omp s i n g l e
6 {
7 s t r u c t l i s t _ i t em ∗ p = l i s t ;
8 wh i l e ( p )
9 {
10 #pragma omp task
11 { /∗ p i s f i r s t p r i v a t e ∗/
12 p roce s s_ i t em (p ) ;
13 }
14 p = p−>next ;
15 }
16 }
17 }
18 }



OpenMP 4.x Task Support

Extend the task model with data dependencies

Inspired by BSC’s OmpSs, Intel’s task queues
New keywords

– in input data dependence
– out output data dependence
– inout input/output data dependence

Data dependencies
– Lock-less synchronization
– Fine-grained synchronization
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OpenMP 4.x Example: Task Dependencies
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1 vo id f ( )
2 {
3 i n t a ;
4

5 #pragma omp p a r a l l e l
6 #pragma omp s i n g l e
7 {
8 #pragma omp task shared ( a ) depend ( out : a )
9 f oo (&a ) ;
10

11 #pragma omp task shared ( a ) depend ( i nou t : a )
12 bar (&a ) ;
13

14 #pragma omp task shared ( a ) depend ( i n : a )
15 bar (&a ) ;
16 }
17 }



Programming Modern Platforms using Tasks

Expressing tasks?
Divide and conquer: Cilk (recursive tasks)
OpenMP 3.x and 4.x
Dependencies compiler: PaRSEC (parameterized task graph)
Sequential task flow: StarPU (directed acyclic task graph)
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1.6
Parametric Task Graph model: PaRSEC



PaRSEC: Introduction and Principles

PaRSEC
Developed at ICL Lab (UTK) and Univ. of Manchester
Parallel + distributed platforms
Compact representation of a graph of tasks

Parameterized task graph (PTG)
Tasks and dependencies expressed in a specific language: JDF
JDF source processed by a compiler
Decentralized distributed execution
Work-stealing load-balancing at node level
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PaRSEC: basic JDF example

1 NB [ type=" i n t " ]
2

3 Task ( k )
4 k = 0 . . NB
5 : t a s k d i s t ( k )
6

7 RW A <− ( k == 0) ? NEW : A Task ( k−1 )
8 −> ( k < NB) ? A Task ( k+1 )
9

10 BODY
11 {
12 i n t ∗Aint = ( i n t ∗)A ;
13

14 i f ( k == 0 ) {
15 ∗Aint = 0 ;
16 } e l s e {
17 ∗Aint += 1 ;
18 }
19 p r i n t f ( "A␣=␣%d\n" , ∗Aint ) ;
20 }
21 END

(credit: ICL)
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PaRSEC: more complex JDF example

1 p o t r f _ z p o t r f ( k ) [ h i g h_ p r i o r i t y = on ]
2

3 k = 0 . . descA−>mt−1
4

5 : descA (k , k )
6

7 RW T <− ( k == 0) ? descA (k , k ) : T po t r f_zhe r k ( k−1, k )
8 −> T pot r f_z t r sm ( k+1. . descA−>mt−1, k )
9 −> descA (k , k )

10

11 ; ( k >= ( descA−>mt − PRI_CHANGE) ) ? ( descA−>mt − k ) ∗ ( descA
−>mt − k ) ∗ ( descA−>mt − k ) : PRI_MAX

12

13 BODY [ type=RECURSIVE ]
14 { [ . . . ] }
15 END
16

17 BODY
18 { [ . . . ] }
19 END
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PaRSEC: more complex JDF example (cont’d)

1 po t r f_z t r sm (m, k ) [ h i g h_ p r i o r i t y = on ]
2

3 // Execu t i on space
4 m = 1 . . descA−>mt−1
5 k = 0 . . m−1
6

7 // P a r a l l e l p a r t i t i o n i n g
8 : descA (m, k )
9

10 // Parameter s
11 READ T <− T po t r f _ z p o t r f ( k )
12 RW C <− ( k == 0) ? descA (m, k ) : C potrf_zgemm (m, k , k−1)
13 −> A po t r f_zhe r k ( k , m)
14 −> A potrf_zgemm (m, k+1. .m−1, k )
15 −> B potrf_zgemm (m+1. . descA−>mt−1, m, k )
16 −> descA (m, k )
17

18 ; (m >= ( descA−>mt − PRI_CHANGE) ) ? ( descA−>mt − m) ∗ ( descA
−>mt − m) ∗ ( descA−>mt − m) + 3 ∗ ( (2 ∗ descA−>mt) − k −
m − 1) ∗ (m − k ) : PRI_MAX

19

20 BODY [ type=RECURSIVE ]
21 {
22 // [ . . . ]O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 64



Programming Modern Platforms using Tasks

Expressing tasks?
Divide and conquer: Cilk (recursive tasks)
OpenMP 3.x and 4.x
Dependencies compiler: PaRSEC (parameterized task graph)

Sequential task flow: StarPU (directed acyclic task graph)
– See second part: Programming Modern Platforms with the StarPU

Task-Based Runtime System
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2
StarPU
A Unified Runtime
for Heterogeneous Platforms



Heterogeneous Parallel Platforms

Heterogeneous Association
General purpose processor
Specialized accelerator

Generalization
Distributed cores, discrete accelerators

– Standalone GPUs
– Intel Xeon Phi (KNC)

Integrated cores
– Intel Skylake / Kaby Lake
– Intel Xeon Phi (KNL)
– AMD Fusion
– nVidia Tegra, ARM big.LITTLE

Combination of various units
– Latency-optimized cores
– Throughput-optimized cores
– Energy-optimized cores
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Example: CPU vs GPU Hardware

Multiple strategies for multiple purposes

CPU
– Strategy

– Large caches
– Large control

– Purpose
– Complex codes, branching
– Complex memory access patterns

– World Rally Championship car
GPU

– Strategy
– Lot of computing power
– Simplified control

– Purpose
– Regular data parallel codes
– Simple memory access patterns

– Formula One car
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ALU ALU 
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Accelerators
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Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-off

A single control unit. . .
. . . for several computing units

Allows flows to diverge
. . . but better avoid it!



Accelerators

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 69

Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-off

Single Instruction Multiple Threads (SIMT)
A single control unit. . .
. . . for several computing units

Allows flows to diverge
. . . but better avoid it!



Accelerators
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Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-off

Single Instruction Multiple Threads (SIMT)
A single control unit. . .
. . . for several computing units

Allows flows to diverge
. . . but better avoid it!

GPU 

DRAM 

Control 

Control 
Scalar Cores 

(Streaming Processors) 

Streaming Multiprocessor 

R1 + R2 

R5 / R2 

Scalar Cores 



Accelerators
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Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-off

Single Instruction Multiple Threads (SIMT)
A single control unit. . .
. . . for several computing units

SIMT is distinct from SIMD
Allows flows to diverge
. . . but better avoid it!

GPU 

Control 
Scalar Cores 

(Streaming Processors) 

Streaming Multiprocessor 

R1 + R2 

 

...
if(cond){

  ...
  ...
  ...

} else {
  ...
  ...
}
...



StarPU Programming Model: Sequential Task Flow

Express parallelism...
... using the natural program flow

Submit tasks in the sequential flow of the program...
... then let the runtime schedule the tasks asynchronously
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Task Model
StarPU Tasks

Elementary computation
– Some kernel

→ Potential parallel work

Constraints
– Input needed
– Output produced
– → Dependencies

→ Degrees of Freedom in realizing the potential parallelism

Specificities
– Atomic tasks (non-interruptible)
– Flat model (non-recursive)
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A = A+B 

A B 

A 

Task = an « elementary » computation + dependencies 

Input dependencies 

Output dependencies 

Computation kernel 
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2.1
Let’s Taskify some Linear Algebra Algorithm



Sequential Task Flow Graph Building

Example: Cholesky Decomposition
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for (j = 0; j < N; j++) {
POTRF (

RW,

A[j][j]);
for (i = j+1; i < N; i++)

TRSM (

RW,

A[i][j],

R,

A[j][j]);
for (i = j+1; i < N; i++) {

SYRK (

RW,

A[i][i],

R,

A[i][j]);
for (k = j+1; k < i; k++)

GEMM (

RW,

A[i][k],

R,

A[i][j],

R,

A[k][j]);
}

}

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK



Sequential Task Flow Graph Building

Example: Cholesky Decomposition
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for (j = 0; j < N; j++) {
POTRF (RW,A[j][j]);
for (i = j+1; i < N; i++)

TRSM (RW,A[i][j], R,A[j][j]);
for (i = j+1; i < N; i++) {

SYRK (RW,A[i][i], R,A[i][j]);
for (k = j+1; k < i; k++)

GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]);

}
}

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK



Sequential Task Flow Graph Building

Example: Cholesky Decomposition
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for (j = 0; j < N; j++) {
task_insert( POTRF (RW,A[j][j]) );
for (i = j+1; i < N; i++)

task_insert( TRSM (RW,A[i][j], R,A[j][j]) );
for (i = j+1; i < N; i++) {

task_insert( SYRK (RW,A[i][i], R,A[i][j]) );
for (k = j+1; k < i; k++)

task_insert( GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]) );

}
}
wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK



Sequential Task Flow Graph Building

Example: Cholesky Decomposition
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StarPU Execution Model: Task Scheduling

Mapping the graph of tasks (DAG) on the hardware
Allocating computing resources
Enforcing dependency constraints
Handling data transfers

Adaptiveness
A single DAG enables multiple schedulings
A single DAG can be mapped on multiple platforms
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M. GPU M. GPU 

CPU 

CPU 

CPU 

CPU 
CPU 

CPU 

CPU 

CPU 

Time 



Example: SCHNAPS, Implicit kinetic schemes

SCHNAPS Solver (Inria TONUS)
Example of a task graph submitted to StarPU
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2.2
Now, Leverage
an Accelerated Computing Node



StarPU Heterogeneous Execution Model / Data Management
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Showcase with the Chameleon Linear Algebra Library

UTK, Inria HIEPACS, Inria RUNTIME
Multi-GPU Cholesky decomp., using MAGMA GPU kernels
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Showcase with the Chameleon Linear Algebra Library

UTK, Inria HIEPACS, Inria RUNTIME
QR decomp. on 16 CPUs (AMD) + 4 GPUs (C1060) using MAGMA GPU kernels
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a Multicore Node Enhanced with Multiple GPU Accelerators. 25th IEEE IPDPS, 2011.”
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Showcase with the Chameleon Linear Algebra Library

QR kernel properties
Kernel SGEQRT
CPU: 9 GFlop/s GPU: 30 GFlop/s Speed-up: 3
Kernel STSQRT
CPU: 12 GFlop/s GPU: 37 GFlop/s Speed-up: 3
Kernel SOMQRT
CPU: 8.5 GFlop/s GPU: 227 GFlop/s Speed-up: 27
Kernel SSSMQ
CPU: 10 GFlop/s GPU: 285 GFlop/s Speed-up: 28

Consequences
Task distribution

– SGEQRT: 20% Tasks on GPU
– SSSMQ: 92% tasks on GPU

Taking advantage of heterogeneity!
– Only do what you are good for
– Don’t do what you are not good for
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Task Mapping using Performance a Model
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Example: PaSTIX Sparse Linear Algebra Solver

PaSTIX Solver (Inria HiePACS)
Algorithm + GPU kernels
12 CPU cores (2 Xeon X5650)
3GPUs (3 Tesla M2070)
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2.3
Now, Scale on Heterogeneous Clusters



Distributed Support with StarPU
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Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Initial Data↔Node Mapping
Provided by the application...

node1node0 node3node2



Extends STF Programming Model for Clusters

Almost

preserve the same code

MPI communicator
Mapping function

for (j = 0; j < N; j++) {
POTRF (RW, A[j][j]);
for (i = j+1; i < N; i++)

TRSM (RW, A[i][j], R,A[j][j]);
for (i = j+1; i < N; i++) {

SYRK (RW, A[i][i], R,A[i][j]);
for (k = j+1; k < i; k++)

GEMM (RW, A[i][k],
R,A[i][j], R,A[k][j]);

}
}
task_wait_for_all();

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 86



Extends STF Programming Model for Clusters

Almost preserve the same code
MPI communicator

Mapping function

for (j = 0; j < N; j++) {
POTRF (RW, A[j][j], MPI_COMM_WORLD);
for (i = j+1; i < N; i++)

TRSM (RW, A[i][j], R,A[j][j], MPI_COMM_WORLD);
for (i = j+1; i < N; i++) {

SYRK (RW, A[i][i], R,A[i][j], MPI_COMM_WORLD);
for (k = j+1; k < i; k++)

GEMM (RW, A[i][k],
R,A[i][j], R,A[k][j], MPI_COMM_WORLD);

}
}
task_wait_for_all();
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Extends STF Programming Model for Clusters

Almost preserve the same code
MPI communicator
Mapping function

int getnode(int i, int j) { return((i%p)*q + j%q); }

for (j = 0; j < N; j++) {
POTRF (RW, A[j][j], MPI_COMM_WORLD, getnode(j,j));
for (i = j+1; i < N; i++)

TRSM (RW, A[i][j], R,A[j][j], MPI_COMM_WORLD, getnode(i,j));
for (i = j+1; i < N; i++) {

SYRK (RW, A[i][i], R,A[i][j], MPI_COMM_WORLD, getnode(i,i));
for (k = j+1; k < i; k++)

GEMM (RW, A[i][k],
R,A[i][j], R,A[k][j], MPI_COMM_WORLD, getnode(i,k));

}
}
task_wait_for_all();
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Extends STF Programming Model for Clusters

Almost preserve the same code
MPI communicator
Mapping function

int getnode(int i, int j) { return((i%p)*q + j%q); }
set_rank(A, getnode);

for (j = 0; j < N; j++) {
POTRF (RW, A[j][j], MPI_COMM_WORLD);
for (i = j+1; i < N; i++)

TRSM (RW, A[i][j], R,A[j][j], MPI_COMM_WORLD);
for (i = j+1; i < N; i++) {

SYRK (RW, A[i][i], R,A[i][j], MPI_COMM_WORLD);
for (k = j+1; k < i; k++)

GEMM (RW, A[i][k],
R,A[i][j], R,A[k][j], MPI_COMM_WORLD);

}
}
task_wait_for_all();
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Distributed Support with StarPU
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Each node unrolls the sequential task flow

Task↔Node Mapping
Inferred from data location:

– Tasks move to data they modify

No global scheduling
No synchronizations

Inter-node dependence management
Inferred from the task graph edges
Automatic Isend and Irecv calls
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Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Task↔Node Mapping
Inferred from data location:

– Tasks move to data they modify

No global scheduling
No synchronizations

Inter-node dependence management
Inferred from the task graph edges
Automatic Isend and Irecv calls

node1node0 node3node2

Isend



Distributed Scalability Study

Chameleon library (Inria HiePACS)

Ph.D Marc Sergent (STORM+CEA CESTA)
3D electromagnetic test case

Complex double-precision distributed dense Cholesky factorization

Study available in Inria Research Report RR-8927
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Distributed Scalability Study

Chameleon library (Inria HiePACS)
Heterogeneous cluster: 1152 CPU cores+288 GPUs
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Unbounded Task Submission Issue
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Lookahead Window on the Task Submission Side

Control of the task submission flow

Memory tracking
– Account the memory subscription

Task submission throttling
– Blocking mechanism of the task submission flow
– Allows the task submission to be controlled by an external criteria

A control policy which uses the memory tracking to throttle the task
submission flow
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Memory Behaviour Without Memory Control
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Memory Behaviour With Memory Control
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Distributed Scalability Study Results

Chameleon library (Inria HiePACS): C2S@Exa Pole 1 ↔ Pole 3
Heterogeneous cluster: 1152 CPU cores+288 GPUs
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2.4
I/O and Out-of-Core Support



Input/Output Support
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Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
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Building block for fault tolerance

– Checkpointing

HiBOX Project (DGA RAPID)
Imacs, Airbus
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2.5
Programming with StarPU



Basic Example: Scaling a Vector
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1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX ] ;
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1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX ] ;
3 starpu_data_handle_t vec to r_hand l e ;
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1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX ] ;
3 starpu_data_handle_t vec to r_hand l e ;
4

5 /∗ . . . f i l l v e c t o r . . . ∗/
6

7 s ta rpu_vec to r_data_reg i s t e r (&vec to r_hand l e , 0 ,
8 ( u i n t p t r_ t ) vec to r , NX, s i z e o f ( v e c t o r [ 0 ] ) )

;
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1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX ] ;
3 starpu_data_handle_t vec to r_hand l e ;
4

5 /∗ . . . f i l l v e c t o r . . . ∗/
6

7 s ta rpu_vec to r_data_reg i s t e r (&vec to r_hand l e , 0 ,
8 ( u i n t p t r_ t ) vec to r , NX, s i z e o f ( v e c t o r [ 0 ] ) )

;
9

10 s t a rpu_ta sk_ in se r t (
11 &sca l_ c l ,
12 STARPU_RW , v ec to r_hand l e ,
13 STARPU_VALUE , &f a c t o r , s i z e o f ( f a c t o r ) ,
14 0) ;
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1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX ] ;
3 starpu_data_handle_t vec to r_hand l e ;
4

5 /∗ . . . f i l l v e c t o r . . . ∗/
6

7 s ta rpu_vec to r_data_reg i s t e r (&vec to r_hand l e , 0 ,
8 ( u i n t p t r_ t ) vec to r , NX, s i z e o f ( v e c t o r [ 0 ] ) )

;
9

10 s t a rpu_ta sk_ in se r t (
11 &sca l_ c l ,
12 STARPU_RW , v ec to r_hand l e ,
13 STARPU_VALUE , &f a c t o r , s i z e o f ( f a c t o r ) ,
14 0) ;
15

16 s ta rpu_task_wa i t_fo r_a l l ( ) ;
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1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX ] ;
3 starpu_data_handle_t vec to r_hand l e ;
4

5 /∗ . . . f i l l v e c t o r . . . ∗/
6

7 s ta rpu_vec to r_data_reg i s t e r (&vec to r_hand l e , 0 ,
8 ( u i n t p t r_ t ) vec to r , NX, s i z e o f ( v e c t o r [ 0 ] ) )

;
9

10 s t a rpu_ta sk_ in se r t (
11 &sca l_ c l ,
12 STARPU_RW , v ec to r_hand l e ,
13 STARPU_VALUE , &f a c t o r , s i z e o f ( f a c t o r ) ,
14 0) ;
15

16 s ta rpu_task_wa i t_fo r_a l l ( ) ;
17 s ta rpu_data_unreg i s t e r ( v e c to r_hand l e ) ;
18

19 /∗ . . . d i s p l a y v e c t o r . . . ∗/



Terminology

Codelet
Task
Data handle
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Definition: A Codelet

A Codelet. . .
. . . relates an abstract computation kernel to its implementation(s)
. . . can be instantiated into one or more tasks
. . . defines characteristics common to a set of tasks
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Codelet

Task 1: will perform a ’scal’ kernel

Task 2: will perform a ’scal’ kernel



Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output
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Definition: A Task

A Task. . .
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Definition: A Data Handle

A Data Handle. . .
. . . designates a piece of data managed by StarPU
. . . is typed (vector, matrix, etc.)
. . . can be passed as input/output for a Task
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Elementary API

Declaring a codelet
Declaring and Managing Data
Writing a Kernel Function
Submitting a task
Waiting for submitted tasks
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Declaring a Codelet

Define a struct starpu_codelet

Plug the kernel function
– Here: scal_cpu_func

Declare the number of data pieces used by the kernel
– Here: A single vector

Declare how the kernel accesses the piece of data
– Here: The vector is scaled in-place, thus R/W
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2 . . .
3 } ;
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1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . cpu_func = { sca l_cpu_func , NULL } ,
3 . n b u f f e r s = 1 ,
4 . modes = { STARPU_RW } ,
5 } ;



Declaring and Managing Data

Put data under StarPU control

Initialize a piece of data
Register the piece of data and get a handle

– The vector is now under StarPU control

Use data through the handle
Unregister the piece of data

– The handle is destroyed
– The vector is now back under user control
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1 f l o a t v e c t o r [NX ] ;
2 /∗ . . . f i l l data . . . ∗/
3

4 starpu_data_handle_t vec to r_hand l e ;
5 s ta rpu_vec to r_data_reg i s t e r (&vec to r_hand l e , 0 ,
6 ( u i n t p t r_ t ) vec to r , NX, s i z e o f ( v e c t o r [ 0 ] ) ) ;
7

8 /∗ . . . use the v e c t o r th rough the hand l e . . . ∗/
9

10 s ta rpu_data_unreg i s t e r ( v e c to r_hand l e ) ;



Writing a Kernel Function

Every kernel function has the same C prototype

Retrieve the vector’s handle
Get vector’s number of elements and base pointer
Get the scaling factor as inline argument
Compute the vector scaling
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3 }
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1 vo id sca l_cpu_func ( vo id ∗ b u f f e r s [ ] , vo id ∗ c l_a rg ) {
2 s t r u c t s t a r pu_vec to r_ i n t e r f a c e ∗ vec to r_hand l e = b u f f e r s

[ 0 ] ;
3

4 uns igned n = STARPU_VECTOR_GET_NX ( v e c to r_hand l e ) ;
5 f l o a t ∗ v e c t o r = STARPU_VECTOR_GET_PTR ( v e c to r_hand l e ) ;
6

7 f l o a t ∗ p t r_ f a c t o r = c l_a rg ;
8

9 uns igned i ;
10 f o r ( i = 0 ; i < n ; i++)
11 v e c t o r [ i ] ∗= ∗ p t r_ f a c t o r ;
12 }



Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

The codelet structure
The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm
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Waiting for Submitted Task Completion

Tasks are submitted non-blockingly

Wait for all submitted tasks to complete their work
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1 /∗ non−b l o c k i n g t a s k submi t s ∗/
2 s t a rpu_ta sk_ in se r t ( . . . ) ;
3 s t a rpu_ta sk_ in se r t ( . . . ) ;
4 s t a rpu_ta sk_ in se r t ( . . . ) ;
5 . . .
6

7 /∗ wa i t f o r a l l t a s k submi t t ed so f a r ∗/
8 s t a r pu_ ta s k_wa i t_ f o r_a l l ( ) ;



Basic Example: Scaling a Vector
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1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX ] ;
3 starpu_data_handle_t vec to r_hand l e ;
4

5 /∗ . . . f i l l v e c t o r . . . ∗/
6

7 s ta rpu_vec to r_data_reg i s t e r (&vec to r_hand l e , 0 ,
8 ( u i n t p t r_ t ) vec to r , NX, s i z e o f ( v e c t o r [ 0 ] ) )

;
9

10 s t a rpu_ta sk_ in se r t (
11 &sca l_ c l ,
12 STARPU_RW , v ec to r_hand l e ,
13 STARPU_VALUE , &f a c t o r , s i z e o f ( f a c t o r ) ,
14 0) ;
15

16 s ta rpu_task_wa i t_fo r_a l l ( ) ;
17 s ta rpu_data_unreg i s t e r ( v e c to r_hand l e ) ;
18

19 /∗ . . . d i s p l a y v e c t o r . . . ∗/



Heterogeneity: Device Kernels

Extending a codelet to handle heterogeneous platforms

Multiple kernel implementations for a CPU

– SSE, AVX, ... optimized kernels

Kernels implementations for accelerator devices

– OpenCL, NVidia Cuda kernels
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1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . cpu_func = { sca l_cpu_func ,
3 sca l_sse_cpu_func , sca l_avx_cpu_func , NULL } ,
4 . n b u f f e r s = 1 ,
5 . modes = { STARPU_RW } ,
6 } ;
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1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . cpu_func = { sca l_cpu_func ,
3 sca l_sse_cpu_func , sca l_avx_cpu_func , NULL } ,
4 . openc l_ func = { sca l_cpu_openc l , NULL } ,
5 . cuda_func = { scal_cpu_cuda , NULL } ,
6 . n b u f f e r s = 1 ,
7 . modes = { STARPU_RW } ,
8 } ;



Writing a Kernel Function for CUDA
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1

2

3

4

5

6

7

8 ex te rn "C" vo id sca l_cuda_func ( vo id ∗ b u f f e r s [ ] , vo id ∗ c l_a rg )
{

9 s t r u c t s t a r pu_vec to r_ i n t e r f a c e ∗ vec to r_hand l e = b u f f e r s
[ 0 ] ;

10 uns igned n = STARPU_VECTOR_GET_NX ( v e c to r_hand l e ) ;
11 f l o a t ∗ v e c t o r = STARPU_VECTOR_GET_PTR ( v e c to r_hand l e ) ;
12 f l o a t ∗ p t r_ f a c t o r = c l_a rg ;
13

14 . . .
15

16

17

18

19 }
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5

6

7
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p t r_ f a c t o r ) ;
19 }



Writing a Kernel Function for CUDA
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1 s t a t i c __global__ vo id vector_mult_cuda ( uns igned n ,
2 f l o a t ∗ vec to r , f l o a t f a c t o r

) {
3 uns igned i = b l o c k I d x . x∗blockDim . x + th r e a d I d x . x ;
4

5 . . .
6 }
7

8 ex te rn "C" vo id sca l_cuda_func ( vo id ∗ b u f f e r s [ ] , vo id ∗ c l_a rg )
{
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1 s t a t i c __global__ vo id vector_mult_cuda ( uns igned n ,
2 f l o a t ∗ vec to r , f l o a t f a c t o r

) {
3 uns igned i = b l o c k I d x . x∗blockDim . x + th r e a d I d x . x ;
4 i f ( i < n )
5 v e c t o r [ i ] ∗= f a c t o r ;
6 }
7

8 ex te rn "C" vo id sca l_cuda_func ( vo id ∗ b u f f e r s [ ] , vo id ∗ c l_a rg )
{

9 s t r u c t s t a r pu_vec to r_ i n t e r f a c e ∗ vec to r_hand l e = b u f f e r s
[ 0 ] ;

10 uns igned n = STARPU_VECTOR_GET_NX ( v e c to r_hand l e ) ;
11 f l o a t ∗ v e c t o r = STARPU_VECTOR_GET_PTR ( v e c to r_hand l e ) ;
12 f l o a t ∗ p t r_ f a c t o r = c l_a rg ;
13

14 uns igned th r eads_pe r_b lock = 64 ;
15 uns igned nb l o ck s = (n+threads_per_b lock −1)/

th r eads_pe r_b lock ;
16

17 vector_mult_cuda<<<nb locks , th reads_per_b lock , 0 ,
18 s ta rpu_cuda_get_ loca l_s t ream ( )>>>(n , vec to r ,∗

p t r_ f a c t o r ) ;
19 }



StarPU Scheduling Policies

No one size fits all policy
Selectable scheduling policy

– Predefined set of popular policies: eager, work-stealing, etc.
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Going beyond?

Scheduling is a decision process:
Providing more input to the scheduler. . .
. . . can lead to better scheduling decisions

What kind of information?
Relative importance of tasks

– Priorities
Cost of tasks

– Codelet models
Cost of transferring data

– Bus calibration
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Selecting a Scheduling Policy

Use the STARPU_SCHED environment variable

Example 1: selecting the prio scheduler
Example 2: selecting the dm scheduler
Example 3: resetting to default scheduler eager
No need to recompile the application
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2 $ my_program
3 . . .
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2 $ my_program
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2 $ my_program
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1 $ expo r t STARPU_SCHED=p r i o
2 $ my_program
3 . . .

1 $ expo r t STARPU_SCHED=dm
2 $ my_program
3 . . .

1 $ unse t STARPU_SCHED
2 $ my_program
3 . . .



Task Mapping using a Performance Model
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Example:
The Deque Model Scheduler

CPU Cores GPU 2GPU 1

Cores

CPU

GPU 2

GPU 1

? Time



Task Mapping using a Performance Model
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Using codelet performance models
– Kernel calibration on each available computing device
– Raw history model of kernels’ past execution times
– Refined models using regression on kernels’ execution times history

Model parameter(s)
– Data size
– User-defined parameters



Data Transfer Cost Modelling for Improved Scheduling

Discrete accelerators
CPU ↔ GPU transfers
Data transfer cost vs kernel offload benefit

Transfer cost modelling
Bus calibration

– Can differ even for identical devices
– Platform’s topology

Data-transfer aware scheduling
Deque Model Data Aware (dmda) scheduling policy variants
Tunable data transfer cost bias

– locality
– vs load balancing
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Data Prefetching

Task states
Submitted

– Task inserted by the application
Ready

– Task’s dependencies resolved
Scheduled

– Task queued on a computing unit
Executing

– Task running on a computing unit

Anticipate on the Scheduled → Executing transition
Prefetch triggered ASAP after Scheduled state
Prefetch may also be triggered by the application
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Unstructured data dependences

Applications
– N-body
– Unstructured meshes
– Multiple logically concurrent updates

Many tasks contributing to shared pieces of data (cells, particles)...
– ... without natural, sequential order
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Artificially ordered, sequential execution
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R/W 

R/W 

R/W 

R/W 

R/W 

Time 



Loss of Parallelism
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Ready 
Tasks 

Time 



Relaxing Over-Constrained Multiple Updates

Issue with the dual purpose of usual Read/Write data dependence mode

Mutual exclusion
– Avoids two tasks modifying a piece of data concurrently

Orderings
– Enforces sequential consistency
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RW 

Read/Write RW RW 

RW RW 

Task Submission DAG Execution 
enforcing sequential consistency 



Use StarPU’s commutative dependence mode

Semantics
Keep mutual exclusion role
Relax ordering role

Rationale
Integrate Element / Particle / Cell / Entity contributions ASAP

– without artificial ordering, unwanted serialization

Preserve all other StarPU functionalities (e.g.: heterogeneous scheduling,
etc.)
Straightforward use:
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1 s t a rpu_ta sk_ in se r t (& code l e t ,
2 STARPU_R , fmic−>wn_iv_handle [ i v ] ,
3 STARPU_RW , fmac−>wn_handle ,
4 . . . ) ;



Use StarPU’s commutative dependence mode

Semantics
Keep mutual exclusion role
Relax ordering role

Rationale
Integrate Element / Particle / Cell / Entity contributions ASAP

– without artificial ordering, unwanted serialization

Preserve all other StarPU functionalities (e.g.: heterogeneous scheduling,
etc.)
Straightforward use:
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1 s t a rpu_ta sk_ in se r t (& code l e t ,
2 STARPU_R , fmic−>wn_iv_handle [ i v ] ,
3 STARPU_RW | STARPU_COMMUTE , fmac−>wn_handle ,
4 . . . ) ;



Example: ScalFMM Fast Multipole Method

ScalFMM framework (Inria HiePACS)
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l = 2

l = 3

l = 2

l = 3

l = 2

l = 3

Transfer Pass/M2L

Direct Pass/P2P

P2M

M2M L2L

L2P

M2L

M2L

P2P

Upward Pass/P2M M2M Downward Pass/L2L L2P



Example: ScalFMM Fast Multipole Method

ScalFMM framework (Inria HiePACS)

Test on 96-core
homogeneous platform

Comparative
normalized efficiency

GCC OpenMP 4
Native StarPU

– Base
– Priorities + Commutative dependencies

Study available in Inria Research Report RR-8953
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2.6
High Level Programming Support



KStar OpenMP C/C++ Compiler

High level programming
Source-to-source compiler
Translate directives into runtime system API calls

– StarPU Runtime System
– Kaapi Runtime System (Inria Team AVALON, pole 4)

OpenMP 3.1
– Virtually full support

OpenMP 4.0
– Dependent tasks
– Heterogeneous targets (on-going work)

Based on LLVM/Clang

Available on:
KStar project website – http://kstar.gforge.inria.fr/

Inria joined the OpenMP ARB standardisation consortium
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http://kstar.gforge.inria.fr/


OpenMP Example: Tasks
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1 i n t i t em [N ] ;
2

3 vo id g ( i n t ) ;
4

5 vo id f ( )
6 {
7 #pragma omp p a r a l l e l
8 {
9 #pragma omp s i n g l e
10 {
11 i n t i ;
12 f o r ( i =0; i<N; i++)
13 #pragma omp task un t i e d
14 g ( i tem [ i ] ) ;
15 }
16 }
17 }



OpenMP Example: Task Dependencies
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1 vo id f ( )
2 {
3 i n t a ;
4

5 #pragma omp p a r a l l e l
6 #pragma omp s i n g l e
7 {
8 #pragma omp task shared ( a ) depend ( out : a )
9 f oo (&a ) ;
10

11 #pragma omp task shared ( a ) depend ( i n : a )
12 bar (&a ) ;
13 }
14 }



KStar Compiler Architecture

OpenMP directive translations implemented as an AST Rewriter
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OpenMP annotated C/C++ source file

Runtime-based C/C++ source file

Syntax / Lexical Analysis

Semantical Analysis

Optimisation

Binary Code Generation

kstar compiler source code rewriter

Partial A. S. T.

Abstract Syntax Tree



Source code Translation
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Overview of the compiler Code outlining, keeping OMP data sharing

Basic rewriting example

⌥ ⌅
void print(const char *msg) {

printf("%s\n", msg);
}

int main( int argc , char** argv) {
char mon_msg [] = "Hello !";

#pragma omp task
print(mon_msg);

#pragma omp taskwait
return 0;

}⌃ ⇧

Rewriting steps

• Runtime-specific type creation
• Code wrapper creation
• Task creation in the runtime

⌥ ⌅
void print(const char *msg) {

printf("%s\n", msg);
}

/* Generated arg struct */
struct __gen_argstruct {

char [8] mon_msg;
};

int main( int argc , char** argv) {
char mon_msg [] = "Hello !";

/* Generated task spawn */
omp_push_task(wrapper , args);
/* Generated taskwait */
omp_sched_sync ();
return 0;

}

/* Generated wrapper */
void wrapper(void *_k_arg) {

// The captured stmts param
__gen_argstruct *args = (__gen_argstruct

*) _k_arg;
char [8] mon_msg = args ->mon_msg;
// The captured stmts
print(mon_msg);

}
/* ... */⌃ ⇧
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KStar OpenMP Extensions

Experiments with new capabilities, constructs

Benefiting from OpenMP’s productivity...
... while leveraging advanced runtime system capabilities

Task priorities (now included in OpenMP)

Concurrent write

Commutative dependencies

Selectable task scheduling algorithm

Heterogeneous task scheduling
– Dynamic task implementation selection
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Example: ScalFMM Fast Multipole Method + KStar

ScalFMM framework (Inria HiePACS)

Test on 96-core
homogeneous platform

Comparative
normalized efficiency

GCC OpenMP 4
KStar OpenMP 4 + StarPU

– Base
– Priorities
– Commutative dependencies

Native StarPU
– Base
– Priorities
– Commutative dependencies

Study available in Inria Research Report RR-8953
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Feedback mechanisms

Online Tools
Statistics
Visual debugging

Offline Tools
Trace-based analysis
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Offline Trace-Based Feedback

FxT trace collection
Trace analysis and display

– ViTE Gantt
– Graphviz DAG
– R plots
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Offline Feedback – Trace Analysis

Automatically generated
Dependency graph (DAG)
Activity diagramm (GANTT)

– Visualize with ViTE
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Offline Feedback – Kernel Model

Display the codelet performance models recorded by StarPU
Command-line tool starpu_perfmodel_display

History-based models
Regression-based models
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1 $ s t a r pu_pe r fmode l_d i s p l a y −s starpu_s lu_lu_mode l_11
2

3 pe r fo rmance model f o r cpu0_pa r a l l e l 1_ imp l 0
4 # hash s i z e mean ( us ) s tddev ( us ) n
5 aa6d4e f7 4194304 3.055501 e+05 5.804822 e+04 48



Offline Feedback – Kernel Model Characteristics
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Offline Feedback – Kernel Model Regression Fitness
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Offline Feedback – Synthetic Kernels’ Behaviour
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StarPU-SimGrid in a nutshell PhD L. Stanisic
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Analysis and Simulation with StarPU + SimGrid

Ph.D Suraj Kumar
Inria STORM, Inria POLARIS, Inria HiePACS, Inria RealOpt

Scheduling tasks without executing kernels
Builds on the SimGrid simulation environment
Enables simulating large-scale scenarios

– Large data sets
– Large simulated hardware plaform

Relies on real performance models. . .
. . . collected by StarPU on a real machine

Quickly exploring
Enables fast experiments when designing new scheduling algorithms
Enables fast experiments when designing new platforms
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ScalFMM Simulation with StarPU/SimGrid (L. Stanisic)
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2.7
Going-further



Multicore CPUs: Parallel Tasks
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Multicore CPUs: Parallel Tasks (T. Cojean)

Kernel sweet spots: example with Cholesky factorization kernels
(1x Xeon E5-2680v3 2.5GHz 12 cores)
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Multicore CPUs: Parallel Tasks
Rationale

Run parallel kernels on multiple CPU cores
Address CPU/GPU computing power imbalance
Address nested-runtime interoperability

Reduce computing power imbalance between CPU and GPU
Big kernel for GPU
Small kernel for a single CPU core
Run “bigger” kernel on several CPU cores

Make use of existing parallel kernels/codes
Interoperability
Libraries: BLAS, FFT, . . .
OpenMP code
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Multicore CPUs – Technical details

Two flavors of parallel tasks

Fork-mode
StarPU provides threads on the participating cores

SPMD-mode
StarPU launches the task on a single core
. . . and let the task create its own threads
– Black-box mode

Locality enforcement in NUMA context
Combined worker threads
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Composing Multiple Codes

Rationale

Sharing computing resources. . .
. . . among multiple DAGs
. . . simultaneously

Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.

Select scheduling policy per context
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Contexts: Dynamic Resource Management
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Going Even Further: Interoperability

How to Make Runtimes, Libs Cooperate?
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Interoperability

How to Make Runtimes, Libs Cooperate?
Project INTERTWinE (EU H2020, 3-years, 2015-2018)

– Task-based runtimes: StarPU, OmpSs, PaRSEC, OpenMP
– Networking APIs: MPI, GASPI
– Libraries: Plasma, DPlasma
– Applications

Cooperative resource allocation and management
– Cores
– Accelerators
– Memory
– Pinned memory segments
– ...

www.intertwine-project.eu
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2.8
A Linear Algebra Solver Stack
On a Task-Based Runtime System



Matrices Over Runtime Systems @ Exascale

Linear algebra

AX = B

Sequential-Task-Flow

for (j = 0; j < N; j++)
Task (A[j]);

Direct Acyclic Graph

−→

Runtime systems

M. GPU M. GPU 

CPU 

CPU 

CPU 

CPU 
CPU 

CPU 

CPU 

CPU 

Time 

−→

Heterogeneous
platforms
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Availability
MORSE associated team website:
https://www.inria.fr/en/associate-team/morse

https://www.inria.fr/en/associate-team/morse
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2.9
Wrap-Up



Wrap-up: The Sequential Task Flow Programming Model

Benefits
Automatic dependencies computation

– Correctness
– Productivity

Unmodified sequential algorithm
– Sequential validation/debugging
– Long term perennialty

No forward dependencies
– Deadlock-free by construction

Separation of concerns
– Application algorithm

– End user scientist, application-specific expert
– Fine-tuned, hardware dependent kernels

– Numerical methods expert and/or tool, (e.g. BLAS lib writer, BOAST kernel)
– State-of-the-art scheduling algorithms

– Parallel processing theory expert
– Run-time execution management (StarPU)

– Parallel processing practical expert
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Wrap up: StarPU Status
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API
native C/C++
native Fortran
OpenMP C/C++

Operating System
Linux
MacOS
MS Windows

Accelerators Supported
nVidia CUDA
OpenCL
Intel Xeon Phi (KNC)

New Platforms
IBM POWER8 / OpenPower
Intel Xeon Phi (KNL)

Availability
StarPU project website – http://starpu.gforge.inria.fr/
LGPL License

http://starpu.gforge.inria.fr/


Wrap up: Partnerships

Industrial Partnerships
– Airbus Group, CEA, Total SA, ONERA, IMACS

EU H2020 INTERTWinE
– Runtime systems interoperability

MORSE Associated Team: Inria/UTK/UCD/Kaust
– Linear Algebra

Inria IPL C2S@Exa
– Federation/integration of Inria’s HPC Software

Inria ADT KStar
– OpenMP source-to-source compiler

DGA RAPID Hi-BOX
– FMM toolbox on top of StarPU

PIA ELCI
– Component models for task-based environments

ANR SOLHAR
– Sparse Linear Algebra

ANR SONGS
– SimGrid simulation
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Conclusion

StarPU Overview
A Unified Runtime System for Heterogeneous Multicore Architectures

Programming Model: Sequential Task Flow
Execution Model: Scheduler + DSM

Key combination for:

Portability
Control
Adaptiveness
Optimization

Portability of Performance
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Compilers 

HPC Applications 

StarPU 

Drivers (CPU, CUDA, OpenCL, ...) 

CPU 

Libraries 

GPU … 

Tasks 
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Thanks for your attention.

StarPU runtime system
Web Site: http://starpu.gforge.inria.fr/
LGPL License

KStar OpenMP compiler
Web Site: http://kstar.gforge.inria.fr/
CeCILL-C License

Open to external contributors

http://starpu.gforge.inria.fr/
http://kstar.gforge.inria.fr/
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