
Programming Modern HPC Platforms

1: Task-based Parallel Programming for HPC
2: StarPU, A Unified Runtime for Heterogeneous Architectures

Olivier Aumage, Team STORM
Inria – LaBRI

olivier.aumage@inria.fr

ST RM
Static Optimizations – Runtime Methods

olivier.aumage@inria.fr

O. Aumage – Journée Runtimes 2

1
Task-based Parallel Programming
for HPC

O. Aumage – Journée Runtimes 3

1.1
Runtime Systems

Why use runtime systems for HPC applications?

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 4

Examples of Runtime Systems

Graphics
DirectX, Direct3D (Microsoft Windows)
OpenGL

Networking
MPI (Message Passing Interface), Global Arrays
GASPI / GPI-2
GASNet, CCI
Distributed Shared Memory systems
SHMEM

I/O
MPI-IO
HDF5 libraries
Database engines

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 5

Examples of Runtime Systems

Graphics
DirectX, Direct3D (Microsoft Windows)
OpenGL

Networking
MPI (Message Passing Interface), Global Arrays
GASPI / GPI-2
GASNet, CCI
Distributed Shared Memory systems
SHMEM

I/O
MPI-IO
HDF5 libraries
Database engines

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 5

Examples of Runtime Systems

Graphics
DirectX, Direct3D (Microsoft Windows)
OpenGL

Networking
MPI (Message Passing Interface), Global Arrays
GASPI / GPI-2
GASNet, CCI
Distributed Shared Memory systems
SHMEM

I/O
MPI-IO
HDF5 libraries
Database engines

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 5

Examples of Runtime Systems

Graphics
DirectX, Direct3D (Microsoft Windows)
OpenGL

Networking
MPI (Message Passing Interface), Global Arrays
GASPI / GPI-2
GASNet, CCI
Distributed Shared Memory systems
SHMEM

I/O
MPI-IO
HDF5 libraries
Database engines

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 5

Why use runtime systems for HPC applications?

The Role(s) of Runtime Systems:

Portability

Control

Adaptiveness

Optimization

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 6

Why use runtime systems for HPC applications?

The Role(s) of Runtime Systems:

Portability

Control

Adaptiveness

Optimization

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 6

Why use runtime systems for HPC applications?

The Role(s) of Runtime Systems:

Portability

Control

Adaptiveness

Optimization

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 6

Why use runtime systems for HPC applications?

The Role(s) of Runtime Systems:

Portability

Control

Adaptiveness

Optimization

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 6

Why use runtime systems for HPC applications?

The Role(s) of Runtime Systems:

Portability

Control

Adaptiveness

Optimization

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 6

The Role(s) of Runtime Systems: Portability

Abstraction
– Uniform front-end layer
– Device-independent API
– Targeted by applications

Drivers, plugins
– Device-dependent backend layer
– Targeted by vendors and/or device specialist

Decoupling applications from device specific matters

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 7

The Role(s) of Runtime Systems: Portability

Abstraction
– Uniform front-end layer
– Device-independent API
– Targeted by applications

Drivers, plugins
– Device-dependent backend layer
– Targeted by vendors and/or device specialist

Decoupling applications from device specific matters

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 7

Application

Work Requests

Hardware Devices

The Role(s) of Runtime Systems: Portability

Abstraction
– Uniform front-end layer
– Device-independent API
– Targeted by applications

Drivers, plugins
– Device-dependent backend layer
– Targeted by vendors and/or device specialist

Decoupling applications from device specific matters

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 7

Application

Work Requests

Hardware Devices

The Role(s) of Runtime Systems: Portability

Abstraction
– Uniform front-end layer
– Device-independent API
– Targeted by applications

Drivers, plugins
– Device-dependent backend layer
– Targeted by vendors and/or device specialist

Decoupling applications from device specific matters

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 7

Application

Work Requests

Hardware Devices

The Role(s) of Runtime Systems: Control

Resource mapping
– Deciding which hardware resource to use/not to use for some application

workload
– Spatial work mapping

Scheduling
– Deciding when and in which order to perform some application workload
– Temporal work mapping

Plan application workload execution

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 8

Application

Work Requests

Hardware Devices

The Role(s) of Runtime Systems: Control

Resource mapping
– Deciding which hardware resource to use/not to use for some application

workload
– Spatial work mapping

Scheduling
– Deciding when and in which order to perform some application workload
– Temporal work mapping

Plan application workload execution

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 8

Application

Hardware Devices

The Role(s) of Runtime Systems: Control

Resource mapping
– Deciding which hardware resource to use/not to use for some application

workload
– Spatial work mapping

Scheduling
– Deciding when and in which order to perform some application workload
– Temporal work mapping

Plan application workload execution

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 8

Application

Hardware Devices

The Role(s) of Runtime Systems: Control

Resource mapping
– Deciding which hardware resource to use/not to use for some application

workload
– Spatial work mapping

Scheduling
– Deciding when and in which order to perform some application workload
– Temporal work mapping

Plan application workload execution

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 8

Application

Hardware Devices

The Role(s) of Runtime Systems: Adaptiveness

Discovering, sampling, calibrating
– Detecting qualitative hardware capabilities
– Providing fallbacks, when possible
– Detecting quantitative hardware capabilities

Monitoring, load balancing
– Throttling workload feed
– Reacting to hardware status changes

Cope with effective hardware aptitude and performance level

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 9

The Role(s) of Runtime Systems: Adaptiveness

Discovering, sampling, calibrating
– Detecting qualitative hardware capabilities
– Providing fallbacks, when possible
– Detecting quantitative hardware capabilities

Monitoring, load balancing
– Throttling workload feed
– Reacting to hardware status changes

Cope with effective hardware aptitude and performance level

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 9

Application

Hardware Devices

Fast

Slow

The Role(s) of Runtime Systems: Adaptiveness

Discovering, sampling, calibrating
– Detecting qualitative hardware capabilities
– Providing fallbacks, when possible
– Detecting quantitative hardware capabilities

Monitoring, load balancing
– Throttling workload feed
– Reacting to hardware status changes

Cope with effective hardware aptitude and performance level

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 9

Application

Hardware Devices

Fast

Slow

The Role(s) of Runtime Systems: Adaptiveness

Discovering, sampling, calibrating
– Detecting qualitative hardware capabilities
– Providing fallbacks, when possible
– Detecting quantitative hardware capabilities

Monitoring, load balancing
– Throttling workload feed
– Reacting to hardware status changes

Cope with effective hardware aptitude and performance level

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 9

Application

Hardware Devices

Fast

Slow

The Role(s) of Runtime Systems: Optimization

Capitalize on workload look-ahead to bring performance-oriented added
value

– Requests aggregation
– Resource locality
– Computation offload
– Computation/transfer overlap

Take advantage of the cross-cutting point of view of the runtime system
– Perform global optimizations when possible

Out-weight the cost of an extra, intermediate software layer

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 10

The Role(s) of Runtime Systems: Optimization

Capitalize on workload look-ahead to bring performance-oriented added
value

– Requests aggregation
– Resource locality
– Computation offload
– Computation/transfer overlap

Take advantage of the cross-cutting point of view of the runtime system
– Perform global optimizations when possible

Out-weight the cost of an extra, intermediate software layer

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 10

Application

Hardware Devices

The Role(s) of Runtime Systems: Optimization

Capitalize on workload look-ahead to bring performance-oriented added
value

– Requests aggregation
– Resource locality
– Computation offload
– Computation/transfer overlap

Take advantage of the cross-cutting point of view of the runtime system
– Perform global optimizations when possible

Out-weight the cost of an extra, intermediate software layer

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 10

Application

Hardware Devices

The Role(s) of Runtime Systems: Optimization

Capitalize on workload look-ahead to bring performance-oriented added
value

– Requests aggregation
– Resource locality
– Computation offload
– Computation/transfer overlap

Take advantage of the cross-cutting point of view of the runtime system
– Perform global optimizations when possible

Out-weight the cost of an extra, intermediate software layer

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 10

Application

Hardware Devices

O. Aumage – Journée Runtimes 11

1.2
Runtime Systems for Computing

Evolution of Computing Hardware

Rupture
The “Frequency Wall”

– Processing units cannot run anymore faster

Looking for other sources of performance

Hardware Parallelism
Multiply existing processing power

– Have several processing units work together

Not a new idea. . .
. . . but definitely the key performance factor now

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 12

Evolution of Computing Hardware

Rupture
The “Frequency Wall”

– Processing units cannot run anymore faster

Looking for other sources of performance

Hardware Parallelism
Multiply existing processing power

– Have several processing units work together

Not a new idea. . .
. . . but definitely the key performance factor now

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 12

Evolution of Computing Hardware

Rupture
The “Frequency Wall”

– Processing units cannot run anymore faster

Looking for other sources of performance

Hardware Parallelism
Multiply existing processing power

– Have several processing units work together

Not a new idea. . .
. . . but definitely the key performance factor now

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 12

Problematics

Unified computing runtime system for heterogeneous platforms
Portability of performance

– Abstraction
– Adaptiveness
– Execution Control
– Optimization

Need a way to abstract application execution. . .

. . . into elementary, manageable objects

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 13

O. Aumage – Journée Runtimes 14

1.3
Abstracting Application Workload

Thread Scheduling

Reasoning on Thread objects?

Thread
One instruction flow

– Unbounded flow
– Parallel activity

One state/context per thread
– Stack

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 15

Examples
– OpenMP parallel regions
– libpthread
– C++ threads

Thread Scheduling

Reasoning on Thread objects?

Thread
One instruction flow

– Unbounded flow
– Parallel activity

One state/context per thread
– Stack

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 15

Examples
– OpenMP parallel regions
– libpthread
– C++ threads

Thread Scheduling

Reasoning on Thread objects?

Thread
One instruction flow

– Unbounded flow
– Parallel activity

One state/context per thread
– Stack

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 15

Examples
– OpenMP parallel regions
– libpthread
– C++ threads

Application

CPU

Parallel Platform

Computation
Threads

CPU

CPU

Thread Scheduling

Reasoning on Thread objects?

Thread
One instruction flow

– Unbounded flow
– Parallel activity

One state/context per thread
– Stack

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 15

Examples
– OpenMP parallel regions
– libpthread
– C++ threads

Application

CPU

Parallel Platform

Computation
Threads

CPU

CPU

Thread Scheduling

Reasoning on Thread objects?

Thread
One instruction flow

– Unbounded flow
– Parallel activity

One state/context per thread
– Stack

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 15

Examples
– OpenMP parallel regions
– libpthread
– C++ threads

Application

Computation
Threads

CPU

Parallel Platform

CPU

CPU

Threads: Resources vs Needs

Lack of abstraction
Threads express explicit resource request
instead of application requirements

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 16

Threads: Resources vs Needs

Lack of abstraction
Threads express explicit resource request
instead of application requirements

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 16

Application

CPU

CPU

Parallel Platform

Computation
Threads

Threads: Resources Miss-subscription

Software vs hardware mismatch
Over-subscription
Under-subscription
Fixed number of threads

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 17

Threads: Resources Miss-subscription

Software vs hardware mismatch
Over-subscription
Under-subscription
Fixed number of threads

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 17

Application

CPU

CPU

Parallel Platform

Computation
Threads

Threads: Resources Miss-subscription

Software vs hardware mismatch
Over-subscription
Under-subscription
Fixed number of threads

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 17

Application

CPU

CPU

Parallel Platform

Computation
Threads

Threads: Resources Miss-subscription

Software vs hardware mismatch
Over-subscription
Under-subscription
Fixed number of threads

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 17

Application

CPU

CPU

Parallel Platform

Computation
Threads

Threads: Resources Miss-subscription

Software vs hardware mismatch
Over-subscription
Under-subscription
Fixed number of threads

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 17

Application

CPU

CPU

Parallel Platform

Computation
Threads

Time

Threads: Lack of Semantics

What does a thread really do?
Resource usage?
Inter-thread constraints
Chaining constraints, ordering?

Planning Issues
Unbounded computation
System-controlled context switches

Consequences
Heavy synchronizations: barriers
User-managed fine-grain synchronizations: locks, mutexes
Little to no help from runtime system

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 18

Threads: Load Balancing Issues

Keeping every hardware unit busy
Irregular application, workload
Uncontrolled synchronization shift
Heterogeneous platforms: accelerators, GPU

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 19

Threads: Load Balancing Issues

Keeping every hardware unit busy
Irregular application, workload
Uncontrolled synchronization shift
Heterogeneous platforms: accelerators, GPU

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 19

Application

CPU

Parallel Platform

Computation
Threads

CPU

CPU

Time

Threads: Load Balancing Issues

Keeping every hardware unit busy
Irregular application, workload
Uncontrolled synchronization shift
Heterogeneous platforms: accelerators, GPU

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 19

Application

Computation
Threads

CPU

Parallel Platform

CPU

CPU

Time

Threads: Networking and I/O Issues

Computation/communication overlapping?
Bulk I/O / network transfer mitigation?
Thread-level idle time reduction?

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 20

Threads: Networking and I/O Issues

Computation/communication overlapping?
Bulk I/O / network transfer mitigation?
Thread-level idle time reduction?

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 20

Application

CPU

Parallel Platform

Computation
Threads

CPU

CPU

Time

Threads: Networking and I/O Issues

Computation/communication overlapping?
Bulk I/O / network transfer mitigation?
Thread-level idle time reduction?

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 20

Application

Computation
Threads

CPU

Parallel Platform

CPU

CPU

Time

Network / IO Request

MPI_SEND

Join Fork

Threads: Outcome

Perhaps not the right semantics for end-user application development

Over-constrained concept for application programming

Awkward object to manipulate at the runtime system level

Not well suited to leverage theoretical scheduling results
– Completion?
– Other metrics?

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 21

Task Scheduling
Reasoning on Task objects

Common definition

Elementary computation
– Numerical kernel
– BLAS call
– ...

→ Potential parallel work

Shared (often fixed) pool of worker threads
→ Decoupled engine, to realize a potentially parallel execution

Constraints (with some programming models)
– Input needed
– Output produced
– → Dependencies
– No side effect (no hidden dependencies)

→ Degrees of Freedom in realizing the potential parallelism

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 22

A = A+B

Task = an « elementary » computation

Computation kernel

Task Scheduling
Reasoning on Task objects

Common definition

Elementary computation
– Numerical kernel
– BLAS call
– ...

→ Potential parallel work

Shared (often fixed) pool of worker threads
→ Decoupled engine, to realize a potentially parallel execution

Constraints (with some programming models)
– Input needed
– Output produced
– → Dependencies
– No side effect (no hidden dependencies)

→ Degrees of Freedom in realizing the potential parallelism

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 22

A = A+B

Task = an « elementary » computation

Computation kernel

Task Scheduling
Reasoning on Task objects

Common definition

Elementary computation
– Numerical kernel
– BLAS call
– ...

→ Potential parallel work

Shared (often fixed) pool of worker threads
→ Decoupled engine, to realize a potentially parallel execution

Constraints (with some programming models)
– Input needed
– Output produced
– → Dependencies
– No side effect (no hidden dependencies)

→ Degrees of Freedom in realizing the potential parallelism

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 22

A = A+B

A B

A

Task = an « elementary » computation + dependencies

Input dependencies

Output dependencies

Computation kernel

Tasks: Resources vs Needs?

A task expresses what to do (e.g. which computation)
The runtime remains free to decide the amount of resources to execute a task

Rationalize resource consumption
– Thread and associated stack reused among several tasks

Enforce separation of concerns
– Management code brought out of the application

Open the way to resource allocation optimization
– Cross-cutting view of the application requirements

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 23

Tasks: Resources vs Needs?

A task expresses what to do (e.g. which computation)
The runtime remains free to decide the amount of resources to execute a task

Rationalize resource consumption
– Thread and associated stack reused among several tasks

Enforce separation of concerns
– Management code brought out of the application

Open the way to resource allocation optimization
– Cross-cutting view of the application requirements

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 23

Application

CPU

CPU

Parallel Platform

Tasks: Resources Miss-subscription?

The runtime system may initialize a pool of worker threads according to the
hardware capabilities

The application submit tasks independently to the runtime, independently of the
hardware capabilities

Tasks submitted by the application according to its natural algorithm
– Abstraction with respect to hardware

Workers allocated according to hardware resource, topology
– Typically one thread per core or per hardware thread

Operating system scheduler interference largely eliminated
– No competition between worker threads

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 24

Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

Optimize spatial resource usage
– Decide which computing resource is best suited for a given task

Optimize temporal resource usage
– Decide in which order to execute tasks

Optimize concurrent resource usage
– Decide which pairs of tasks to execute in parallel

No lock directly manipulated by the application

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 25

Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

Optimize spatial resource usage
– Decide which computing resource is best suited for a given task

Optimize temporal resource usage
– Decide in which order to execute tasks

Optimize concurrent resource usage
– Decide which pairs of tasks to execute in parallel

No lock directly manipulated by the application

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 25

Application

CPU

CPU

Parallel Platform

Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

Optimize spatial resource usage
– Decide which computing resource is best suited for a given task

Optimize temporal resource usage
– Decide in which order to execute tasks

Optimize concurrent resource usage
– Decide which pairs of tasks to execute in parallel

No lock directly manipulated by the application

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 25

Application

CPU

CPU

Parallel Platform

Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

Optimize spatial resource usage
– Decide which computing resource is best suited for a given task

Optimize temporal resource usage
– Decide in which order to execute tasks

Optimize concurrent resource usage
– Decide which pairs of tasks to execute in parallel

No lock directly manipulated by the application

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 25

Application

CPU

CPU

Parallel Platform

Tasks: Lack of Semantics?

A task expresses what to do (e.g. which computation), under which constraints.

The runtime system can take advantage of this knowledge

Optimize spatial resource usage
– Decide which computing resource is best suited for a given task

Optimize temporal resource usage
– Decide in which order to execute tasks

Optimize concurrent resource usage
– Decide which pairs of tasks to execute in parallel

No lock directly manipulated by the application

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 25

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

Flexibility
– No need for all tasks to have a uniform duration
– Naturally opens the way to heterogeneous computations, accelerated offloads

Transparency
– No need for explicit yield

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 26

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

Flexibility
– No need for all tasks to have a uniform duration
– Naturally opens the way to heterogeneous computations, accelerated offloads

Transparency
– No need for explicit yield

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 26

Application

CPU

CPU

Parallel Platform

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

Flexibility
– No need for all tasks to have a uniform duration
– Naturally opens the way to heterogeneous computations, accelerated offloads

Transparency
– No need for explicit yield

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 26

Application

CPU

CPU

Parallel Platform

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

Flexibility
– No need for all tasks to have a uniform duration
– Naturally opens the way to heterogeneous computations, accelerated offloads

Transparency
– No need for explicit yield

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 26

Application

CPU

CPU

Parallel Platform

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

Flexibility
– No need for all tasks to have a uniform duration
– Naturally opens the way to heterogeneous computations, accelerated offloads

Transparency
– No need for explicit yield

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 26

Application

CPU CPU

GPU

Heterogeneous Parallel Platform

Tasks: Load Balancing Issues?

Tasks may transparently fill arising idle times as long as sufficient parallelism is
available

The runtime system reacts to the situation observed at any time during the
execution

Flexibility
– No need for all tasks to have a uniform duration
– Naturally opens the way to heterogeneous computations, accelerated offloads

Transparency
– No need for explicit yield

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 26

Application

CPU CPU

GPU

Heterogeneous Parallel Platform

Tasks: Networking and I/O Issues?

Potential 1-to-1 relationship between tasks and network/IO requests

Network/IO request may start as soon as the task producing the data has
been completed

Tasks may be triggered as the result of network/IO requests completion

Significant difference with fork-join models, MPI+X
– Transparent interoperability
– Avoid deferred network/IO requests until next join
– Avoid custom network/IO requests management inside the application code

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 27

Tasks: Outcome

Task = Characterizable work

Well-defined
– Workload
– Completion
– Dependencies
– Similar to the pure function concept from Functional programming domain

Suitable object for modelling
– Constraints
– Degrees of freedom
– Large corpus of task scheduling theory

Enforcing separation of concerns
– Application specialist
– Kernel(s) specialist
– Scheduling theoretician specialist
– Runtime-system specialist

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 28

Programming Modern Platforms using Tasks

Expressing tasks?
Divide and conquer: Cilk (recursive tasks)
OpenMP 3.x and 4.x
Dependencies compiler: PaRSEC (parameterized task graph)
Sequential task flow: StarPU (directed acyclic task graph)

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 29

Programming Modern Platforms using Tasks

Expressing tasks?
Divide and conquer: Cilk (recursive tasks)
OpenMP 3.x and 4.x
Dependencies compiler: PaRSEC (parameterized task graph)
Sequential task flow: StarPU (directed acyclic task graph)

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 30

O. Aumage – Journée Runtimes 31

1.4
The Forerunner Task Model: Cilk

Cilk

The two “all-time” goals in parallel programming

Programming parallel applications
– Easily

Running parallel applications
– Efficiently

The Cilk language and framework played an anticipative role
in reaching these goals for some classes of applications

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 32

Cilk

Cilk in a Few Words

A programming environment
– A language and compiler: keyword-based extension of C
– An execution model and a run-time system

Developed at the MIT
– Supertech Research Group
– Charles E. Leiserson’s team
– Mid-90’s

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 33

History

Academic Era — Cilk
– 1994: Cilk 1
– 1998: The Implementation of the Cilk-5 Multithreaded Language paper

by Matteo Frigo, Charles E. Leiserson, and Keith H. Randall, at PLDI’98

Start-up Era — Cilk++
– 2006: Launch of “Cilk Arts” company
– 2008: Cilk++ version 1.0

Intel Era — Cilk Plus
– 2009: Intel acquires Cilk Arts
– 2010: Intel Cilk Plus released as part of the Intel C++ Compiler
– 2012: Release of the Cilk Plus support for the GNU GCC Compiler,

implemented by Intel

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 34

Context

Middle of nineties

Hardware
SMP: Symmetric Multi-Processors
Need for parallel programming models

Software
Notion of threads: concurrent processing contexts within single process
How to efficiently/easily express application parallelism using threads?

Program Easily?
Parallel program quickly derived from sequential program
Concurrency expressed safely (correctness, consistency)

Run Efficiently?
No over/under-subscription
Load-balancing
Low overhead

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 35

Context

Middle of nineties

Hardware
SMP: Symmetric Multi-Processors
Need for parallel programming models

Software
Notion of threads: concurrent processing contexts within single process
How to efficiently/easily express application parallelism using threads?

Program Easily?
Parallel program quickly derived from sequential program
Concurrency expressed safely (correctness, consistency)

Run Efficiently?
No over/under-subscription
Load-balancing
Low overhead

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 35

Context

Middle of nineties

Hardware
SMP: Symmetric Multi-Processors
Need for parallel programming models

Software
Notion of threads: concurrent processing contexts within single process
How to efficiently/easily express application parallelism using threads?

Program Easily?
Parallel program quickly derived from sequential program
Concurrency expressed safely (correctness, consistency)

Run Efficiently?
No over/under-subscription
Load-balancing
Low overhead

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 35

Context

Middle of nineties

Hardware
SMP: Symmetric Multi-Processors
Need for parallel programming models

Software
Notion of threads: concurrent processing contexts within single process
How to efficiently/easily express application parallelism using threads?

Program Easily?
Parallel program quickly derived from sequential program
Concurrency expressed safely (correctness, consistency)

Run Efficiently?
No over/under-subscription
Load-balancing
Low overhead

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 35

C Extension

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 36

Cilk is a faithful extension of C

Keyword based language
– Per opposition to pragma based

languages (e.g. OpenMP)

Main keywords (original Cilk):
– cilk : declaration of a potentially

parallel routine
– spawn: launch of a potentially

parallel routine
– sync: wait for completion of

launched routines
– inlet : special function to

aggregate results (reduction)
A faithful extension of C

– The C elision of a Cilk program is
a valid C program

C Extension

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 36

Cilk is a faithful extension of C

Keyword based language
– Per opposition to pragma based

languages (e.g. OpenMP)
Main keywords (original Cilk):

– cilk : declaration of a potentially
parallel routine

– spawn: launch of a potentially
parallel routine

– sync: wait for completion of
launched routines

– inlet : special function to
aggregate results (reduction)

A faithful extension of C
– The C elision of a Cilk program is

a valid C program

1 #inc l u d e <c i l k . h>
2

3 c i l k i n t f i b (i n t n) {
4 i f (n < 2) {
5 r e t u r n n ;
6 } e l s e {
7 i n t x , y ;
8 x = spawn f i b (n−1) ;
9 y = spawn f i b (n−2) ;
10 sync ;
11 r e t u r n x+y ;
12 }
13 }

C Extension

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 36

Cilk is a faithful extension of C

Keyword based language
– Per opposition to pragma based

languages (e.g. OpenMP)
Main keywords (original Cilk):

– cilk : declaration of a potentially
parallel routine

– spawn: launch of a potentially
parallel routine

– sync: wait for completion of
launched routines

– inlet : special function to
aggregate results (reduction)

A faithful extension of C
– The C elision of a Cilk program is

a valid C program

1

2

3 i n t f i b (i n t n) {
4 i f (n < 2) {
5 r e t u r n n ;
6 } e l s e {
7 i n t x , y ;
8 x = f i b (n−1) ;
9 y = f i b (n−2) ;
10

11 r e t u r n x+y ;
12 }
13 }

C Extension

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 36

Cilk is a faithful extension of C

Keyword based language
– Per opposition to pragma based

languages (e.g. OpenMP)
Main keywords (original Cilk):

– cilk : declaration of a potentially
parallel routine

– spawn: launch of a potentially
parallel routine

– sync: wait for completion of
launched routines

– inlet : special function to
aggregate results (reduction)

A faithful extension of C
– The C elision of a Cilk program is

a valid C program

1 #inc l u d e <c i l k . h>
2

3 c i l k i n t f i b (i n t n) {
4 i f (n < 2) {
5 r e t u r n n ;
6 } e l s e {
7 i n t x , y ;
8 x = spawn f i b (n−1) ;
9 y = spawn f i b (n−2) ;
10 sync ;
11 r e t u r n x+y ;
12 }
13 }

Cilk Tasks

Notion of frame
State of the current cilk function being executed
Live local variables, function arguments
“Program Counter” (PC)

A Frame is a Task

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 37

Cilk Tasks

Notion of frame
State of the current cilk function being executed
Live local variables, function arguments
“Program Counter” (PC)

A Frame is a Task

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 37

Cilk Task Lists

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 38

Notion of frame deque
One task list per worker
Implemented as a “deque”
(doubly-ended queue of frames)

– Head H
– Tail T

Cilk Task Lists

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 38

Notion of frame deque
One task list per worker
Implemented as a “deque”
(doubly-ended queue of frames)

– Head H
– Tail T

H = T

Worker

8

7

6

5

4

3

1

10

2

9

Cilk Task Lists

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 38

Notion of frame deque
One task list per worker
Implemented as a “deque”
(doubly-ended queue of frames)

– Head H
– Tail T

A worker thread pushes/pops frames
at the Tail side of its deque

T

H

Worker

8

7

6

5

4

3

1

10

2

9

Cilk Task Lists

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 38

Notion of frame deque
One task list per worker
Implemented as a “deque”
(doubly-ended queue of frames)

– Head H
– Tail T

A worker thread pushes/pops frames
at the Tail side of its deque

T

H

Worker

8

7

6

5

4

3

1

10

2

9

Cilk Task Lists

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 38

Notion of frame deque
One task list per worker
Implemented as a “deque”
(doubly-ended queue of frames)

– Head H
– Tail T

A worker thread pushes/pops frames
at the Tail side of its deque

T

H

Worker

8

7

6

5

4

3

1

10

2

9

Cilk Task Lists

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 38

Notion of frame deque
One task list per worker
Implemented as a “deque”
(doubly-ended queue of frames)

– Head H
– Tail T

A worker thread pushes/pops frames
at the Tail side of its deque

T

H

Worker

8

7

6

5

4

3

1

10

2

9

Task Spawn

Upon a spawn, the worker. . .
. . . suspends the parent function
. . . saves the state of the parent function in its frame
. . . pushes the parent frame on its task list

. . . before calling the spawned child function

When the child function completes and returns, the worker. . .
. . . pops the parent frame
. . . restores the state of the parent function from its frame
. . . resumes the parent function

This is more or less what regular functions do. . .

Where is the parallelism?

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 39

Task Spawn

Upon a spawn, the worker. . .
. . . suspends the parent function
. . . saves the state of the parent function in its frame
. . . pushes the parent frame on its task list

. . . before calling the spawned child function

When the child function completes and returns, the worker. . .
. . . pops the parent frame
. . . restores the state of the parent function from its frame
. . . resumes the parent function

This is more or less what regular functions do. . .

Where is the parallelism?

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 39

Task Spawn

Upon a spawn, the worker. . .
. . . suspends the parent function
. . . saves the state of the parent function in its frame
. . . pushes the parent frame on its task list

. . . before calling the spawned child function

When the child function completes and returns, the worker. . .
. . . pops the parent frame
. . . restores the state of the parent function from its frame
. . . resumes the parent function

This is more or less what regular functions do. . .

Where is the parallelism?

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 39

Task Spawn

Upon a spawn, the worker. . .
. . . suspends the parent function
. . . saves the state of the parent function in its frame
. . . pushes the parent frame on its task list

. . . before calling the spawned child function

When the child function completes and returns, the worker. . .
. . . pops the parent frame
. . . restores the state of the parent function from its frame
. . . resumes the parent function

This is more or less what regular functions do. . .

Where is the parallelism?

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 39

Example: Deque Management on Spawn

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 40

1 #inc l u d e <c i l k . h>
2

3 c i l k i n t f i b (i n t n) {
4 i f (n < 2) {
5 r e t u r n n ;
6 } e l s e {
7 i n t x , y ;
8 x = spawn f i b (n−1) ;
9 y = spawn f i b (n−2) ;
10 sync ;
11 r e t u r n x+y ;
12 }
13 }

Example: Deque Management on Spawn

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 40

1 #inc l u d e <c i l k . h>
2

3 c i l k i n t f i b (i n t n) {
4 i f (n < 2) {
5 r e t u r n n ;
6 } e l s e {
7 i n t x , y ;
8 x = spawn f i b (n−1) ;
9 y = spawn f i b (n−2) ;
10 sync ;
11 r e t u r n x+y ;
12 }
13 }

H = T

Worker

8

7

6

5

4

3

1

10

2

9

Example: Deque Management on Spawn

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 40

1 #inc l u d e <c i l k . h>
2

3 c i l k i n t f i b (i n t n) {
4 i f (n < 2) {
5 r e t u r n n ;
6 } e l s e {
7 i n t x , y ;
8 x = spawn f i b (n−1) ;
9 y = spawn f i b (n−2) ;
10 sync ;
11 r e t u r n x+y ;
12 }
13 }

Fib n, step 2

T

H

Worker

8

7

6

5

4

3

1

10

2

9

Example: Deque Management on Spawn

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 40

1 #inc l u d e <c i l k . h>
2

3 c i l k i n t f i b (i n t n) {
4 i f (n < 2) {
5 r e t u r n n ;
6 } e l s e {
7 i n t x , y ;
8 x = spawn f i b (n−1) ;
9 y = spawn f i b (n−2) ;
10 sync ;
11 r e t u r n x+y ;
12 }
13 }

Fib n−1, step 2

Fib n, step 2

T

H

Worker

8

7

6

5

4

3

1

10

2

9

Example: Deque Management on Spawn

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 40

1 #inc l u d e <c i l k . h>
2

3 c i l k i n t f i b (i n t n) {
4 i f (n < 2) {
5 r e t u r n n ;
6 } e l s e {
7 i n t x , y ;
8 x = spawn f i b (n−1) ;
9 y = spawn f i b (n−2) ;
10 sync ;
11 r e t u r n x+y ;
12 }
13 }

Fib n−2, step 2

Fib n−1, step 2

Fib n, step 2

T

H

Worker

8

7

6

5

4

3

1

10

2

9

Example: Deque Management on Spawn

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 40

1 #inc l u d e <c i l k . h>
2

3 c i l k i n t f i b (i n t n) {
4 i f (n < 2) {
5 r e t u r n n ;
6 } e l s e {
7 i n t x , y ;
8 x = spawn f i b (n−1) ;
9 y = spawn f i b (n−2) ;
10 sync ;
11 r e t u r n x+y ;
12 }
13 }

. . .

Fib n−2, step 2

Fib n−1, step 2

Fib n, step 2

T

H

Worker

8

7

6

5

4

3

1

10

2

9

Example: Deque Management on Spawn

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 40

1 #inc l u d e <c i l k . h>
2

3 c i l k i n t f i b (i n t n) {
4 i f (n < 2) {
5 r e t u r n n ;
6 } e l s e {
7 i n t x , y ;
8 x = spawn f i b (n−1) ;
9 y = spawn f i b (n−2) ;
10 sync ;
11 r e t u r n x+y ;
12 }
13 }

Fib 2, step 2

. . .

Fib n−2, step 2

Fib n−1, step 2

Fib n, step 2

T

H

Worker

8

7

6

5

4

3

1

10

2

9

Example: Deque Management on Spawn

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 40

1 #inc l u d e <c i l k . h>
2

3 c i l k i n t f i b (i n t n) {
4 i f (n < 2) {
5 r e t u r n n ;
6 } e l s e {
7 i n t x , y ;
8 x = spawn f i b (n−1) ;
9 y = spawn f i b (n−2) ;
10 sync ;
11 r e t u r n x+y ;
12 }
13 }

. . .

Fib n−2, step 2

Fib n−1, step 2

Fib n, step 2

T

H

Worker

8

7

6

5

4

3

1

10

2

9

Example: Deque Management on Spawn

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 40

1 #inc l u d e <c i l k . h>
2

3 c i l k i n t f i b (i n t n) {
4 i f (n < 2) {
5 r e t u r n n ;
6 } e l s e {
7 i n t x , y ;
8 x = spawn f i b (n−1) ;
9 y = spawn f i b (n−2) ;
10 sync ;
11 r e t u r n x+y ;
12 }
13 }

Fib 2, step 3

. . .

Fib n−2, step 2

Fib n−1, step 2

Fib n, step 2

T

H

Worker

8

7

6

5

4

3

1

10

2

9

Parallelism

Work Stealing paradigm
Idle workers steal work. . .
. . . from other worker’s queues

Work stolen as frame/task
A thief resumes a suspended parent task. . .
. . . while a victim runs its child

Load balancing: Idle workers steal from busy workers

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 41

Parallelism

Work Stealing paradigm
Idle workers steal work. . .
. . . from other worker’s queues

Work stolen as frame/task
A thief resumes a suspended parent task. . .
. . . while a victim runs its child

Load balancing: Idle workers steal from busy workers

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 41

Parallelism

Work Stealing paradigm
Idle workers steal work. . .
. . . from other worker’s queues

Work stolen as frame/task
A thief resumes a suspended parent task. . .
. . . while a victim runs its child

Load balancing: Idle workers steal from busy workers

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 41

Task Spawn [UPDATED]

Upon a spawn, the worker. . .
. . . suspends the parent function
. . . saves the state of the parent function in its frame
. . . pushes the parent frame on its task list

. . . before calling the spawned child function

When the child function completes and returns, the worker. . .
. . . attempts to pop the parent frame
if it succeeds, it. . .

– . . . restores the state of the parent function from its frame
– . . . resumes the parent function

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 42

Task Spawn [UPDATED]

Upon a spawn, the worker. . .
. . . suspends the parent function
. . . saves the state of the parent function in its frame
. . . pushes the parent frame on its task list

. . . before calling the spawned child function

When the child function completes and returns, the worker. . .
. . . attempts to pop the parent frame
if it succeeds, it. . .

– . . . restores the state of the parent function from its frame
– . . . resumes the parent function

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 42

Work Stealing Implementation

Task lists implementation. . .
Doubly-ended queue
Head H

Tail T

. . . with the following rules
Workers push/pop work at the Tail side T of their own deque
An idle worker (thief) steals work at the Head side H of another worker
(victim) deque
T >= H under normal conditions

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 43

Work Stealing Implementation

Task lists implementation. . .
Doubly-ended queue
Head H

Tail T

. . . with the following rules
Workers push/pop work at the Tail side T of their own deque
An idle worker (thief) steals work at the Head side H of another worker
(victim) deque
T >= H under normal conditions

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 43

Example: Work Stealing

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 44

1 #inc l u d e <c i l k . h>
2

3 c i l k i n t f i b (i n t n) {
4 i f (n < 2) {
5 r e t u r n n ;
6 } e l s e {
7 i n t x , y ;
8 x = spawn f i b (n−1) ;
9 y = spawn f i b (n−2) ;
10 sync ;
11 r e t u r n x+y ;
12 }
13 }

Fib 2, step 3

. . .

Fib n−2, step 2

Fib n−1, step 2

Fib n, step 2

T

H

Worker

8

7

6

5

4

3

1

10

2

9

Example: Work Stealing

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 44

1 #inc l u d e <c i l k . h>
2

3 c i l k i n t f i b (i n t n) {
4 i f (n < 2) {
5 r e t u r n n ;
6 } e l s e {
7 i n t x , y ;
8 x = spawn f i b (n−1) ;
9 y = spawn f i b (n−2) ;
10 sync ;
11 r e t u r n x+y ;
12 }
13 }

Fib 2, step 3

. . .

Fib n−2, step 2

Fib n−1, step 2

T

H

Worker

8

7

6

5

4

3

1

10

2

9

Example: Work Stealing

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 44

1 #inc l u d e <c i l k . h>
2

3 c i l k i n t f i b (i n t n) {
4 i f (n < 2) {
5 r e t u r n n ;
6 } e l s e {
7 i n t x , y ;
8 x = spawn f i b (n−1) ;
9 y = spawn f i b (n−2) ;
10 sync ;
11 r e t u r n x+y ;
12 }
13 }

Fib 2, step 3

. . .

Fib n−2, step 2

T

H

Worker

8

7

6

5

4

3

1

10

2

9

Cilk’s Keywords Summary

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 45

cilk : declaration of a potentially
parallel routine
spawn: launch of a potentially
parallel routine
sync: wait for completion of
launched routines

inlet : special function to aggregate
results (reduction)

Cilk’s Keywords Summary

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 45

cilk : declaration of a potentially
parallel routine
spawn: launch of a potentially
parallel routine
sync: wait for completion of
launched routines
inlet : special function to aggregate
results (reduction)

Intel Cilk Plus

URL: http://www.cilkplus.org/

Changes
Supports C and C++
No need to declare Cilk functions

Main keywords
cilk_spawn: similar to original Cilk’s spawn
cilk_sync: similar to original Cilk’s sync
cilk :: reducer <...>
– Template parameterized with a reduction op
– Replacement for inlets

cilk_for : parallel loop
Fortran inspired Array Notation

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 46

http://www.cilkplus.org/

Intel Cilk Plus

URL: http://www.cilkplus.org/

Changes
Supports C and C++
No need to declare Cilk functions

Main keywords
cilk_spawn: similar to original Cilk’s spawn
cilk_sync: similar to original Cilk’s sync
cilk :: reducer <...>
– Template parameterized with a reduction op
– Replacement for inlets

cilk_for : parallel loop
Fortran inspired Array Notation

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 46

http://www.cilkplus.org/

Cilk Plus Parallel Loop

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 47

Work-Stealing Loop

cilk_for keyword
Potentially parallel loop
Recursively divided range
Work-stealing load balancing

1 i n t i ;
2

3 f o r (i =0; i<N; i++) {
4 f (i) ;
5 }
6

7 /∗ − − − − ∗/
8

9 f o r (i =0; i<N; i++) {
10 c i lk_spawn f (i) ;
11 }
12 c i l k_ s ync ;
13

14 /∗ − − − − ∗/
15

16 c i l k _ f o r (i =0; i<N; i++) {
17 f (i) ;
18 }

Other Cilk Plus Ports

Cilk Plus / GCC
Integrated in GCC 4.9.2+

– Tasks
– Array notation
– No cilk_for keyword yet

Usage

1 g++ − f c i l k p l u s − l c i l k r t s −o f i b f i b . cpp

Cilk Plus / LLVM
URL: http://cilkplus.github.io/

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 48

http://cilkplus.github.io/

Programming Modern Platforms using Tasks

Expressing tasks?
Divide and conquer: Cilk (recursive tasks)
OpenMP 3.x and 4.x
Dependencies compiler: PaRSEC (parameterized task graph)
Sequential task flow: StarPU (directed acyclic task graph)

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 49

O. Aumage – Journée Runtimes 50

1.5
Tasks for the Masses: OpenMP

OpenMP

Parallel programming with threads and tasks

Consortium: OpenMP Architecture Review Board (ARB)
C/C++ and Fortran annotations

History
OpenMP 1.x (1997-98), OpenMP 2.x (2000-02)

– Thread-based fork-join programming model design
OpenMP 3.x (2008-11)

– Independent tasks
OpenMP 4.x (2013-15)

– Task with dependencies
– Accelerators / devices

(OpenMP 5.x)
– On-going work
– Support for instrumenting tools (OMPT)

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 51

OpenMP Fork-Join Model

Thread-based parallel regions

1 {
2 #pragma omp p a r a l l e l
3 {
4 p r i n t f (" th r ead ␣number␣%d␣ o f ␣%d\n" , omp_get_thread_num () ,

, omp_get_num_threads ()) ;
5 }
6 }

Team of threads launched during parallel region
Synchronizations using barriers, critical regions or locks

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 52

OpenMP Fork-Join Model

Thread-based parallel loops:

1 {
2 i n t i ;
3

4 #pragma omp p a r a l l e l f o r
5 f o r (i =0; i<n ; i++) {
6 b [i] = (a [i] + a [i −1]) / 2 . 0 ;
7 }
8 }

Team of threads launched during parallel region
Parallel loop mapped on multiple threads
Notion of worksharing

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 53

OpenMP 3.x Independent Tasks Support

Initial task support in OpenMP
Inspired by Cilk
Integrates tasks in the Fork-Join model
Notion of implicit tasks

– Each thread in a parallel region executes one implicit task

Explicit tasks can be created by the pragma omp task
Notion of scheduling point

– Pause / resume point for tasks
– Recursive tasks
– Task synchronization using pragma +omp taskwait, critical regions, locks
– Barriers wait for all tasks created in the parallel region

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 54

OpenMP 3.x Example: Independent Tasks

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 55

1 i n t i t em [N] ;
2

3 vo id g (i n t) ;
4

5 vo id f ()
6 {
7 #pragma omp p a r a l l e l
8 {
9 #pragma omp s i n g l e
10 {
11 i n t i ;
12 f o r (i =0; i<N; i++)
13 #pragma omp task un t i e d
14 g (i tem [i]) ;
15 }
16 }
17 }

OpenMP 3.x Example: Independent Tasks

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 56

1 vo id p r o c e s s_ l i s t _ i t em s (s t r u c t l i s t _ i t em ∗ l i s t)
2 {
3 #pragma omp p a r a l l e l
4 {
5 #pragma omp s i n g l e
6 {
7 s t r u c t l i s t _ i t em ∗ p = l i s t ;
8 wh i l e (p)
9 {
10 #pragma omp task
11 { /∗ p i s f i r s t p r i v a t e ∗/
12 p roce s s_ i t em (p) ;
13 }
14 p = p−>next ;
15 }
16 }
17 }
18 }

OpenMP 4.x Task Support

Extend the task model with data dependencies

Inspired by BSC’s OmpSs, Intel’s task queues
New keywords

– in input data dependence
– out output data dependence
– inout input/output data dependence

Data dependencies
– Lock-less synchronization
– Fine-grained synchronization

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 57

OpenMP 4.x Example: Task Dependencies

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 58

1 vo id f ()
2 {
3 i n t a ;
4

5 #pragma omp p a r a l l e l
6 #pragma omp s i n g l e
7 {
8 #pragma omp task shared (a) depend (out : a)
9 f oo (&a) ;
10

11 #pragma omp task shared (a) depend (i nou t : a)
12 bar (&a) ;
13

14 #pragma omp task shared (a) depend (i n : a)
15 bar (&a) ;
16 }
17 }

Programming Modern Platforms using Tasks

Expressing tasks?
Divide and conquer: Cilk (recursive tasks)
OpenMP 3.x and 4.x
Dependencies compiler: PaRSEC (parameterized task graph)
Sequential task flow: StarPU (directed acyclic task graph)

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 59

O. Aumage – Journée Runtimes 60

1.6
Parametric Task Graph model: PaRSEC

PaRSEC: Introduction and Principles

PaRSEC
Developed at ICL Lab (UTK) and Univ. of Manchester
Parallel + distributed platforms
Compact representation of a graph of tasks

Parameterized task graph (PTG)
Tasks and dependencies expressed in a specific language: JDF
JDF source processed by a compiler
Decentralized distributed execution
Work-stealing load-balancing at node level

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 61

PaRSEC: basic JDF example

1 NB [type=" i n t "]
2

3 Task (k)
4 k = 0 . . NB
5 : t a s k d i s t (k)
6

7 RW A <− (k == 0) ? NEW : A Task (k−1)
8 −> (k < NB) ? A Task (k+1)
9

10 BODY
11 {
12 i n t ∗Aint = (i n t ∗)A ;
13

14 i f (k == 0) {
15 ∗Aint = 0 ;
16 } e l s e {
17 ∗Aint += 1 ;
18 }
19 p r i n t f ("A␣=␣%d\n" , ∗Aint) ;
20 }
21 END

(credit: ICL)
O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 62

PaRSEC: more complex JDF example

1 p o t r f _ z p o t r f (k) [h i g h_ p r i o r i t y = on]
2

3 k = 0 . . descA−>mt−1
4

5 : descA (k , k)
6

7 RW T <− (k == 0) ? descA (k , k) : T po t r f_zhe r k (k−1, k)
8 −> T pot r f_z t r sm (k+1. . descA−>mt−1, k)
9 −> descA (k , k)

10

11 ; (k >= (descA−>mt − PRI_CHANGE)) ? (descA−>mt − k) ∗ (descA
−>mt − k) ∗ (descA−>mt − k) : PRI_MAX

12

13 BODY [type=RECURSIVE]
14 { [. . .] }
15 END
16

17 BODY
18 { [. . .] }
19 END

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 63

PaRSEC: more complex JDF example (cont’d)

1 po t r f_z t r sm (m, k) [h i g h_ p r i o r i t y = on]
2

3 // Execu t i on space
4 m = 1 . . descA−>mt−1
5 k = 0 . . m−1
6

7 // P a r a l l e l p a r t i t i o n i n g
8 : descA (m, k)
9

10 // Parameter s
11 READ T <− T po t r f _ z p o t r f (k)
12 RW C <− (k == 0) ? descA (m, k) : C potrf_zgemm (m, k , k−1)
13 −> A po t r f_zhe r k (k , m)
14 −> A potrf_zgemm (m, k+1. .m−1, k)
15 −> B potrf_zgemm (m+1. . descA−>mt−1, m, k)
16 −> descA (m, k)
17

18 ; (m >= (descA−>mt − PRI_CHANGE)) ? (descA−>mt − m) ∗ (descA
−>mt − m) ∗ (descA−>mt − m) + 3 ∗ ((2 ∗ descA−>mt) − k −
m − 1) ∗ (m − k) : PRI_MAX

19

20 BODY [type=RECURSIVE]
21 {
22 // [. . .]O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 64

Programming Modern Platforms using Tasks

Expressing tasks?
Divide and conquer: Cilk (recursive tasks)
OpenMP 3.x and 4.x
Dependencies compiler: PaRSEC (parameterized task graph)

Sequential task flow: StarPU (directed acyclic task graph)
– See second part: Programming Modern Platforms with the StarPU

Task-Based Runtime System

O. Aumage – Journée Runtimes – 1. Task-based Parallel Programming 65

O. Aumage – Journée Runtimes 66

2
StarPU
A Unified Runtime
for Heterogeneous Platforms

Heterogeneous Parallel Platforms

Heterogeneous Association
General purpose processor
Specialized accelerator

Generalization
Distributed cores, discrete accelerators

– Standalone GPUs
– Intel Xeon Phi (KNC)

Integrated cores
– Intel Skylake / Kaby Lake
– Intel Xeon Phi (KNL)
– AMD Fusion
– nVidia Tegra, ARM big.LITTLE

Combination of various units
– Latency-optimized cores
– Throughput-optimized cores
– Energy-optimized cores

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 67

Example: CPU vs GPU Hardware

Multiple strategies for multiple purposes

CPU
– Strategy

– Large caches
– Large control

– Purpose
– Complex codes, branching
– Complex memory access patterns

– World Rally Championship car
GPU

– Strategy
– Lot of computing power
– Simplified control

– Purpose
– Regular data parallel codes
– Simple memory access patterns

– Formula One car

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 68

CPU

GPU

Control
ALU ALU

ALU ALU

Cache

DRAM

DRAM

Accelerators

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 69

Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-off

A single control unit. . .
. . . for several computing units

Allows flows to diverge
. . . but better avoid it!

Accelerators

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 69

Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-off

Single Instruction Multiple Threads (SIMT)
A single control unit. . .
. . . for several computing units

Allows flows to diverge
. . . but better avoid it!

Accelerators

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 69

Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-off

Single Instruction Multiple Threads (SIMT)
A single control unit. . .
. . . for several computing units

Allows flows to diverge
. . . but better avoid it!

GPU

DRAM

Control

Control
Scalar Cores

(Streaming Processors)

Streaming Multiprocessor

R1 + R2

R5 / R2

Scalar Cores

Accelerators

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 69

Special purpose computing devices
(or general purpose GPUs)

(initially) a discrete expansion card
Rationale: dye area trade-off

Single Instruction Multiple Threads (SIMT)
A single control unit. . .
. . . for several computing units

SIMT is distinct from SIMD
Allows flows to diverge
. . . but better avoid it!

GPU

Control
Scalar Cores

(Streaming Processors)

Streaming Multiprocessor

R1 + R2

...
if(cond){

 ...
 ...
 ...

} else {
 ...
 ...
}
...

StarPU Programming Model: Sequential Task Flow

Express parallelism...
... using the natural program flow

Submit tasks in the sequential flow of the program...
... then let the runtime schedule the tasks asynchronously

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 70

Task Model
StarPU Tasks

Elementary computation
– Some kernel

→ Potential parallel work

Constraints
– Input needed
– Output produced
– → Dependencies

→ Degrees of Freedom in realizing the potential parallelism

Specificities
– Atomic tasks (non-interruptible)
– Flat model (non-recursive)

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 71

A = A+B

A B

A

Task = an « elementary » computation + dependencies

Input dependencies

Output dependencies

Computation kernel

O. Aumage – Journée Runtimes 72

2.1
Let’s Taskify some Linear Algebra Algorithm

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 73

for (j = 0; j < N; j++) {
POTRF (

RW,

A[j][j]);
for (i = j+1; i < N; i++)

TRSM (

RW,

A[i][j],

R,

A[j][j]);
for (i = j+1; i < N; i++) {

SYRK (

RW,

A[i][i],

R,

A[i][j]);
for (k = j+1; k < i; k++)

GEMM (

RW,

A[i][k],

R,

A[i][j],

R,

A[k][j]);
}

}

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 73

for (j = 0; j < N; j++) {
POTRF (RW,A[j][j]);
for (i = j+1; i < N; i++)

TRSM (RW,A[i][j], R,A[j][j]);
for (i = j+1; i < N; i++) {

SYRK (RW,A[i][i], R,A[i][j]);
for (k = j+1; k < i; k++)

GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]);

}
}

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 74

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[j][j]));
for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));
for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));
for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]));

}
}
wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 74

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[j][j]));
for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));
for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));
for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]));

}
}
wait_for_all();

Tasks are submitted asynchronously

StarPU infers data dependences...
... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 74

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[j][j]));
for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));
for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));
for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]));

}
}
wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...

... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 74

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[j][j]));
for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));
for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));
for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]));

}
}
wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 74

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[j][j]));
for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));
for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));
for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]));

}
}
wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 74

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[j][j]));
for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));
for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));
for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]));

}
}
wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 74

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[j][j]));
for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));
for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));
for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]));

}
}
wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 74

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[j][j]));
for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));
for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));
for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]));

}
}
wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 74

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[j][j]));
for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));
for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));
for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]));

}
}
wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 74

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[j][j]));
for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));
for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));
for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]));

}
}
wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 74

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[j][j]));
for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));
for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));
for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]));

}
}
wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 74

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[j][j]));
for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));
for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));
for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]));

}
}
wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks

The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

Sequential Task Flow Graph Building

Example: Cholesky Decomposition

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 74

for (j = 0; j < N; j++) {
task_insert(POTRF (RW,A[j][j]));
for (i = j+1; i < N; i++)

task_insert(TRSM (RW,A[i][j], R,A[j][j]));
for (i = j+1; i < N; i++) {

task_insert(SYRK (RW,A[i][i], R,A[i][j]));
for (k = j+1; k < i; k++)

task_insert(GEMM (RW,A[i][k],
R,A[i][j], R,A[k][j]));

}
}
wait_for_all();

Tasks are submitted asynchronously
StarPU infers data dependences...
... and build a graph of tasks
The graph of tasks is executed

POTRF

GEMM

TRSM

SYRK

StarPU Execution Model: Task Scheduling

Mapping the graph of tasks (DAG) on the hardware
Allocating computing resources
Enforcing dependency constraints
Handling data transfers

Adaptiveness
A single DAG enables multiple schedulings
A single DAG can be mapped on multiple platforms

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 75

M. GPU M. GPU

CPU

CPU

CPU

CPU
CPU

CPU

CPU

CPU

Time

Example: SCHNAPS, Implicit kinetic schemes

SCHNAPS Solver (Inria TONUS)
Example of a task graph submitted to StarPU

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 76

interface_extract_iv_model
sync_task

interface_extract_iv_model sync_task

interface_extract_iv_model
sync_task

interface_residual_assembly_iv_

interface_extract_iv_model sync_task

interface_extract_iv_model sync_task

interface_extract_iv_model

sync_task

interface_extract_iv_model sync_task

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model sync_task

interface_extract_iv_model sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

sync_task

interface_extract_iv_model

sync_task

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model sync_task

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model

sync_task

interface_extract_iv_model

interface_extract_iv_model sync_task

interface_extract_iv_model

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

interface_extract_iv_model
sync_task

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model sync_task

interface_extract_iv_model

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model

sync_task

interface_extract_iv_model

interface_extract_iv_model sync_task

interface_extract_iv_model

interface_residual_assembly_iv_interface_extract_iv_model

sync_task

interface_extract_iv_model

interface_extract_iv_model
sync_task

interface_extract_iv_modelinterface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model

sync_task

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model sync_task

interface_extract_iv_model

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

interface_extract_iv_model

sync_task

interface_residual_assembly_iv_

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model

interface_extract_iv_model

interface_extract_iv_model

interface_extract_iv_model

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model

interface_extract_iv_model

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model

interface_extract_iv_model

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model

interface_extract_iv_model

interface_residual_assembly_iv_

interface_extract_iv_model
interface_residual_assembly_iv_

interface_extract_iv_model

field_residual_assembly_iv_perf interface_boundary_residual_ass
klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

field_residual_assembly_iv_perf

interface_boundary_residual_ass klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf

klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf

klu_solve_iv_perf_model
field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf

interface_boundary_residual_ass
klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf interface_boundary_residual_ass klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf
klu_solve_iv_perf_model field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf

interface_boundary_residual_ass
klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

sync_task

field_residual_assembly_iv_perf

interface_boundary_residual_ass
klu_solve_iv_perf_model interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

field_residual_assembly_iv_perf
klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf

klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf

interface_boundary_residual_ass klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_modelsync_task

field_residual_assembly_iv_perf interface_boundary_residual_ass

klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_modelsync_task

field_residual_assembly_iv_perf
klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

field_residual_assembly_iv_perf klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

field_residual_assembly_iv_perf

interface_boundary_residual_ass

interface_boundary_residual_ass

klu_solve_iv_perf_model

interface_extract_iv_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf
interface_boundary_residual_ass

klu_solve_iv_perf_model
interface_extract_iv_model

field_micro_to_macro_iv_perf_mo
field_micro_relaxation_iv_modelsync_task sync_task

field_residual_assembly_iv_perf
interface_boundary_residual_ass

klu_solve_iv_perf_model
interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf

klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

sync_task

field_residual_assembly_iv_perf

interface_boundary_residual_ass

interface_boundary_residual_ass
klu_solve_iv_perf_model

interface_extract_iv_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf
interface_boundary_residual_ass

klu_solve_iv_perf_model
interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf
interface_boundary_residual_ass

klu_solve_iv_perf_model interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf
klu_solve_iv_perf_model

field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_model

sync_task

field_residual_assembly_iv_perf

interface_boundary_residual_ass

interface_boundary_residual_ass

klu_solve_iv_perf_model interface_extract_iv_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf
interface_boundary_residual_ass

klu_solve_iv_perf_model
interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf interface_boundary_residual_ass

klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf

klu_solve_iv_perf_model field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_modelsync_task

field_residual_assembly_iv_perf

interface_boundary_residual_ass

interface_boundary_residual_ass

klu_solve_iv_perf_model

interface_extract_iv_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf
interface_boundary_residual_ass

klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf

interface_boundary_residual_ass

klu_solve_iv_perf_model

interface_extract_iv_model

field_micro_to_macro_iv_perf_mo

field_micro_relaxation_iv_model

sync_task

sync_task

field_residual_assembly_iv_perf

klu_solve_iv_perf_model field_micro_to_macro_iv_perf_mo field_micro_relaxation_iv_modelsync_task

field_set_to_zero_global field_micro_to_macro_iv_perf_mo

sync_task

field_micro_relaxation_iv_model

field_set_to_zero_global
field_micro_to_macro_iv_perf_mo

sync_task

field_micro_relaxation_iv_model

field_set_to_zero_global

field_micro_to_macro_iv_perf_mo
sync_task

field_micro_relaxation_iv_model

field_set_to_zero_global
field_micro_to_macro_iv_perf_mo sync_task field_micro_relaxation_iv_model

O. Aumage – Journée Runtimes 77

2.2
Now, Leverage
an Accelerated Computing Node

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

Dynamic accelerator selection
Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Dynamic accelerator selection
Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Dynamic accelerator selection
Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Dynamic accelerator selection
Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Dynamic accelerator selection
Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Dynamic accelerator selection
Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Dynamic accelerator selection
Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Dynamic accelerator selection
Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Dynamic accelerator selection
Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Dynamic accelerator selection
Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Dynamic accelerator selection
Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Dynamic accelerator selection

Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Dynamic accelerator selection

Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

Dynamic accelerator selection

Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

GPU0

RAM

Dynamic accelerator selection
Inter-device dependencies

Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

GPU0

RAM

Dynamic accelerator selection
Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

GPU0

RAM

Dynamic accelerator selection
Inter-device dependencies
Transparent data replicates
Automatic data consistency management

StarPU Heterogeneous Execution Model / Data Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 78

GPU1CPU

CPU GPU0

MEM

POTRF

GEMM

TRSM

SYRK

GPU0

RAM

Dynamic accelerator selection
Inter-device dependencies
Transparent data replicates
Automatic data consistency management

Showcase with the Chameleon Linear Algebra Library

UTK, Inria HIEPACS, Inria RUNTIME
Multi-GPU Cholesky decomp., using MAGMA GPU kernels

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 79

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5120 15360 25600 35840 46080

S
p

e
e

d
u

p
 a

g
a

in
s
t

o
n

e
 G

P
U

Matrix order

4
 G

B

3 GPUs + 5 CPUs
3 GPUs
2 GPUs
1 GPU

Showcase with the Chameleon Linear Algebra Library

UTK, Inria HIEPACS, Inria RUNTIME
QR decomp. on 16 CPUs (AMD) + 4 GPUs (C1060) using MAGMA GPU kernels

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 80

“E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, et al. QR Factorization on
a Multicore Node Enhanced with Multiple GPU Accelerators. 25th IEEE IPDPS, 2011.”

Showcase with the Chameleon Linear Algebra Library

UTK, Inria HIEPACS, Inria RUNTIME
QR decomp. on 16 CPUs (AMD) + 4 GPUs (C1060) using MAGMA GPU kernels

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 80

 0

 200

 400

 600

 800

 1000

 0 5000 10000 15000 20000 25000 30000 35000 40000

G
flo

p/
s

Matrix order

4 GPUs + 16 CPUs
4 GPUs + 4 CPUs
3 GPUs + 3 CPUs
2 GPUs + 2 CPUs
1 GPUs + 1 CPUs

Expected increase:
+12 CPUs
~150 Gflops

Measured increase:
+12 CPUs
~200 GFlops

“E. Agullo, C. Augonnet, J. Dongarra, M. Faverge, H. Ltaief, et al. QR Factorization on
a Multicore Node Enhanced with Multiple GPU Accelerators. 25th IEEE IPDPS, 2011.”

Showcase with the Chameleon Linear Algebra Library

QR kernel properties
Kernel SGEQRT
CPU: 9 GFlop/s GPU: 30 GFlop/s Speed-up: 3
Kernel STSQRT
CPU: 12 GFlop/s GPU: 37 GFlop/s Speed-up: 3
Kernel SOMQRT
CPU: 8.5 GFlop/s GPU: 227 GFlop/s Speed-up: 27
Kernel SSSMQ
CPU: 10 GFlop/s GPU: 285 GFlop/s Speed-up: 28

Consequences
Task distribution

– SGEQRT: 20% Tasks on GPU
– SSSMQ: 92% tasks on GPU

Taking advantage of heterogeneity!
– Only do what you are good for
– Don’t do what you are not good for

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 81

Task Mapping using Performance a Model

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 82

Example:
The Deque Model Scheduler

CPU Cores GPU 2GPU 1

Task Mapping using Performance a Model

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 82

Example:
The Deque Model Scheduler

CPU Cores GPU 2GPU 1

Submit

Task Mapping using Performance a Model

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 82

Example:
The Deque Model Scheduler

CPU Cores GPU 2GPU 1

Task Mapping using Performance a Model

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 82

Example:
The Deque Model Scheduler

CPU Cores GPU 2GPU 1

Task Mapping using Performance a Model

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 82

Example:
The Deque Model Scheduler

CPU Cores GPU 2GPU 1

?

Task Mapping using Performance a Model

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 82

Example:
The Deque Model Scheduler

CPU Cores GPU 2GPU 1

Cores

CPU

GPU 2

GPU 1

?

Task Mapping using Performance a Model

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 82

Example:
The Deque Model Scheduler

CPU Cores GPU 2GPU 1

Cores

CPU

GPU 2

GPU 1

? Time

Task Mapping using Performance a Model

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 82

Example:
The Deque Model Scheduler

CPU Cores GPU 2GPU 1

Cores

CPU

GPU 2

GPU 1

? Time

Task Mapping using Performance a Model

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 82

Example:
The Deque Model Scheduler

CPU Cores GPU 2GPU 1

Cores

CPU

GPU 2

GPU 1

Time

Task Mapping using Performance a Model

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 82

Example:
The Deque Model Scheduler

CPU Cores GPU 2GPU 1

Cores

CPU

GPU 2

GPU 1

Time

Example: PaSTIX Sparse Linear Algebra Solver

PaSTIX Solver (Inria HiePACS)
Algorithm + GPU kernels
12 CPU cores (2 Xeon X5650)
3GPUs (3 Tesla M2070)

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 83

O. Aumage – Journée Runtimes 84

2.3
Now, Scale on Heterogeneous Clusters

Distributed Support with StarPU

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 85

Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Initial Data↔Node Mapping
Provided by the application...

node1node0 node3node2

Extends STF Programming Model for Clusters

Almost

preserve the same code

MPI communicator
Mapping function

for (j = 0; j < N; j++) {
POTRF (RW, A[j][j]);
for (i = j+1; i < N; i++)

TRSM (RW, A[i][j], R,A[j][j]);
for (i = j+1; i < N; i++) {

SYRK (RW, A[i][i], R,A[i][j]);
for (k = j+1; k < i; k++)

GEMM (RW, A[i][k],
R,A[i][j], R,A[k][j]);

}
}
task_wait_for_all();

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 86

Extends STF Programming Model for Clusters

Almost preserve the same code
MPI communicator

Mapping function

for (j = 0; j < N; j++) {
POTRF (RW, A[j][j], MPI_COMM_WORLD);
for (i = j+1; i < N; i++)

TRSM (RW, A[i][j], R,A[j][j], MPI_COMM_WORLD);
for (i = j+1; i < N; i++) {

SYRK (RW, A[i][i], R,A[i][j], MPI_COMM_WORLD);
for (k = j+1; k < i; k++)

GEMM (RW, A[i][k],
R,A[i][j], R,A[k][j], MPI_COMM_WORLD);

}
}
task_wait_for_all();

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 86

Extends STF Programming Model for Clusters

Almost preserve the same code
MPI communicator
Mapping function

int getnode(int i, int j) { return((i%p)*q + j%q); }

for (j = 0; j < N; j++) {
POTRF (RW, A[j][j], MPI_COMM_WORLD, getnode(j,j));
for (i = j+1; i < N; i++)

TRSM (RW, A[i][j], R,A[j][j], MPI_COMM_WORLD, getnode(i,j));
for (i = j+1; i < N; i++) {

SYRK (RW, A[i][i], R,A[i][j], MPI_COMM_WORLD, getnode(i,i));
for (k = j+1; k < i; k++)

GEMM (RW, A[i][k],
R,A[i][j], R,A[k][j], MPI_COMM_WORLD, getnode(i,k));

}
}
task_wait_for_all();

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 86

Extends STF Programming Model for Clusters

Almost preserve the same code
MPI communicator
Mapping function

int getnode(int i, int j) { return((i%p)*q + j%q); }
set_rank(A, getnode);

for (j = 0; j < N; j++) {
POTRF (RW, A[j][j], MPI_COMM_WORLD);
for (i = j+1; i < N; i++)

TRSM (RW, A[i][j], R,A[j][j], MPI_COMM_WORLD);
for (i = j+1; i < N; i++) {

SYRK (RW, A[i][i], R,A[i][j], MPI_COMM_WORLD);
for (k = j+1; k < i; k++)

GEMM (RW, A[i][k],
R,A[i][j], R,A[k][j], MPI_COMM_WORLD);

}
}
task_wait_for_all();

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 86

Distributed Support with StarPU

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 87

Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Task↔Node Mapping
Inferred from data location:

– Tasks move to data they modify

No global scheduling
No synchronizations

Inter-node dependence management
Inferred from the task graph edges
Automatic Isend and Irecv calls

node1node0 node3node2

Irecv

Distributed Support with StarPU

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 87

Sequential Task Flow Paradigm on Clusters

Each node unrolls the sequential task flow

Task↔Node Mapping
Inferred from data location:

– Tasks move to data they modify

No global scheduling
No synchronizations

Inter-node dependence management
Inferred from the task graph edges
Automatic Isend and Irecv calls

node1node0 node3node2

Isend

Distributed Scalability Study

Chameleon library (Inria HiePACS)

Ph.D Marc Sergent (STORM+CEA CESTA)
3D electromagnetic test case

Complex double-precision distributed dense Cholesky factorization

Study available in Inria Research Report RR-8927

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 88

Distributed Scalability Study

Chameleon library (Inria HiePACS)
Heterogeneous cluster: 1152 CPU cores+288 GPUs

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 89

 1

 10

 100

 0 100000 200000 300000 400000

T
F

lo
p
/s

Matrix order (N)

DGEMM peak
STF / Chameleon
PTG / DPLASMA

CPU-only DGEMM peak
CPU-only STF / Chameleon
CPU-only PTG / DPLASMA

CPU-only MPI / ScaLAPACK

Unbounded Task Submission Issue

 500

 1000

 2000

 4000

 6000

 10000

 20000

 40000

 60000
 80000

 0 100 200 300 400 500 600 700 800 900

M
e
m

o
ry

 f
o
o
tp

ri
n
t
(M

B
)

Time (s)

Total memory

Out Of Memory

StarPU’s view of allocated memory
Memory physically allocated

Local matrix memory

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 90

Lookahead Window on the Task Submission Side

Control of the task submission flow

Memory tracking
– Account the memory subscription

Task submission throttling
– Blocking mechanism of the task submission flow
– Allows the task submission to be controlled by an external criteria

A control policy which uses the memory tracking to throttle the task
submission flow

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 91

Memory Behaviour Without Memory Control

 500

 1000

 2000

 4000

 6000

 10000

 20000

 40000

 60000
 80000

 0 100 200 300 400 500 600 700 800 900

M
e
m

o
ry

 f
o
o
tp

ri
n
t
(M

B
)

Time (s)

Total memory

Out Of Memory

StarPU’s view of allocated memory
Memory physically allocated

Local matrix memory

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 92

Memory Behaviour With Memory Control

 500

 1000

 2000

 4000

 6000

 10000

 20000

 40000

 60000
 80000

 0 100 200 300 400 500 600 700 800 900

M
e
m

o
ry

 f
o
o
tp

ri
n
t
(M

B
)

Time (s)

Total memory
StarPU’s view of allocated memory

Memory physically allocated
Local matrix memory

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 93

Distributed Scalability Study Results

Chameleon library (Inria HiePACS): C2S@Exa Pole 1 ↔ Pole 3
Heterogeneous cluster: 1152 CPU cores+288 GPUs

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 94

 1

 10

 100

 0 100000 200000 300000 400000

T
F

lo
p
/s

Matrix order (N)

DGEMM peak
STF / Chameleon
PTG / DPLASMA

CPU-only DGEMM peak
CPU-only STF / Chameleon
CPU-only PTG / DPLASMA

CPU-only MPI / ScaLAPACK

O. Aumage – Journée Runtimes 95

2.4
I/O and Out-of-Core Support

Input/Output Support

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 96

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

– Checkpointing

HiBOX Project (DGA RAPID)
Imacs, Airbus

Input/Output Support

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 96

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

– Checkpointing

HiBOX Project (DGA RAPID)
Imacs, Airbus

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 96

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

– Checkpointing

HiBOX Project (DGA RAPID)
Imacs, Airbus

Disk

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 96

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

– Checkpointing

HiBOX Project (DGA RAPID)
Imacs, Airbus

Disk

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 96

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

– Checkpointing

HiBOX Project (DGA RAPID)
Imacs, Airbus

Disk

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 96

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

– Checkpointing

HiBOX Project (DGA RAPID)
Imacs, Airbus

Disk

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 96

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

– Checkpointing

HiBOX Project (DGA RAPID)
Imacs, Airbus

Disk

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 96

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

– Checkpointing

HiBOX Project (DGA RAPID)
Imacs, Airbus

Disk

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 96

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

– Checkpointing

HiBOX Project (DGA RAPID)
Imacs, Airbus

Disk

GPU1CPU

CPU GPU0

MEM

Input/Output Support

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 96

Integration with general StarPU’s memory
management layer

StarPU data handles
Task dependencies
Multiple I/O drivers supported

Many possible use scenarios
Out-of-core / swap
Mitigated startup load / solution
output
Building block for fault tolerance

– Checkpointing

HiBOX Project (DGA RAPID)
Imacs, Airbus

Disk

GPU1CPU

CPU GPU0

MEM

O. Aumage – Journée Runtimes 97

2.5
Programming with StarPU

Basic Example: Scaling a Vector

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 98

1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX] ;

Basic Example: Scaling a Vector

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 99

1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX] ;
3 starpu_data_handle_t vec to r_hand l e ;

Basic Example: Scaling a Vector

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 100

1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX] ;
3 starpu_data_handle_t vec to r_hand l e ;
4

5 /∗ . . . f i l l v e c t o r . . . ∗/
6

7 s ta rpu_vec to r_data_reg i s t e r (&vec to r_hand l e , 0 ,
8 (u i n t p t r_ t) vec to r , NX, s i z e o f (v e c t o r [0]))

;

Basic Example: Scaling a Vector

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 101

1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX] ;
3 starpu_data_handle_t vec to r_hand l e ;
4

5 /∗ . . . f i l l v e c t o r . . . ∗/
6

7 s ta rpu_vec to r_data_reg i s t e r (&vec to r_hand l e , 0 ,
8 (u i n t p t r_ t) vec to r , NX, s i z e o f (v e c t o r [0]))

;
9

10 s t a rpu_ta sk_ in se r t (
11 &sca l_ c l ,
12 STARPU_RW , v ec to r_hand l e ,
13 STARPU_VALUE , &f a c t o r , s i z e o f (f a c t o r) ,
14 0) ;

Basic Example: Scaling a Vector

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 102

1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX] ;
3 starpu_data_handle_t vec to r_hand l e ;
4

5 /∗ . . . f i l l v e c t o r . . . ∗/
6

7 s ta rpu_vec to r_data_reg i s t e r (&vec to r_hand l e , 0 ,
8 (u i n t p t r_ t) vec to r , NX, s i z e o f (v e c t o r [0]))

;
9

10 s t a rpu_ta sk_ in se r t (
11 &sca l_ c l ,
12 STARPU_RW , v ec to r_hand l e ,
13 STARPU_VALUE , &f a c t o r , s i z e o f (f a c t o r) ,
14 0) ;
15

16 s ta rpu_task_wa i t_fo r_a l l () ;

Basic Example: Scaling a Vector

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 103

1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX] ;
3 starpu_data_handle_t vec to r_hand l e ;
4

5 /∗ . . . f i l l v e c t o r . . . ∗/
6

7 s ta rpu_vec to r_data_reg i s t e r (&vec to r_hand l e , 0 ,
8 (u i n t p t r_ t) vec to r , NX, s i z e o f (v e c t o r [0]))

;
9

10 s t a rpu_ta sk_ in se r t (
11 &sca l_ c l ,
12 STARPU_RW , v ec to r_hand l e ,
13 STARPU_VALUE , &f a c t o r , s i z e o f (f a c t o r) ,
14 0) ;
15

16 s ta rpu_task_wa i t_fo r_a l l () ;
17 s ta rpu_data_unreg i s t e r (v e c to r_hand l e) ;
18

19 /∗ . . . d i s p l a y v e c t o r . . . ∗/

Terminology

Codelet
Task
Data handle

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 104

Definition: A Codelet

A Codelet. . .
. . . relates an abstract computation kernel to its implementation(s)
. . . can be instantiated into one or more tasks
. . . defines characteristics common to a set of tasks

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 105

Definition: A Codelet

A Codelet. . .
. . . relates an abstract computation kernel to its implementation(s)
. . . can be instantiated into one or more tasks
. . . defines characteristics common to a set of tasks

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 105

scal_cl

Codelet

Definition: A Codelet

A Codelet. . .
. . . relates an abstract computation kernel to its implementation(s)
. . . can be instantiated into one or more tasks
. . . defines characteristics common to a set of tasks

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 105

scal_cl

Codelet

Definition: A Codelet

A Codelet. . .
. . . relates an abstract computation kernel to its implementation(s)
. . . can be instantiated into one or more tasks
. . . defines characteristics common to a set of tasks

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 105

scal_cl

Codelet

Task 1: will perform a ’scal’ kernel

Definition: A Codelet

A Codelet. . .
. . . relates an abstract computation kernel to its implementation(s)
. . . can be instantiated into one or more tasks
. . . defines characteristics common to a set of tasks

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 105

scal_cl

Codelet

Task 1: will perform a ’scal’ kernel

Definition: A Codelet

A Codelet. . .
. . . relates an abstract computation kernel to its implementation(s)
. . . can be instantiated into one or more tasks
. . . defines characteristics common to a set of tasks

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 105

scal_cl

Codelet

Task 1: will perform a ’scal’ kernel

Task 2: will perform a ’scal’ kernel

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 106

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 106

Codelet

scal_cl

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 106

Codelet

scal_cl

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 106

Codelet

scal_cl

R W

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 106

Codelet

scal_cl

R W

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 106

Codelet

scal_cl

R W

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 106

Codelet

scal_cl

R W
Task 1 waits for input data

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 106

Codelet

scal_cl

R W

R

Task 1 receives its input data

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 106

Codelet

scal_cl

R W
Task 1 is running

Definition: A Task

A Task. . .
. . . is an instantiation of a Codelet
. . . atomically executes a kernel from its beginning to its end
. . . receives some input
. . . produces some output

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 106

Codelet

scal_cl

R W

W

Task 1 outputs data result

Definition: A Data Handle

A Data Handle. . .
. . . designates a piece of data managed by StarPU
. . . is typed (vector, matrix, etc.)
. . . can be passed as input/output for a Task

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 107

Elementary API

Declaring a codelet
Declaring and Managing Data
Writing a Kernel Function
Submitting a task
Waiting for submitted tasks

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 108

Declaring a Codelet

Define a struct starpu_codelet

Plug the kernel function
– Here: scal_cpu_func

Declare the number of data pieces used by the kernel
– Here: A single vector

Declare how the kernel accesses the piece of data
– Here: The vector is scaled in-place, thus R/W

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 109

1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . . .
3 } ;

Declaring a Codelet

Define a struct starpu_codelet
Plug the kernel function

– Here: scal_cpu_func

Declare the number of data pieces used by the kernel
– Here: A single vector

Declare how the kernel accesses the piece of data
– Here: The vector is scaled in-place, thus R/W

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 109

1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . cpu_func = { sca l_cpu_func , NULL } ,
3 . . .
4 } ;

Declaring a Codelet

Define a struct starpu_codelet
Plug the kernel function

– Here: scal_cpu_func
Declare the number of data pieces used by the kernel

– Here: A single vector

Declare how the kernel accesses the piece of data
– Here: The vector is scaled in-place, thus R/W

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 109

1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . cpu_func = { sca l_cpu_func , NULL } ,
3 . n b u f f e r s = 1 ,
4 . . .
5 } ;

Declaring a Codelet

Define a struct starpu_codelet
Plug the kernel function

– Here: scal_cpu_func
Declare the number of data pieces used by the kernel

– Here: A single vector
Declare how the kernel accesses the piece of data

– Here: The vector is scaled in-place, thus R/W

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 109

1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . cpu_func = { sca l_cpu_func , NULL } ,
3 . n b u f f e r s = 1 ,
4 . modes = { STARPU_RW } ,
5 } ;

Declaring and Managing Data

Put data under StarPU control

Initialize a piece of data
Register the piece of data and get a handle

– The vector is now under StarPU control

Use data through the handle
Unregister the piece of data

– The handle is destroyed
– The vector is now back under user control

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 110

Declaring and Managing Data

Put data under StarPU control
Initialize a piece of data

Register the piece of data and get a handle
– The vector is now under StarPU control

Use data through the handle
Unregister the piece of data

– The handle is destroyed
– The vector is now back under user control

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 110

1 f l o a t v e c t o r [NX] ;
2 /∗ . . . f i l l data . . . ∗/

Declaring and Managing Data

Put data under StarPU control
Initialize a piece of data
Register the piece of data and get a handle

– The vector is now under StarPU control

Use data through the handle
Unregister the piece of data

– The handle is destroyed
– The vector is now back under user control

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 110

1 f l o a t v e c t o r [NX] ;
2 /∗ . . . f i l l data . . . ∗/
3

4 starpu_data_handle_t vec to r_hand l e ;
5 s ta rpu_vec to r_data_reg i s t e r (&vec to r_hand l e , 0 ,
6 (u i n t p t r_ t) vec to r , NX, s i z e o f (v e c t o r [0])) ;

Declaring and Managing Data

Put data under StarPU control
Initialize a piece of data
Register the piece of data and get a handle

– The vector is now under StarPU control

Use data through the handle

Unregister the piece of data
– The handle is destroyed
– The vector is now back under user control

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 110

1 f l o a t v e c t o r [NX] ;
2 /∗ . . . f i l l data . . . ∗/
3

4 starpu_data_handle_t vec to r_hand l e ;
5 s ta rpu_vec to r_data_reg i s t e r (&vec to r_hand l e , 0 ,
6 (u i n t p t r_ t) vec to r , NX, s i z e o f (v e c t o r [0])) ;
7

8 /∗ . . . use the v e c t o r th rough the hand l e . . . ∗/

Declaring and Managing Data

Put data under StarPU control
Initialize a piece of data
Register the piece of data and get a handle

– The vector is now under StarPU control

Use data through the handle
Unregister the piece of data

– The handle is destroyed
– The vector is now back under user control

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 110

1 f l o a t v e c t o r [NX] ;
2 /∗ . . . f i l l data . . . ∗/
3

4 starpu_data_handle_t vec to r_hand l e ;
5 s ta rpu_vec to r_data_reg i s t e r (&vec to r_hand l e , 0 ,
6 (u i n t p t r_ t) vec to r , NX, s i z e o f (v e c t o r [0])) ;
7

8 /∗ . . . use the v e c t o r th rough the hand l e . . . ∗/
9

10 s ta rpu_data_unreg i s t e r (v e c to r_hand l e) ;

Writing a Kernel Function

Every kernel function has the same C prototype

Retrieve the vector’s handle
Get vector’s number of elements and base pointer
Get the scaling factor as inline argument
Compute the vector scaling

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 111

1 vo id sca l_cpu_func (vo id ∗ b u f f e r s [] , vo id ∗ c l_a rg) {
2 . . .
3 }

Writing a Kernel Function

Every kernel function has the same C prototype
Retrieve the vector’s handle

Get vector’s number of elements and base pointer
Get the scaling factor as inline argument
Compute the vector scaling

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 111

1 vo id sca l_cpu_func (vo id ∗ b u f f e r s [] , vo id ∗ c l_a rg) {
2 s t r u c t s t a r pu_vec to r_ i n t e r f a c e ∗ vec to r_hand l e = b u f f e r s

[0] ;
3

4 . . .
5 }

Writing a Kernel Function

Every kernel function has the same C prototype
Retrieve the vector’s handle
Get vector’s number of elements and base pointer

Get the scaling factor as inline argument
Compute the vector scaling

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 111

1 vo id sca l_cpu_func (vo id ∗ b u f f e r s [] , vo id ∗ c l_a rg) {
2 s t r u c t s t a r pu_vec to r_ i n t e r f a c e ∗ vec to r_hand l e = b u f f e r s

[0] ;
3

4 uns igned n = STARPU_VECTOR_GET_NX (v e c to r_hand l e) ;
5 f l o a t ∗ v e c t o r = STARPU_VECTOR_GET_PTR (v e c to r_hand l e) ;
6

7 . . .
8 }

Writing a Kernel Function

Every kernel function has the same C prototype
Retrieve the vector’s handle
Get vector’s number of elements and base pointer
Get the scaling factor as inline argument

Compute the vector scaling

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 111

1 vo id sca l_cpu_func (vo id ∗ b u f f e r s [] , vo id ∗ c l_a rg) {
2 s t r u c t s t a r pu_vec to r_ i n t e r f a c e ∗ vec to r_hand l e = b u f f e r s

[0] ;
3

4 uns igned n = STARPU_VECTOR_GET_NX (v e c to r_hand l e) ;
5 f l o a t ∗ v e c t o r = STARPU_VECTOR_GET_PTR (v e c to r_hand l e) ;
6

7 f l o a t ∗ p t r_ f a c t o r = c l_a rg ;
8

9 . . .
10 }

Writing a Kernel Function

Every kernel function has the same C prototype
Retrieve the vector’s handle
Get vector’s number of elements and base pointer
Get the scaling factor as inline argument
Compute the vector scaling

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 111

1 vo id sca l_cpu_func (vo id ∗ b u f f e r s [] , vo id ∗ c l_a rg) {
2 s t r u c t s t a r pu_vec to r_ i n t e r f a c e ∗ vec to r_hand l e = b u f f e r s

[0] ;
3

4 uns igned n = STARPU_VECTOR_GET_NX (v e c to r_hand l e) ;
5 f l o a t ∗ v e c t o r = STARPU_VECTOR_GET_PTR (v e c to r_hand l e) ;
6

7 f l o a t ∗ p t r_ f a c t o r = c l_a rg ;
8

9 uns igned i ;
10 f o r (i = 0 ; i < n ; i++)
11 v e c t o r [i] ∗= ∗ p t r_ f a c t o r ;
12 }

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

The codelet structure
The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 112

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure

The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 112

1 s t a rpu_ta sk_ in se r t (& s c a l _ c l
2 . . .) ;

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure
The StarPU-managed data

The small-size inline data
0 to mark the end of arguments

The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 112

1 s t a rpu_ta sk_ in se r t (& s c a l_ c l ,
2 STARPU_RW , v ec to r_hand l e ,
3 . . .) ;

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure
The StarPU-managed data
The small-size inline data

0 to mark the end of arguments

The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 112

1 s t a rpu_ta sk_ in se r t (& s c a l_ c l ,
2 STARPU_RW , v ec to r_hand l e ,
3 STARPU_VALUE , &f a c t o r , s i z e o f (f a c t o r) ,
4 . . .) ;

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure
The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 112

1 s t a rpu_ta sk_ in se r t (& s c a l_ c l ,
2 STARPU_RW , v ec to r_hand l e ,
3 STARPU_VALUE , &f a c t o r , s i z e o f (f a c t o r) ,
4 0) ;

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure
The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

Notes
The task is submitted non-blockingly

Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 112

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure
The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

Notes
The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .

. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 112

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure
The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

Notes
The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program

This is the Sequential Task Flow Paradigm

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 112

Submitting a task

The starpu_task_insert call
Inserts a task in the StarPU DAG

Arguments
The codelet structure
The StarPU-managed data
The small-size inline data
0 to mark the end of arguments

Notes
The task is submitted non-blockingly
Dependencies are enforced with previously submitted tasks’ data. . .
. . . following the natural order of the program
This is the Sequential Task Flow Paradigm

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 112

Waiting for Submitted Task Completion

Tasks are submitted non-blockingly

Wait for all submitted tasks to complete their work

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 113

Waiting for Submitted Task Completion

Tasks are submitted non-blockingly

Wait for all submitted tasks to complete their work

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 113

1 /∗ non−b l o c k i n g t a s k submi t s ∗/
2 s t a rpu_ta sk_ in se r t (. . .) ;
3 s t a rpu_ta sk_ in se r t (. . .) ;
4 s t a rpu_ta sk_ in se r t (. . .) ;
5 . . .

Waiting for Submitted Task Completion

Tasks are submitted non-blockingly
Wait for all submitted tasks to complete their work

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 113

1 /∗ non−b l o c k i n g t a s k submi t s ∗/
2 s t a rpu_ta sk_ in se r t (. . .) ;
3 s t a rpu_ta sk_ in se r t (. . .) ;
4 s t a rpu_ta sk_ in se r t (. . .) ;
5 . . .

Waiting for Submitted Task Completion

Tasks are submitted non-blockingly
Wait for all submitted tasks to complete their work

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 113

1 /∗ non−b l o c k i n g t a s k submi t s ∗/
2 s t a rpu_ta sk_ in se r t (. . .) ;
3 s t a rpu_ta sk_ in se r t (. . .) ;
4 s t a rpu_ta sk_ in se r t (. . .) ;
5 . . .
6

7 /∗ wa i t f o r a l l t a s k submi t t ed so f a r ∗/
8 s t a r pu_ ta s k_wa i t_ f o r_a l l () ;

Basic Example: Scaling a Vector

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 114

1 f l o a t f a c t o r = 3 . 1 4 ;
2 f l o a t v e c t o r [NX] ;
3 starpu_data_handle_t vec to r_hand l e ;
4

5 /∗ . . . f i l l v e c t o r . . . ∗/
6

7 s ta rpu_vec to r_data_reg i s t e r (&vec to r_hand l e , 0 ,
8 (u i n t p t r_ t) vec to r , NX, s i z e o f (v e c t o r [0]))

;
9

10 s t a rpu_ta sk_ in se r t (
11 &sca l_ c l ,
12 STARPU_RW , v ec to r_hand l e ,
13 STARPU_VALUE , &f a c t o r , s i z e o f (f a c t o r) ,
14 0) ;
15

16 s ta rpu_task_wa i t_fo r_a l l () ;
17 s ta rpu_data_unreg i s t e r (v e c to r_hand l e) ;
18

19 /∗ . . . d i s p l a y v e c t o r . . . ∗/

Heterogeneity: Device Kernels

Extending a codelet to handle heterogeneous platforms

Multiple kernel implementations for a CPU

– SSE, AVX, ... optimized kernels

Kernels implementations for accelerator devices

– OpenCL, NVidia Cuda kernels

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 115

Heterogeneity: Device Kernels

Extending a codelet to handle heterogeneous platforms
Multiple kernel implementations for a CPU

– SSE, AVX, ... optimized kernels

Kernels implementations for accelerator devices

– OpenCL, NVidia Cuda kernels

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 115

1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . cpu_func = { sca l_cpu_func ,
3 sca l_sse_cpu_func , sca l_avx_cpu_func , NULL } ,
4 . n b u f f e r s = 1 ,
5 . modes = { STARPU_RW } ,
6 } ;

Heterogeneity: Device Kernels

Extending a codelet to handle heterogeneous platforms
Multiple kernel implementations for a CPU

– SSE, AVX, ... optimized kernels
Kernels implementations for accelerator devices

– OpenCL, NVidia Cuda kernels

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 115

1 s t r u c t s ta rpu_code l e t s c a l _ c l = {
2 . cpu_func = { sca l_cpu_func ,
3 sca l_sse_cpu_func , sca l_avx_cpu_func , NULL } ,
4 . openc l_ func = { sca l_cpu_openc l , NULL } ,
5 . cuda_func = { scal_cpu_cuda , NULL } ,
6 . n b u f f e r s = 1 ,
7 . modes = { STARPU_RW } ,
8 } ;

Writing a Kernel Function for CUDA

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 116

Writing a Kernel Function for CUDA

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 116

1

2

3

4

5

6

7

8 ex te rn "C" vo id sca l_cuda_func (vo id ∗ b u f f e r s [] , vo id ∗ c l_a rg)
{

9 s t r u c t s t a r pu_vec to r_ i n t e r f a c e ∗ vec to r_hand l e = b u f f e r s
[0] ;

10 uns igned n = STARPU_VECTOR_GET_NX (v e c to r_hand l e) ;
11 f l o a t ∗ v e c t o r = STARPU_VECTOR_GET_PTR (v e c to r_hand l e) ;
12 f l o a t ∗ p t r_ f a c t o r = c l_a rg ;
13

14 . . .
15

16

17

18

19 }

Writing a Kernel Function for CUDA

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 116

1

2

3

4

5

6

7

8 ex te rn "C" vo id sca l_cuda_func (vo id ∗ b u f f e r s [] , vo id ∗ c l_a rg)
{

9 s t r u c t s t a r pu_vec to r_ i n t e r f a c e ∗ vec to r_hand l e = b u f f e r s
[0] ;

10 uns igned n = STARPU_VECTOR_GET_NX (v e c to r_hand l e) ;
11 f l o a t ∗ v e c t o r = STARPU_VECTOR_GET_PTR (v e c to r_hand l e) ;
12 f l o a t ∗ p t r_ f a c t o r = c l_a rg ;
13

14 uns igned th r eads_pe r_b lock = 64 ;
15 uns igned nb l o ck s = (n+threads_per_b lock −1)/

th r eads_pe r_b lock ;
16

17 . . .
18

19 }

Writing a Kernel Function for CUDA

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 116

1

2

3

4

5

6

7

8 ex te rn "C" vo id sca l_cuda_func (vo id ∗ b u f f e r s [] , vo id ∗ c l_a rg)
{

9 s t r u c t s t a r pu_vec to r_ i n t e r f a c e ∗ vec to r_hand l e = b u f f e r s
[0] ;

10 uns igned n = STARPU_VECTOR_GET_NX (v e c to r_hand l e) ;
11 f l o a t ∗ v e c t o r = STARPU_VECTOR_GET_PTR (v e c to r_hand l e) ;
12 f l o a t ∗ p t r_ f a c t o r = c l_a rg ;
13

14 uns igned th r eads_pe r_b lock = 64 ;
15 uns igned nb l o ck s = (n+threads_per_b lock −1)/

th r eads_pe r_b lock ;
16

17 vector_mult_cuda<<<nb locks , th reads_per_b lock , 0 ,
18 s ta rpu_cuda_get_ loca l_s t ream ()>>>(n , vec to r ,∗

p t r_ f a c t o r) ;
19 }

Writing a Kernel Function for CUDA

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 116

1 s t a t i c __global__ vo id vector_mult_cuda (uns igned n ,
2 f l o a t ∗ vec to r , f l o a t f a c t o r

) {
3 uns igned i = b l o c k I d x . x∗blockDim . x + th r e a d I d x . x ;
4

5 . . .
6 }
7

8 ex te rn "C" vo id sca l_cuda_func (vo id ∗ b u f f e r s [] , vo id ∗ c l_a rg)
{

9 s t r u c t s t a r pu_vec to r_ i n t e r f a c e ∗ vec to r_hand l e = b u f f e r s
[0] ;

10 uns igned n = STARPU_VECTOR_GET_NX (v e c to r_hand l e) ;
11 f l o a t ∗ v e c t o r = STARPU_VECTOR_GET_PTR (v e c to r_hand l e) ;
12 f l o a t ∗ p t r_ f a c t o r = c l_a rg ;
13

14 uns igned th r eads_pe r_b lock = 64 ;
15 uns igned nb l o ck s = (n+threads_per_b lock −1)/

th r eads_pe r_b lock ;
16

17 vector_mult_cuda<<<nb locks , th reads_per_b lock , 0 ,
18 s ta rpu_cuda_get_ loca l_s t ream ()>>>(n , vec to r ,∗

p t r_ f a c t o r) ;
19 }

Writing a Kernel Function for CUDA

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 116

1 s t a t i c __global__ vo id vector_mult_cuda (uns igned n ,
2 f l o a t ∗ vec to r , f l o a t f a c t o r

) {
3 uns igned i = b l o c k I d x . x∗blockDim . x + th r e a d I d x . x ;
4 i f (i < n)
5 v e c t o r [i] ∗= f a c t o r ;
6 }
7

8 ex te rn "C" vo id sca l_cuda_func (vo id ∗ b u f f e r s [] , vo id ∗ c l_a rg)
{

9 s t r u c t s t a r pu_vec to r_ i n t e r f a c e ∗ vec to r_hand l e = b u f f e r s
[0] ;

10 uns igned n = STARPU_VECTOR_GET_NX (v e c to r_hand l e) ;
11 f l o a t ∗ v e c t o r = STARPU_VECTOR_GET_PTR (v e c to r_hand l e) ;
12 f l o a t ∗ p t r_ f a c t o r = c l_a rg ;
13

14 uns igned th r eads_pe r_b lock = 64 ;
15 uns igned nb l o ck s = (n+threads_per_b lock −1)/

th r eads_pe r_b lock ;
16

17 vector_mult_cuda<<<nb locks , th reads_per_b lock , 0 ,
18 s ta rpu_cuda_get_ loca l_s t ream ()>>>(n , vec to r ,∗

p t r_ f a c t o r) ;
19 }

StarPU Scheduling Policies

No one size fits all policy
Selectable scheduling policy

– Predefined set of popular policies: eager, work-stealing, etc.

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 117

StarPU Scheduling Policies

No one size fits all policy
Selectable scheduling policy

– Predefined set of popular policies: eager, work-stealing, etc.

Going beyond?

Scheduling is a decision process:
Providing more input to the scheduler. . .
. . . can lead to better scheduling decisions

What kind of information?
Relative importance of tasks

– Priorities
Cost of tasks

– Codelet models
Cost of transferring data

– Bus calibration

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 118

StarPU Scheduling Policies

No one size fits all policy
Selectable scheduling policy

– Predefined set of popular policies: eager, work-stealing, etc.

Going beyond?

Scheduling is a decision process:
Providing more input to the scheduler. . .
. . . can lead to better scheduling decisions

What kind of information?
Relative importance of tasks

– Priorities
Cost of tasks

– Codelet models
Cost of transferring data

– Bus calibration

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 118

Selecting a Scheduling Policy

Use the STARPU_SCHED environment variable

Example 1: selecting the prio scheduler
Example 2: selecting the dm scheduler
Example 3: resetting to default scheduler eager
No need to recompile the application

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 119

Selecting a Scheduling Policy

Use the STARPU_SCHED environment variable
Example 1: selecting the prio scheduler

Example 2: selecting the dm scheduler
Example 3: resetting to default scheduler eager
No need to recompile the application

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 119

1 $ expo r t STARPU_SCHED=p r i o
2 $ my_program
3 . . .

Selecting a Scheduling Policy

Use the STARPU_SCHED environment variable
Example 1: selecting the prio scheduler
Example 2: selecting the dm scheduler

Example 3: resetting to default scheduler eager
No need to recompile the application

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 119

1 $ expo r t STARPU_SCHED=p r i o
2 $ my_program
3 . . .

1 $ expo r t STARPU_SCHED=dm
2 $ my_program
3 . . .

Selecting a Scheduling Policy

Use the STARPU_SCHED environment variable
Example 1: selecting the prio scheduler
Example 2: selecting the dm scheduler
Example 3: resetting to default scheduler eager

No need to recompile the application

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 119

1 $ expo r t STARPU_SCHED=p r i o
2 $ my_program
3 . . .

1 $ expo r t STARPU_SCHED=dm
2 $ my_program
3 . . .

1 $ unse t STARPU_SCHED
2 $ my_program
3 . . .

Selecting a Scheduling Policy

Use the STARPU_SCHED environment variable
Example 1: selecting the prio scheduler
Example 2: selecting the dm scheduler
Example 3: resetting to default scheduler eager
No need to recompile the application

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 119

1 $ expo r t STARPU_SCHED=p r i o
2 $ my_program
3 . . .

1 $ expo r t STARPU_SCHED=dm
2 $ my_program
3 . . .

1 $ unse t STARPU_SCHED
2 $ my_program
3 . . .

Task Mapping using a Performance Model

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 120

Example:
The Deque Model Scheduler

CPU Cores GPU 2GPU 1

Cores

CPU

GPU 2

GPU 1

? Time

Task Mapping using a Performance Model

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 121

Using codelet performance models
– Kernel calibration on each available computing device
– Raw history model of kernels’ past execution times
– Refined models using regression on kernels’ execution times history

Model parameter(s)
– Data size
– User-defined parameters

Data Transfer Cost Modelling for Improved Scheduling

Discrete accelerators
CPU ↔ GPU transfers
Data transfer cost vs kernel offload benefit

Transfer cost modelling
Bus calibration

– Can differ even for identical devices
– Platform’s topology

Data-transfer aware scheduling
Deque Model Data Aware (dmda) scheduling policy variants
Tunable data transfer cost bias

– locality
– vs load balancing

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 122

Data Prefetching

Task states
Submitted

– Task inserted by the application
Ready

– Task’s dependencies resolved
Scheduled

– Task queued on a computing unit
Executing

– Task running on a computing unit

Anticipate on the Scheduled → Executing transition
Prefetch triggered ASAP after Scheduled state
Prefetch may also be triggered by the application

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 123

Unstructured data dependences

Applications
– N-body
– Unstructured meshes
– Multiple logically concurrent updates

Many tasks contributing to shared pieces of data (cells, particles)...
– ... without natural, sequential order

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 124

Unstructured data dependences

Applications
– N-body
– Unstructured meshes
– Multiple logically concurrent updates

Many tasks contributing to shared pieces of data (cells, particles)...
– ... without natural, sequential order

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 124

Artificially ordered, sequential execution

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 125

R/W

R/W

R/W

R/W

R/W

Time

Loss of Parallelism

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 126

Ready
Tasks

Time

Relaxing Over-Constrained Multiple Updates

Issue with the dual purpose of usual Read/Write data dependence mode

Mutual exclusion
– Avoids two tasks modifying a piece of data concurrently

Orderings
– Enforces sequential consistency

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 127

RW

Read/Write RW RW

RW RW

Task Submission DAG Execution
enforcing sequential consistency

Use StarPU’s commutative dependence mode

Semantics
Keep mutual exclusion role
Relax ordering role

Rationale
Integrate Element / Particle / Cell / Entity contributions ASAP

– without artificial ordering, unwanted serialization

Preserve all other StarPU functionalities (e.g.: heterogeneous scheduling,
etc.)
Straightforward use:

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 128

1 s t a rpu_ta sk_ in se r t (& code l e t ,
2 STARPU_R , fmic−>wn_iv_handle [i v] ,
3 STARPU_RW , fmac−>wn_handle ,
4 . . .) ;

Use StarPU’s commutative dependence mode

Semantics
Keep mutual exclusion role
Relax ordering role

Rationale
Integrate Element / Particle / Cell / Entity contributions ASAP

– without artificial ordering, unwanted serialization

Preserve all other StarPU functionalities (e.g.: heterogeneous scheduling,
etc.)
Straightforward use:

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 128

1 s t a rpu_ta sk_ in se r t (& code l e t ,
2 STARPU_R , fmic−>wn_iv_handle [i v] ,
3 STARPU_RW | STARPU_COMMUTE , fmac−>wn_handle ,
4 . . .) ;

Example: ScalFMM Fast Multipole Method

ScalFMM framework (Inria HiePACS)

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 129

l = 2

l = 3

l = 2

l = 3

l = 2

l = 3

Transfer Pass/M2L

Direct Pass/P2P

P2M

M2M L2L

L2P

M2L

M2L

P2P

Upward Pass/P2M M2M Downward Pass/L2L L2P

Example: ScalFMM Fast Multipole Method

ScalFMM framework (Inria HiePACS)

Test on 96-core
homogeneous platform

Comparative
normalized efficiency

GCC OpenMP 4
Native StarPU

– Base
– Priorities + Commutative dependencies

Study available in Inria Research Report RR-8953

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 130

��

���

���

���

���

���

� �� �� �� �� �� �� �� ��
�����������������

�
�
��
�
���
�
�

�
�
��
�
��
�
�
�

�����
����������������
�������������

O. Aumage – Journée Runtimes 131

2.6
High Level Programming Support

KStar OpenMP C/C++ Compiler

High level programming
Source-to-source compiler
Translate directives into runtime system API calls

– StarPU Runtime System
– Kaapi Runtime System (Inria Team AVALON, pole 4)

OpenMP 3.1
– Virtually full support

OpenMP 4.0
– Dependent tasks
– Heterogeneous targets (on-going work)

Based on LLVM/Clang

Available on:
KStar project website – http://kstar.gforge.inria.fr/

Inria joined the OpenMP ARB standardisation consortium

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 132

http://kstar.gforge.inria.fr/

OpenMP Example: Tasks

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 133

1 i n t i t em [N] ;
2

3 vo id g (i n t) ;
4

5 vo id f ()
6 {
7 #pragma omp p a r a l l e l
8 {
9 #pragma omp s i n g l e
10 {
11 i n t i ;
12 f o r (i =0; i<N; i++)
13 #pragma omp task un t i e d
14 g (i tem [i]) ;
15 }
16 }
17 }

OpenMP Example: Task Dependencies

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 134

1 vo id f ()
2 {
3 i n t a ;
4

5 #pragma omp p a r a l l e l
6 #pragma omp s i n g l e
7 {
8 #pragma omp task shared (a) depend (out : a)
9 f oo (&a) ;
10

11 #pragma omp task shared (a) depend (i n : a)
12 bar (&a) ;
13 }
14 }

KStar Compiler Architecture

OpenMP directive translations implemented as an AST Rewriter

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 135

OpenMP annotated C/C++ source file

Runtime-based C/C++ source file

Syntax / Lexical Analysis

Semantical Analysis

Optimisation

Binary Code Generation

kstar compiler source code rewriter

Partial A. S. T.

Abstract Syntax Tree

Source code Translation

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 136

Overview of the compiler Code outlining, keeping OMP data sharing

Basic rewriting example

⌥ ⌅
void print(const char *msg) {

printf("%s\n", msg);
}

int main(int argc , char** argv) {
char mon_msg [] = "Hello !";

#pragma omp task
print(mon_msg);

#pragma omp taskwait
return 0;

}⌃ ⇧

Rewriting steps

• Runtime-specific type creation
• Code wrapper creation
• Task creation in the runtime

⌥ ⌅
void print(const char *msg) {

printf("%s\n", msg);
}

/* Generated arg struct */
struct __gen_argstruct {

char [8] mon_msg;
};

int main(int argc , char** argv) {
char mon_msg [] = "Hello !";

/* Generated task spawn */
omp_push_task(wrapper , args);
/* Generated taskwait */
omp_sched_sync ();
return 0;

}

/* Generated wrapper */
void wrapper(void *_k_arg) {

// The captured stmts param
__gen_argstruct *args = (__gen_argstruct

*) _k_arg;
char [8] mon_msg = args ->mon_msg;
// The captured stmts
print(mon_msg);

}
/* ... */⌃ ⇧

Philippe Virouleau (MOAIS) K’Star Friday, July 11th 15 / 28

Overview of the compiler Code outlining, keeping OMP data sharing

Basic rewriting example

⌥ ⌅
void print(const char *msg) {

printf("%s\n", msg);
}

int main(int argc , char** argv) {
char mon_msg [] = "Hello !";

#pragma omp task
print(mon_msg);

#pragma omp taskwait
return 0;

}⌃ ⇧

Rewriting steps

• Runtime-specific type creation
• Code wrapper creation
• Task creation in the runtime

⌥ ⌅
void print(const char *msg) {

printf("%s\n", msg);
}

/* Generated arg struct */
struct __gen_argstruct {

char [8] mon_msg;
};

int main(int argc , char** argv) {
char mon_msg [] = "Hello !";

/* Generated task spawn */
omp_push_task(wrapper , args);
/* Generated taskwait */
omp_sched_sync ();
return 0;

}

/* Generated wrapper */
void wrapper(void *_k_arg) {

// The captured stmts param
__gen_argstruct *args = (__gen_argstruct

*) _k_arg;
char [8] mon_msg = args ->mon_msg;
// The captured stmts
print(mon_msg);

}
/* ... */⌃ ⇧

Philippe Virouleau (MOAIS) K’Star Friday, July 11th 15 / 28

KStar OpenMP Extensions

Experiments with new capabilities, constructs

Benefiting from OpenMP’s productivity...
... while leveraging advanced runtime system capabilities

Task priorities (now included in OpenMP)

Concurrent write

Commutative dependencies

Selectable task scheduling algorithm

Heterogeneous task scheduling
– Dynamic task implementation selection

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 137

Example: ScalFMM Fast Multipole Method + KStar

ScalFMM framework (Inria HiePACS)

Test on 96-core
homogeneous platform

Comparative
normalized efficiency

GCC OpenMP 4
KStar OpenMP 4 + StarPU

– Base
– Priorities
– Commutative dependencies

Native StarPU
– Base
– Priorities
– Commutative dependencies

Study available in Inria Research Report RR-8953

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 138

��������������������������� ��������������������������� ���������������������������

��������������������������� ��������������������������� ���������������������������

���

���

���

���

���

���

���

���

����

����

����

����

����

����

����

���

���

���

���

���

���

���

���

���

� �� �� �� �� �� �� �� �� � �� �� �� �� �� �� �� �� � �� �� �� �� �� �� �� ��

� �� �� �� �� �� �� �� �� � �� �� �� �� �� �� �� �� � �� �� �� �� �� �� �� ��

�����������������

�
�
��
�
���
�
�

�
�
��
�
��
�
�
�

��������������������

�����������

������������

�����������

������

����������������

������������������

�������������������

Feedback mechanisms

Online Tools
Statistics
Visual debugging

Offline Tools
Trace-based analysis

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 139

Offline Trace-Based Feedback

FxT trace collection
Trace analysis and display

– ViTE Gantt
– Graphviz DAG
– R plots

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 140

Offline Feedback – Trace Analysis

Automatically generated
Dependency graph (DAG)
Activity diagramm (GANTT)

– Visualize with ViTE

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 141

Offline Feedback – Kernel Model

Display the codelet performance models recorded by StarPU
Command-line tool starpu_perfmodel_display

History-based models
Regression-based models

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 142

Offline Feedback – Kernel Model

Display the codelet performance models recorded by StarPU
Command-line tool starpu_perfmodel_display

History-based models
Regression-based models

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 142

1 $ s t a r pu_pe r fmode l_d i s p l a y −s starpu_s lu_lu_mode l_11
2

3 pe r fo rmance model f o r cpu0_pa r a l l e l 1_ imp l 0
4 # hash s i z e mean (us) s tddev (us) n
5 aa6d4e f7 4194304 3.055501 e+05 5.804822 e+04 48

Offline Feedback – Kernel Model Characteristics

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 143

Offline Feedback – Kernel Model Regression Fitness

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 144

Offline Feedback – Synthetic Kernels’ Behaviour

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 145

StarPU-SimGrid in a nutshell PhD L. Stanisic

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 146

Analysis and Simulation with StarPU + SimGrid

Ph.D Suraj Kumar
Inria STORM, Inria POLARIS, Inria HiePACS, Inria RealOpt

Scheduling tasks without executing kernels
Builds on the SimGrid simulation environment
Enables simulating large-scale scenarios

– Large data sets
– Large simulated hardware plaform

Relies on real performance models. . .
. . . collected by StarPU on a real machine

Quickly exploring
Enables fast experiments when designing new scheduling algorithms
Enables fast experiments when designing new platforms

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 147

ScalFMM Simulation with StarPU/SimGrid (L. Stanisic)

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 148

O. Aumage – Journée Runtimes 149

2.7
Going-further

Multicore CPUs: Parallel Tasks

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 150

Multicore CPUs: Parallel Tasks (T. Cojean)

Kernel sweet spots: example with Cholesky factorization kernels
(1x Xeon E5-2680v3 2.5GHz 12 cores)

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 151

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
● ●

●
●

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350

0 1 2 3 4 5 6 7 8 9 10 11 12
number of threads

G
F

lo
p/

s

Kernel ●●●● ●●●● ●●●● ●●●●GEMM POTRF SYRK TRSM

Multicore CPUs: Parallel Tasks
Rationale

Run parallel kernels on multiple CPU cores
Address CPU/GPU computing power imbalance
Address nested-runtime interoperability

Reduce computing power imbalance between CPU and GPU
Big kernel for GPU
Small kernel for a single CPU core
Run “bigger” kernel on several CPU cores

Make use of existing parallel kernels/codes
Interoperability
Libraries: BLAS, FFT, . . .
OpenMP code

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 152

Cores

Task

Task DAG

Execution

Ti
m

e

Multicore CPUs: Parallel Tasks
Rationale

Run parallel kernels on multiple CPU cores
Address CPU/GPU computing power imbalance
Address nested-runtime interoperability

Reduce computing power imbalance between CPU and GPU
Big kernel for GPU
Small kernel for a single CPU core
Run “bigger” kernel on several CPU cores

Make use of existing parallel kernels/codes
Interoperability
Libraries: BLAS, FFT, . . .
OpenMP code

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 152

Multicore CPUs: Parallel Tasks
Rationale

Run parallel kernels on multiple CPU cores
Address CPU/GPU computing power imbalance
Address nested-runtime interoperability

Reduce computing power imbalance between CPU and GPU
Big kernel for GPU
Small kernel for a single CPU core
Run “bigger” kernel on several CPU cores

Make use of existing parallel kernels/codes
Interoperability
Libraries: BLAS, FFT, . . .
OpenMP code

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 152

Multicore CPUs – Technical details

Two flavors of parallel tasks

Fork-mode
StarPU provides threads on the participating cores

SPMD-mode
StarPU launches the task on a single core
. . . and let the task create its own threads
– Black-box mode

Locality enforcement in NUMA context
Combined worker threads

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 153

Multicore CPUs – Technical details

Two flavors of parallel tasks

Fork-mode
StarPU provides threads on the participating cores

SPMD-mode
StarPU launches the task on a single core
. . . and let the task create its own threads
– Black-box mode

Locality enforcement in NUMA context
Combined worker threads

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 153

Multicore CPUs – Technical details

Two flavors of parallel tasks

Fork-mode
StarPU provides threads on the participating cores

SPMD-mode
StarPU launches the task on a single core
. . . and let the task create its own threads
– Black-box mode

Locality enforcement in NUMA context
Combined worker threads

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 153

Multicore CPUs – Technical details

Two flavors of parallel tasks

Fork-mode
StarPU provides threads on the participating cores

SPMD-mode
StarPU launches the task on a single core
. . . and let the task create its own threads
– Black-box mode

Locality enforcement in NUMA context
Combined worker threads

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 153

Composing Multiple Codes

Rationale

Sharing computing resources. . .
. . . among multiple DAGs
. . . simultaneously

Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.

Select scheduling policy per context

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 154

Composing Multiple Codes

Rationale
Sharing computing resources. . .

. . . among multiple DAGs

. . . simultaneously

Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.

Select scheduling policy per context

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 154

Composing Multiple Codes

Rationale
Sharing computing resources. . .
. . . among multiple DAGs

. . . simultaneously

Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.

Select scheduling policy per context

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 154

Composing Multiple Codes

Rationale
Sharing computing resources. . .
. . . among multiple DAGs
. . . simultaneously

Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.

Select scheduling policy per context

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 154

Composing Multiple Codes

Rationale
Sharing computing resources. . .
. . . among multiple DAGs
. . . simultaneously

Scheduling Contexts

Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.

Select scheduling policy per context

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 154

Context 1

Context 2

Composing Multiple Codes

Rationale
Sharing computing resources. . .
. . . among multiple DAGs
. . . simultaneously

Scheduling Contexts
Map DAGs on subsets of computing units

Isolate competing kernels or library calls
– OpenMP kernel, Intel MKL, etc.

Select scheduling policy per context

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 154

Context 1

Context 2

Composing Multiple Codes

Rationale
Sharing computing resources. . .
. . . among multiple DAGs
. . . simultaneously

Scheduling Contexts
Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.

Select scheduling policy per context

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 154

Context 1

Context 2

Composing Multiple Codes

Rationale
Sharing computing resources. . .
. . . among multiple DAGs
. . . simultaneously

Scheduling Contexts
Map DAGs on subsets of computing units
Isolate competing kernels or library calls

– OpenMP kernel, Intel MKL, etc.

Select scheduling policy per context

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 154

Context 1

Context 2

Contexts: Dynamic Resource Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 155

GPU GPU CPU CPU CPU CPU CPU CPU GPU GPU

Context 1

Context 2

Contexts: Dynamic Resource Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 155

GPU GPU CPU CPU CPU CPU CPU CPU GPU GPU

Context 1

Context 2

Contexts: Dynamic Resource Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 155

GPU GPU CPU CPU CPU CPU CPU CPU GPU GPU

Context 1

Context 2

Contexts: Dynamic Resource Management

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 155

GPU GPU CPU CPU CPU CPU CPU CPU GPU GPU

Context 1

Context 2

Going Even Further: Interoperability

How to Make Runtimes, Libs Cooperate?

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 156

Going Even Further: Interoperability

How to Make Runtimes, Libs Cooperate?

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 156

Interoperability

How to Make Runtimes, Libs Cooperate?
Project INTERTWinE (EU H2020, 3-years, 2015-2018)

– Task-based runtimes: StarPU, OmpSs, PaRSEC, OpenMP
– Networking APIs: MPI, GASPI
– Libraries: Plasma, DPlasma
– Applications

Cooperative resource allocation and management
– Cores
– Accelerators
– Memory
– Pinned memory segments
– ...

www.intertwine-project.eu

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 157

www.intertwine-project.eu

Interoperability

How to Make Runtimes, Libs Cooperate?
Project INTERTWinE (EU H2020, 3-years, 2015-2018)

– Task-based runtimes: StarPU, OmpSs, PaRSEC, OpenMP
– Networking APIs: MPI, GASPI
– Libraries: Plasma, DPlasma
– Applications

Cooperative resource allocation and management
– Cores
– Accelerators
– Memory
– Pinned memory segments
– ...

www.intertwine-project.eu

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 157

www.intertwine-project.eu

O. Aumage – Journée Runtimes 158

2.8
A Linear Algebra Solver Stack
On a Task-Based Runtime System

Matrices Over Runtime Systems @ Exascale

Linear algebra

AX = B

Sequential-Task-Flow

for (j = 0; j < N; j++)
Task (A[j]);

Direct Acyclic Graph

−→

Runtime systems

M. GPU M. GPU

CPU

CPU

CPU

CPU
CPU

CPU

CPU

CPU

Time

−→

Heterogeneous
platforms

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 159

Availability
MORSE associated team website:
https://www.inria.fr/en/associate-team/morse

https://www.inria.fr/en/associate-team/morse

O. Aumage – Journée Runtimes 160

2.9
Wrap-Up

Wrap-up: The Sequential Task Flow Programming Model

Benefits
Automatic dependencies computation

– Correctness
– Productivity

Unmodified sequential algorithm
– Sequential validation/debugging
– Long term perennialty

No forward dependencies
– Deadlock-free by construction

Separation of concerns
– Application algorithm

– End user scientist, application-specific expert
– Fine-tuned, hardware dependent kernels

– Numerical methods expert and/or tool, (e.g. BLAS lib writer, BOAST kernel)
– State-of-the-art scheduling algorithms

– Parallel processing theory expert
– Run-time execution management (StarPU)

– Parallel processing practical expert

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 161

Wrap-up: The Sequential Task Flow Programming Model

Benefits
Automatic dependencies computation

– Correctness
– Productivity

Unmodified sequential algorithm
– Sequential validation/debugging
– Long term perennialty

No forward dependencies
– Deadlock-free by construction

Separation of concerns
– Application algorithm

– End user scientist, application-specific expert
– Fine-tuned, hardware dependent kernels

– Numerical methods expert and/or tool, (e.g. BLAS lib writer, BOAST kernel)
– State-of-the-art scheduling algorithms

– Parallel processing theory expert
– Run-time execution management (StarPU)

– Parallel processing practical expert

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 161

Wrap-up: The Sequential Task Flow Programming Model

Benefits
Automatic dependencies computation

– Correctness
– Productivity

Unmodified sequential algorithm
– Sequential validation/debugging
– Long term perennialty

No forward dependencies
– Deadlock-free by construction

Separation of concerns
– Application algorithm

– End user scientist, application-specific expert
– Fine-tuned, hardware dependent kernels

– Numerical methods expert and/or tool, (e.g. BLAS lib writer, BOAST kernel)
– State-of-the-art scheduling algorithms

– Parallel processing theory expert
– Run-time execution management (StarPU)

– Parallel processing practical expert

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 161

Wrap-up: The Sequential Task Flow Programming Model

Benefits
Automatic dependencies computation

– Correctness
– Productivity

Unmodified sequential algorithm
– Sequential validation/debugging
– Long term perennialty

No forward dependencies
– Deadlock-free by construction

Separation of concerns
– Application algorithm

– End user scientist, application-specific expert
– Fine-tuned, hardware dependent kernels

– Numerical methods expert and/or tool, (e.g. BLAS lib writer, BOAST kernel)
– State-of-the-art scheduling algorithms

– Parallel processing theory expert
– Run-time execution management (StarPU)

– Parallel processing practical expert

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 161

Wrap up: StarPU Status

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 162

API
native C/C++
native Fortran
OpenMP C/C++

Operating System
Linux
MacOS
MS Windows

Accelerators Supported
nVidia CUDA
OpenCL
Intel Xeon Phi (KNC)

New Platforms
IBM POWER8 / OpenPower
Intel Xeon Phi (KNL)

Availability
StarPU project website – http://starpu.gforge.inria.fr/
LGPL License

http://starpu.gforge.inria.fr/

Wrap up: Partnerships

Industrial Partnerships
– Airbus Group, CEA, Total SA, ONERA, IMACS

EU H2020 INTERTWinE
– Runtime systems interoperability

MORSE Associated Team: Inria/UTK/UCD/Kaust
– Linear Algebra

Inria IPL C2S@Exa
– Federation/integration of Inria’s HPC Software

Inria ADT KStar
– OpenMP source-to-source compiler

DGA RAPID Hi-BOX
– FMM toolbox on top of StarPU

PIA ELCI
– Component models for task-based environments

ANR SOLHAR
– Sparse Linear Algebra

ANR SONGS
– SimGrid simulation

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 163

Conclusion

StarPU Overview
A Unified Runtime System for Heterogeneous Multicore Architectures

Programming Model: Sequential Task Flow
Execution Model: Scheduler + DSM

Key combination for:

Portability
Control
Adaptiveness
Optimization

Portability of Performance

O. Aumage – Journée Runtimes – 2. StarPU, A Unified Runtime for Heterogeneous Platforms 164

Compilers

HPC Applications

StarPU

Drivers (CPU, CUDA, OpenCL, ...)

CPU

Libraries

GPU …

Tasks

O. Aumage – Journée Runtimes 165

Thanks for your attention.

StarPU runtime system
Web Site: http://starpu.gforge.inria.fr/
LGPL License

KStar OpenMP compiler
Web Site: http://kstar.gforge.inria.fr/
CeCILL-C License

Open to external contributors

http://starpu.gforge.inria.fr/
http://kstar.gforge.inria.fr/

O. Aumage – Journée Runtimes 166

Thanks for your attention.

StarPU runtime system
Web Site: http://starpu.gforge.inria.fr/
LGPL License

KStar OpenMP compiler
Web Site: http://kstar.gforge.inria.fr/
CeCILL-C License

Open to external contributors

http://starpu.gforge.inria.fr/
http://kstar.gforge.inria.fr/

	Task-based Parallel Programmingfor HPC
	Runtime Systems
	Runtime Systems for Computing
	Abstracting Application Workload
	The Forerunner Task Model: Cilk
	Tasks for the Masses: OpenMP
	Parametric Task Graph model: PaRSEC

	StarPUA Unified Runtimefor Heterogeneous Platforms
	Let's Taskify some Linear Algebra Algorithm
	Now, Leveragean Accelerated Computing Node
	Now, Scale on Heterogeneous Clusters
	I/O and Out-of-Core Support
	Programming with StarPU
	High Level Programming Support
	Going-further
	A Linear Algebra Solver StackOn a Task-Based Runtime System
	Wrap-Up

