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Plan of the talk

Problem. −∇ · (aε(x , uε)∇uε) = f in Ω,

uε = 0 on ∂Ω.

1 Introduction

2 One-scale nonlinear problems

3 Homogenization nonlinear problems (two scales)
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Analytical framework: homogenization
Macroscopic behaviour of multiple scale problems (Bakhvalov,

Babuska, Bensoussan, Lions, Papanicolaou, Tartar, Sanchez-Palencia,

Jikov, Kozlov, Oleinik, Nguetseng, Fusco, Moscariello, Boccardo, Murat,...)
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Analytical framework: homogenization
Macroscopic behaviour of multiple scale problems (Bakhvalov,

Babuska, Bensoussan, Lions, Papanicolaou, Tartar, Sanchez-Palencia,

Jikov, Kozlov, Oleinik, Nguetseng, Fusco, Moscariello, Boccardo, Murat,...)

Elliptic example. −∇ · (aε∇uε︸ ︷︷ ︸
ξε

) = f , on Ω, uε = 0 on ∂Ω.

where the tensor aε(x) varies rapidely in space (at the scale ε).
Question: uε → u0 for ε → 0 ? equation for u0 ?
Assuming aε uniformly elliptic and bounded, we have:

uε
H1

⇀ u0, ξε
L2

⇀ ξ0, for ε → 0.
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Analytical framework: homogenization
Macroscopic behaviour of multiple scale problems (Bakhvalov,

Babuska, Bensoussan, Lions, Papanicolaou, Tartar, Sanchez-Palencia,

Jikov, Kozlov, Oleinik, Nguetseng, Fusco, Moscariello, Boccardo, Murat,...)

Elliptic example. −∇ · (aε∇uε︸ ︷︷ ︸
ξε

) = f , on Ω, uε = 0 on ∂Ω.

where the tensor aε(x) varies rapidely in space (at the scale ε).
Question: uε → u0 for ε → 0 ? equation for u0 ?
Assuming aε uniformly elliptic and bounded, we have:

uε
H1

⇀ u0, ξε
L2

⇀ ξ0, for ε → 0.

Homogenization problem: find a0 ∈ L∞(Ω)d×d such that
Elliptic example. −∇ · (a0∇u0︸ ︷︷ ︸

ξ0

) = f , on Ω, u0 = 0 on ∂Ω.

Remark: In general a0 is not a “simple average” (no explicit formula).
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Finite Element Heterogeneous Multiscale Method (E, Engquist 2003)

A(vH ,wH) =

∫

K

a(x)∇vH(x) · ∇wH(x)dx , ∀vH ,wH

H
standard FEM

with quadrature formulas
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Finite Element Heterogeneous Multiscale Method (E, Engquist 2003)

AH(v
H ,wH) =

∑

K∈TH

J∑

j=1

ωKj
a(xKj

)∇vH(xKj
) · ∇wH(xKj

), ∀vH ,wH

H
standard FEM

with quadrature formulas
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Finite Element Heterogeneous Multiscale Method (E, Engquist 2003)

BH(v
H
,w

H) =
∑

K∈TH

J∑

j=1

ωKj

|Kδj |

∫

Kδj

a
ε(x)∇v

h
Kj
(x) · wh

Kj
(x)dx , ∀v

H
,w

H

∈ Sℓ
0(Ω, TH),

where wh
Kj

is the solution of the micro problem wh
Kj

− wH
lin ∈ Sq(Kδj , Th),

∫

Kδj

a
ε(x)∇w

h
Kj
(x) · ∇z

h(x)dx = 0, ∀z
h ∈ S

q(Kδj , Th).

H
standard FEM

with quadrature formulas

H

ε
h

Heterogeneous Multiscale Method (HMM)
(micro meshes: FEs of size h)
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Case of linear parabolic problems (Abdulle and V., 2011)

∂tuε −∇ · (aε∇uε) = f in Ω× (0, 1)

uε(0) = 0 in Ω,

+boundary conditions

random tensor aε:
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Case of linear parabolic problems (Abdulle and V., 2011)

∂tuε −∇ · (aε∇uε) = f in Ω× (0, 1)

uε(0) = 0 in Ω,

+boundary conditions

random tensor aε:

finescale solution uε at t = 1
(FE standard, 106 degrees of freedom)
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A priori error analysis for parabolic homogenization problems
A priori error analysis with convergence rates as a function of the
macro and micro mesh sizes H and h:

‖u0 − uH‖L2(0,T ;H1(Ω)) ≤ C (Hℓ +
(h

ε

)2q

+ rMOD),

‖u0 − uH‖C0([0,T ],L2(Ω)) ≤ C (Hℓ+1 +
(h

ε

)2q

+ rMOD).

where C is a constant independent of H, h, ε.
A key ingredient is the convergence estimates for FEM with
numerical quadrature (Raviart, 1973).

For the time discretization, we consider Runge-Kutta methods of
implicit type (e.g. Radau) and of stabilized explicit type (Chebyshev)
(semigroups techniques in a Hilbert space framework).

A. Abdulle & G. Vilmart, Coupling heterogeneous multiscale FEM

with Runge-Kutta methods for parabolic homogenization problems:

a fully discrete space-time analysis, submitted for publication, 2011.
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Nonlinear problems: numerical homogenization
Problem.

−∇ · (aε(x , uε)∇uε) = f in Ω,

uε = 0 on ∂Ω.

First results for the analysis of a numerical homogenization method
(HMM) by E,Ming,Zhang (2005); Chen, Savchuk 2007 (MsFEM):

Use ideas from Two-grid discretization techniques. . . (Xu 1996).
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Nonlinear problems: numerical homogenization
Problem.

−∇ · (aε(x , uε)∇uε) = f in Ω,

uε = 0 on ∂Ω.

First results for the analysis of a numerical homogenization method
(HMM) by E,Ming,Zhang (2005); Chen, Savchuk 2007 (MsFEM):

Use ideas from Two-grid discretization techniques. . . (Xu 1996).
Questions:

analysis in 3D? their arguments rely on bounds for 2D discrete
Green functions.
Fully discrete analysis (macro and micro errors?)
L2 convergence rates
quadrilateral elements
uniqueness of the (fully discrete) numerical solution (depends on
H, h, . . .)
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One-scale nonlinear problems

−∇ · (a(x , u)∇u) = f in Ω,

u = 0 on ∂Ω.

1 Introduction

2 One-scale nonlinear problems

3 Homogenization nonlinear problems (two scales)

A. Abdulle & G. Vilmart, A priori error estimates for finite element

methods with numerical quadrature for nonmonotone nonlinear

elliptic problems, submitted for publication, 2011, 32 pages.
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Nonlinear nonmonotone problem
Problem. ∇ · (a(x , u)∇u) = f in Ω, u = 0 on ∂Ω.
Important problems: thermal diffusion in materials, water infiltration
in porous medium (Richards), . . .
A priori error analysis for FEM with numerical quadrature ?
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Nonlinear nonmonotone problem
Problem. ∇ · (a(x , u)∇u) = f in Ω, u = 0 on ∂Ω.
Important problems: thermal diffusion in materials, water infiltration
in porous medium (Richards), . . .
A priori error analysis for FEM with numerical quadrature ?

Douglas, Dupont (1975) H1 and L2 estimates, no numerical
quadrature
Nitsche (1977) L∞ estimates, no numerical quadrature
. . .
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Nonlinear nonmonotone problem
Problem. ∇ · (a(x , u)∇u) = f in Ω, u = 0 on ∂Ω.
Important problems: thermal diffusion in materials, water infiltration
in porous medium (Richards), . . .
A priori error analysis for FEM with numerical quadrature ?

Douglas, Dupont (1975) H1 and L2 estimates, no numerical
quadrature
Nitsche (1977) L∞ estimates, no numerical quadrature
. . .
Feistauer, Ženíšek (1987) FEM with numerical integration, for
monotone problems where the weak formulation form satisfies
A(v ; v , v−w)−A(w ;w , v−w) ≥ C‖∇v−∇w‖2

L2(Ω), ∀v ,w ∈ H1
0 .

Feistauer, Křížek, Sobotíková (1993)
FEM with numerical quadrature. For nonmonotone problems,
but no convergence rates).
Korotov, Křížek (2000) FEM with numerical integration (domain
approx. in 3D), no convergence rates
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Basic assumptions on the tensor

Define a(x , s) = (amn(x , s))1≤m,n≤d .

Assume

1. amn continuous on Ω× R,

2. |amn(x , s1)− amn(x , s2)| ≤ Λ1|s1 − s2|, ∀x ∈ Ω, s1, s2 ∈ R.

3. λ‖ξ‖2 ≤ a(x , s)ξ · ξ, ‖a(x , s)ξ‖ ≤ Λ0‖ξ‖, ∀ξ ∈ R
d .
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Basic assumptions on the tensor

Define a(x , s) = (amn(x , s))1≤m,n≤d .

Assume

1. amn continuous on Ω× R,

2. |amn(x , s1)− amn(x , s2)| ≤ Λ1|s1 − s2|, ∀x ∈ Ω, s1, s2 ∈ R.

3. λ‖ξ‖2 ≤ a(x , s)ξ · ξ, ‖a(x , s)ξ‖ ≤ Λ0‖ξ‖, ∀ξ ∈ R
d .

1.,2.,3.⇒ nonlinear elliptic problem has one and only one solution,
classical result, Douglas, Dupont, Serrin (1971) see Chipot (2009)

1.,3.,(Q) ⇒ for all h > 0 the nonlinear problem with numerical
quadrature has at least one solution uh ∈ S ℓ

0(Ω, Th) (Brouwer fixed
point argument).
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A priori error analysis for nonlinear FEM with numerical quadrature

Theorem

u sol. of nonlinear pb., uh sol. of nonlinear FEM with quadrature.
Assume 1.,2.,3.,(Q) and h/hK ≤ C , ∀K ∈ Th. Let ℓ ≥ 1 and

u ∈ Hℓ+1(Ω) ∩ W 1,∞(Ω),

amn ∈ W ℓ+1,∞(Ω× R), ∀m, n = 1 . . . d .

Assume that ∂uamn ∈ W 1,∞(Ω× R), and that ∂uamn(x , s) and
∂uuamn(x , s) are continuous and bounded on Ω× R.
Then, there exists h0 > 0 s.t. for all h ≤ h0, uh is unique and

‖u − uh‖H1(Ω) ≤ Chℓ, ‖u − uh‖L2(Ω) ≤ Chℓ+1.

⇒ For linear problems, we recover estimates of Ciarlet, Raviart
(1972) with the same assumptions (excepted u ∈ W 1,∞(Ω) and the
inverse assumption h/hK ≤ C , ∀K ∈ Th).
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A priori error analysis for nonlinear FEM with numerical quadrature

Theorem

u sol. of nonlinear pb., uh sol. of nonlinear FEM with quadrature.
Assume 1.,2.,3.,(Q) and h/hK ≤ C , ∀K ∈ Th. Let ℓ ≥ 1 and

u ∈ Hℓ+1(Ω) ∩ W 1,∞(Ω),

amn ∈ W ℓ+1,∞(Ω× R), ∀m, n = 1 . . . d .

Assume that ∂uamn ∈ W 1,∞(Ω× R), and that ∂uamn(x , s) and
∂uuamn(x , s) are continuous and bounded on Ω× R.
Then, there exists h0 > 0 s.t. for all h ≤ h0, uh is unique and

‖u − uh‖H1(Ω) ≤ Chℓ, ‖u − uh‖L2(Ω) ≤ Chℓ+1.

Ingredients of the proof: Gagliardo-Niremberg inequality, compactness
argument, Aubin-Nitche’s duality argument. Study of FEM with numerical
quadrature for the linearized differential operator (non-coercive, but
satisfying the Gårding inequality), Schatz’s compactness argument.
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Idea of the analysis: convergences rates
Step 1. Using the boundedness of uh in H1(Ω), the compact injection
H1(Ω) ⊂ L2(Ω) and the uniqueness of u, we show

‖u − uh‖L2(Ω) → 0 for h → 0.
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Idea of the analysis: convergences rates
Step 1. Using the boundedness of uh in H1(Ω), the compact injection
H1(Ω) ⊂ L2(Ω) and the uniqueness of u, we show

‖u − uh‖L2(Ω) → 0 for h → 0.

Step 2. Using estimates for A − AH (using the Bramble-Hilbert lemma)

and the Gagliardo-Niremberg inequality ‖v‖2
L3(Ω) ≤ C‖v‖L2(Ω)‖v‖H1(Ω)

(dimΩ ≤ 3), we derive

‖u − uh‖H1(Ω) ≤ C (hℓ + ‖u − uh‖L2(Ω))
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Idea of the analysis: convergences rates
Step 1. Using the boundedness of uh in H1(Ω), the compact injection
H1(Ω) ⊂ L2(Ω) and the uniqueness of u, we show

‖u − uh‖L2(Ω) → 0 for h → 0.

Step 2. Using estimates for A − AH (using the Bramble-Hilbert lemma)

and the Gagliardo-Niremberg inequality ‖v‖2
L3(Ω) ≤ C‖v‖L2(Ω)‖v‖H1(Ω)

(dimΩ ≤ 3), we derive

‖u − uh‖H1(Ω) ≤ C (hℓ + ‖u − uh‖L2(Ω))

Step 3. Using the Aubin-Nitche duality argument, we show

‖u − uh‖L2(Ω) ≤ C (hℓ + ‖u − uh‖2
H1(Ω))

‖u − uh‖L2(Ω) ≤ C (hℓ+1 + ‖u − uh‖2
H1(Ω))

The idea is to consider the adjoint L∗ of the linearized differential
operator, i.e. Lϕ := −∇

(
a(·, u)∇ϕ+ ϕ∂ua(·, u)∇u

)
.
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The Newton method and the uniqueness of u
h

Newton method for the non-linear FEM. Initial guess zh
0 ≈ uh.

Nh(z
h
k ; z

h
k+1−zh

k , v
h) = Fh(v

h)−(a(zh
k )∇zh

k ,∇vh)h, ∀vh ∈ S ℓ
0(Ω, Th),
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The Newton method and the uniqueness of u
h

Newton method for the non-linear FEM. Initial guess zh
0 ≈ uh.

Nh(z
h
k ; z

h
k+1−zh

k , v
h) = Fh(v

h)−(a(zh
k )∇zh

k ,∇vh)h, ∀vh ∈ S ℓ
0(Ω, Th),

Theorem (Convergence of the Newton method)

Under assumptions of theorem, there exist h0, δ > 0 s.t. if h ≤ h0

and σh‖zh
0 − uh‖H1(Ω) ≤ δ, then {zh

k } is well defined, and

‖zh
k+1 − uh‖H1(Ω) ≤ Cσh‖zh

k − uh‖2
H1(Ω).

(σh ≤ C (1 + | log h|)1/2 for d = 2, σh ≤ Ch−1/2 for d = 3).
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The Newton method and the uniqueness of u
h

Newton method for the non-linear FEM. Initial guess zh
0 ≈ uh.

Nh(z
h
k ; z

h
k+1−zh

k , v
h) = Fh(v

h)−(a(zh
k )∇zh

k ,∇vh)h, ∀vh ∈ S ℓ
0(Ω, Th),

Theorem (Convergence of the Newton method)

Under assumptions of theorem, there exist h0, δ > 0 s.t. if h ≤ h0

and σh‖zh
0 − uh‖H1(Ω) ≤ δ, then {zh

k } is well defined, and

‖zh
k+1 − uh‖H1(Ω) ≤ Cσh‖zh

k − uh‖2
H1(Ω).

(σh ≤ C (1 + | log h|)1/2 for d = 2, σh ≤ Ch−1/2 for d = 3).

Proof of the uniqueness of uh. Given two solutions uh, ũh, apply the
Newton method convergence theorem with initial guess zh

0 := ũh.
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Homogenization nonlinear problems (two scales)

−∇ · (aε(x , uε)∇uε) = f in Ω,

uε = 0 on ∂Ω.

1 Introduction

2 One-scale nonlinear problems

3 Homogenization nonlinear problems (two scales)

A. Abdulle & G. Vilmart, Analysis of the finite element heterogeneous

multiscale method for nonmonotone elliptic homogenization

problems, submitted for publication, 2011, 32 pages.
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Fully discrete error analysis

Theorem
u0 solution of homogenized problem. Assume (H). Then there exist
r0 > 0 and H0 > 0 such that if H ≤ H0, rHMM ≤ r0, any solution uH

of the FE-HMM satisfies

‖u0 − uH‖H1(Ω) ≤ C (Hℓ + rHMM)

‖u0 − uH‖L2(Ω) ≤ C (Hℓ+1 + rHMM)

rHMM is analyzed similarly as for linear problems:
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Fully discrete error analysis

Theorem
u0 solution of homogenized problem. Assume (H). Then there exist
r0 > 0 and H0 > 0 such that if H ≤ H0, rHMM ≤ r0, any solution uH

of the FE-HMM satisfies

‖u0 − uH‖H1(Ω) ≤ C (Hℓ + rHMM)

‖u0 − uH‖L2(Ω) ≤ C (Hℓ+1 + rHMM)

rHMM is analyzed similarly as for linear problems:

rHMM ≤ C
(h

ε

)2q

+ rMOD

Remark. rMOD modeling error
If aε locally periodic and δ = ε ⇒ rMOD = 0.
Otherwise: aε locally periodic with δ/ε /∈ N

∗ with Dirichlet bound.
cond. ⇒ resonance errors e.g. rHMM ≤ δ + ε/δ.
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The Newton method and the uniqueness of the solution

Theorem (Convergence of the Newton method)

If in addition, ‖uH‖W 1,6 ≤ C and rHMM + r ′HMM ≤ r ′0 and H ≤ H0,
then the Newton method to compute uH is well defined and
converges (in a neighbour of uH).

Theorem (Uniqueness of the FE-HMM solution)

For a (non-uniformly) periodic tensor with periodic coupling
FE-HMM has a unique solution uH for all H, h satisfying

(h

ε

)2q

≤ H, h ≤ h0, H ≤ H0.
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Numerical experiment: convergence rates
Example (2D multiscale problem, ℓ = 1, q = 1)
Macro mesh refinement, fixed micro mesh (4 × 4, 8 × 8, 16 × 16, . . .)
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H1 error

L2 errorSlope 1

Slope 2

aε(x , s) = diag
(

(2 + sin(2πx1/ε))(1 + x1 sin(πs)), (2 + sin(2πx2/ε))(2 + arctan(s)
)

.

‖u0 − uH‖H1(Ω) ≤ C (H +(h/ε)2) ‖u0 − uH‖L2(Ω) ≤ C (H2 +(h/ε)2).
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Numerical example: Richards equation (stationary state)
Model for water infiltration in unsaturated porous media.

Porous media Permeability tensor (exponential model)
aε(s) = αε(x)eα

ε(x)s

FE-HMM. Pressure level curves.
(macro and micro mesh sizes 32 × 32). FEM. mesh size 32 × 32 (unresolved).
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Post-processing procedure
Question: How can we reconstruct the oscillatory solution uε from
the homogenized solution u0 ?
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Post-processing procedure
Question: How can we reconstruct the oscillatory solution uε from
the homogenized solution u0 ?

For linear problems ∇ · (a(x , x/ε)∇uε) = f , it is well known that

‖uε − u0‖L2(Ω) ≤ C
√
ε, (provided smoothness assumptions)

but uε ⇀ u0 weakly in H1(Ω). For a strong H1 convergence we
need a corrector:

‖uε − u0 − uε
1‖H1(Ω) ≤ C

√
ε

where uε
1(x) := ε

∑d

j=1 χ
j(x , x/ε)∂u0(x)

∂xj
.

It is known that uε ≈ u0 + uε
1 can be approximated using the

FE-HMM by extending periodically the micro problem solutions.
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Post-processing procedure
Question: How can we reconstruct the oscillatory solution uε from
the homogenized solution u0 ?

Theorem (Boccardo, Murat, 1981) Consider nonlinear problems

∇ · (a(x , x/ε, uε)∇uε) = f ,

then, any corrector uε
1 for the linear problem

∇ · (a(x , x/ε, u0)∇uε) = f

is also a corrector for the nonlinear problem:

uε − u0 − uε
1 → 0 strongly in L1

loc(Ω)
d .
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Post-processing procedure
Question: How can we reconstruct the oscillatory solution uε from
the homogenized solution u0 ?

Theorem (Boccardo, Murat, 1981) Consider nonlinear problems

∇ · (a(x , x/ε, uε)∇uε) = f ,

then, any corrector uε
1 for the linear problem

∇ · (a(x , x/ε, u0)∇uε) = f

is also a corrector for the nonlinear problem:

uε − u0 − uε
1 → 0 strongly in L1

loc(Ω)
d .

⇒ For the considered class of nonlinear problems, we can apply the
standard FE-HMM post-processing procedure to the linear
problem

∇ · (a(x , x/ε, uH)∇ũε) = f .

This yields an approximation of uε in H1(Ω).
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Summary

We studied FEMs with numerial quadrature for nonmonotone
nonlinear elliptic problems.

One-scale problems:

Optimal a priori H1 and L2 estimates on FEM.

Newton method convergence and uniqueness of FEM solution
(for a sufficiently fine mesh).

Homogenization problems (two-scales):

Optimal fully discrete error analysis (H1 and L2 norms) where
both the macro and micro errors are take into account (mesh
sizes H, h have to be refined simultaneously).

Newton method convergence and uniqueness of FEM solution
(for sufficiently fine macro and micro meshes).
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