SCHÉMAS VOLUMES FINIS POUR LE PROBLÈME DE STOKES À VISCOSITÉ VARIABLE

Stella Krell

Institut National de recherche en Informatique et en Automatique,

Lille - Nord Europe, équipe SIMPAF.

Journées Gdr Calcul, IHP, le 5 juillet 2011.

PLAN

1 L'APPROCHE DDFV POUR LE PROBLÈME DE STOKES

2 LE PROBLÈME AVEC VISCOSITÉ DISCONTINUE

3 Conclusion

Stella Krell 2/49

PLAN

1 L'APPROCHE DDFV POUR LE PROBLÈME DE STOKES

2 LE PROBLÈME AVEC VISCOSITÉ DISCONTINUE

3 Conclusion

Stella Krell 3/49

▶ Le problème

$$(S) \begin{cases} \operatorname{div}(-\tau(\mathrm{D}\mathbf{u},p)) = \mathbf{f} & \operatorname{dans} \Omega, \\ \operatorname{div}(\mathbf{u}) = 0 & \operatorname{dans} \Omega, \\ \mathbf{u} = 0 & \operatorname{sur} \partial \Omega, \\ \int_{\Omega} p(x) \mathrm{d}x = 0. \end{cases}$$

avec
$$D\mathbf{u} = \frac{1}{2}(\nabla \mathbf{u} + {}^{t}\nabla \mathbf{u}), \ \tau(D\mathbf{u}, p) = 2\eta D\mathbf{u} - p\mathrm{Id}$$

- $\mathbf{f} \in (L^2(\Omega))^2$,
- $\eta \in C^2(\Omega)$ avec

$$0 < \underline{\mathbf{C}}_{\eta} \le \eta(x) \le \overline{\mathbf{C}}_{\eta}, \quad \forall x \in \Omega.$$

- ▶ Objectifs
 - Ecrire un schéma DDFV bien posé pour (S).
 - Démontrer des estimations d'erreur pour ce problème.

Stella Krell 4/49

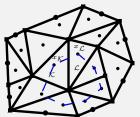
RÉFÉRENCES

Problème de Stokes (viscosité constante) par Volumes Finis

- MAILLAGES DÉCALÉS
 - Schémas MAC (Harlow-Welsh '65), (Nicolaides '92) Premiers schémas limités aux maillages rectangles
 - Schéma cell-centered (Blanc-Eymard-Herbin '05)
 - DDFV (Delcourte-Domelevo-Omnès '07), (K. '09) \approx généralisation de MAC en maillage quelconque
 - Schémas mimétiques (Beirao da Veiga-Lipnikov-Manzini et al '09) (Beirao da Veiga-Lipnikov '10)
- SCHÉMAS COLOCALISÉS
 - Schéma cell-centered (Eymard-Herbin-Latché '06 →'08)
 - Schémas volumes finis mixtes (Droniou-Eymard '09)

Stella Krell 5/49

APPROCHE DDFV: LES MAILLAGES



 $oldsymbol{\Lambda}$ maillage \mathfrak{M} Mailles primales $(\kappa, x_{\kappa})_{\kappa \in \mathfrak{M}}$

Mailles duales $(\kappa^*, x_{\kappa^*})_{\kappa^* \in \mathfrak{M}^*}$

maillage D

Mailles diamants $(\mathcal{D}, x_{\mathcal{D}})_{\mathcal{D} \in \mathfrak{D}}$

$$\leadsto p^{\mathfrak{D}} = (p^{\mathcal{D}})_{\mathcal{D} \in \mathfrak{D}}$$
$$\nabla^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}}$$

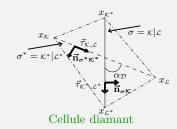
(Hermeline '00), (Domelevo-Omnès '05), (Andreianov-Boyer-Hubert '07)

Stella Krell 6/49

Gradient discret pour un champ de $(\mathbb{R}^2)^7$

$$\nabla^{\mathfrak{D}} : (\mathbb{R}^{2})^{\mathcal{T}} \longrightarrow (\mathcal{M}_{2}(\mathbb{R}))^{\mathfrak{D}}$$
où
$$\begin{cases} \nabla^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} . (x_{\mathcal{L}} - x_{\mathcal{K}}) = \mathbf{u}_{\mathcal{L}} - \mathbf{u}_{\mathcal{K}}, \\ \nabla^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} . (x_{\mathcal{L}^{*}} - x_{\mathcal{K}^{*}}) = \mathbf{u}_{\mathcal{L}^{*}} - \mathbf{u}_{\mathcal{K}^{*}}. \end{cases}$$

avec $\eta_{\mathcal{D}} = \eta(x_{\mathcal{D}}).$



7/49

$$\nabla^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} = \frac{1}{\sin(\alpha_{\mathcal{D}})} \left(\frac{\mathbf{u}_{\mathcal{L}} - \mathbf{u}_{\mathcal{K}}}{m_{\sigma^*}} \otimes \vec{\mathbf{n}}_{\sigma \mathcal{K}} + \frac{\mathbf{u}_{\mathcal{L}^*} - \mathbf{u}_{\mathcal{K}^*}}{m_{\sigma}} \otimes \vec{\mathbf{n}}_{\sigma^* \mathcal{K}^*} \right).$$

$$\rightsquigarrow \mathrm{D}^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} = \frac{1}{2} \left(\nabla^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} + {}^t (\nabla^{\mathcal{D}} \mathbf{u}^{\mathcal{T}}) \right).$$

$$\rightsquigarrow \mathrm{div}^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} = \mathrm{Tr} \nabla^{\mathcal{D}} \mathbf{u}^{\mathcal{T}}.$$

$$\rightsquigarrow \tau_{\mathcal{D}} (\mathrm{D}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}}) = 2\eta_{\mathcal{D}} \mathrm{D}^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} - p^{\mathcal{D}} \mathrm{Id},$$

Stella Krell

OPÉRATEURS DISCRETS

DIVERGENCE DISCRÈTE $\operatorname{\mathbf{div}}^{\mathcal{T}}: (\mathcal{M}_2(\mathbb{R}))^{\mathfrak{D}} \longrightarrow (\mathbb{R}^2)^{\mathcal{T}}$ On s'inspire du continu :

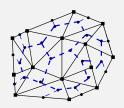
$$\int_{\mathcal{K}} \operatorname{div} \xi = \sum_{\sigma \subset \partial \mathcal{K}} \int_{\sigma} \xi . \vec{\boldsymbol{n}}.$$

$$\kappa \in \mathfrak{M}, \quad \operatorname{div}^{\kappa} \xi^{\mathfrak{D}} = \frac{1}{m_{\kappa}} \sum_{\sigma \subset \partial \mathcal{K}} m_{\sigma} \xi^{\mathcal{D}} . \vec{\boldsymbol{n}}_{\sigma \kappa}.$$

$$\kappa^{*} \in \mathfrak{M}^{*} \cup \partial \mathfrak{M}^{*}, \quad \operatorname{div}^{\kappa^{*}} \xi^{\mathfrak{D}} = \frac{1}{m_{\kappa^{*}}} \sum_{\sigma^{*} \subset \partial \mathcal{K}^{*}} m_{\sigma^{*}} \xi^{\mathcal{D}} . \vec{\boldsymbol{n}}_{\sigma^{*} \kappa^{*}}.$$

FORMULE DE STOKES (Dualité Discrète)

$$\begin{aligned} &\forall \boldsymbol{\xi}^{\mathfrak{D}} \in \left(\mathcal{M}_{2}(\mathbb{R})\right)^{\mathfrak{D}}, \ \forall \mathbf{u}^{\mathcal{T}} \in \mathbb{E}_{0} \\ &- \int_{\Omega} \mathbf{div}^{\mathcal{T}}(\boldsymbol{\xi}^{\mathfrak{D}}) \cdot \mathbf{u}^{\mathcal{T}} = \int_{\Omega} \boldsymbol{\xi}^{\mathfrak{D}} : \nabla^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}} \end{aligned}$$



avec
$$\mathbb{E}_0 = \{ \mathbf{u}^{\mathcal{T}} \in \mathbb{R}^{\mathcal{T}}, \forall \ \kappa \in \partial \mathfrak{M}, \ \mathbf{u}_{\kappa} = 0, \ \forall \ \kappa^* \in \partial \mathfrak{M}^*, \ \mathbf{u}_{\kappa^*} = 0 \}.$$

Stella Krell 8/49

$$\begin{cases}
\operatorname{Trouver} \mathbf{u}^{\mathcal{T}} \in \mathbb{E}_{0} \text{ et } p^{\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}} \text{ tels que,} \\
\operatorname{\mathbf{div}}^{\mathfrak{M}} (-\tau^{\mathfrak{D}} (D^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}})) = \mathbf{f}^{\mathfrak{M}}, \\
\operatorname{\mathbf{div}}^{\mathfrak{M}^{*}} (-\tau^{\mathfrak{D}} (D^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}})) = \mathbf{f}^{\mathfrak{M}^{*}}, \\
\operatorname{\mathbf{div}}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}} = 0, \sum_{\mathcal{D} \in \mathfrak{D}} m_{\mathcal{D}} p^{\mathcal{D}} = 0,
\end{cases}$$

- On ne sait pas si le problème est bien posé sur un maillage général.
- En revanche, on sait qu'il est bien posé sur des maillages constitués de triangles conformes à angles aigus ou de rectangles non conformes.

(Delcourte, Domelevo, Omnès '07)

Stella Krell 9/49

Que faire?

▶ Stabiliser l'équation de l'équation de bilan de masse

Terme de stabilisation à la Brezzi-Pitkäranta :

$$\Delta^{\mathcal{D}} p^{\mathfrak{D}} = \frac{1}{m_{\mathcal{D}}} \sum_{s=\mathcal{D}|\mathcal{D}' \in \partial \mathcal{D}} \frac{h_{\mathcal{D}}^2 + h_{\mathcal{D}'}^2}{h_{\mathcal{D}}^2} (p^{\mathcal{D}'} - p^{\mathcal{D}}),$$

 $h_{\mathcal{D}}$ est le diamètre du diamant \mathcal{D} .

$$\int_{\mathcal{D}} \Delta p = \sum_{\mathbf{s} = \mathcal{D} \mid \mathcal{D}' \in \partial \mathcal{D}} \int_{\mathbf{s}} \nabla p \cdot \vec{\mathbf{n}}_{\mathbf{s}\mathcal{D}}$$

$$\sim \sum_{\mathbf{s} = \mathcal{D} \mid \mathcal{D}' \in \partial \mathcal{D}} m_{\mathbf{s}} \frac{p(x_{\mathcal{D}'}) - p(x_{\mathcal{D}})}{d_{\mathcal{D}',\mathcal{D}}} \sim \sum_{\mathbf{s} = \mathcal{D} \mid \mathcal{D}' \in \partial \mathcal{D}} (p(x_{\mathcal{D}'}) - p(x_{\mathcal{D}})).$$

ANTA: $x_{\mathcal{D}'}$ $x_{\mathcal{K}}$ $x_{\mathcal{L}^*}$ $x_{\mathcal{L}^*}$ $x_{\mathcal{L}^*}$ $x_{\mathcal{L}^*}$ $x_{\mathcal{L}^*}$ (Eymard-Herbin-Latché '06)

▶ Alternative possible (duale) : approcher la pression aux centres et sommets et la vitesse sur les diamants, puis se ramener à des formulations en tourbillon, utilisant $\Delta = \nabla \text{div} - \mathbf{curl}$ curl.

(Delcourte, Domelevo, Omnès '07)

Stella Krell 10/49

OUTILS PRINCIPAUX

INÉGALITÉ DE KORN DISCRÈTE

Pour tout $\mathbf{u}^{\tau} \in \mathbb{E}_0$

$$\mathbf{div}^{\mathcal{T}}\left(^{t}\nabla^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}}\right) = \mathbf{div}^{\mathcal{T}}\left(\mathrm{div}^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}}\mathrm{Id}\right).$$

Théorème (Inégalité de Korn discrète)

Pour tout $\mathbf{u}^{\tau} \in \mathbb{E}_0$,

$$|\!|\!|\!| \mathrm{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} |\!|\!|\!|_{2} \leq |\!|\!|\!| \nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} |\!|\!|_{2} \leq \sqrt{2} |\!|\!| \mathrm{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} |\!|\!|\!|_{2}.$$

Stella Krell 11/49

Preuve de l'inégalité de Korn discrète

▶ On veut montrer que $\|\nabla^{\mathfrak{D}}\mathbf{u}^{\tau}\|_{2} \leq \sqrt{2}\|\mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\tau}\|_{2}$:

$$2|\!|\!|\!| \mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}|\!|\!|\!|_{2}^{2} = |\!|\!|\!| \nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}|\!|\!|_{2}^{2} + \int_{\Omega} \left({}^{t} \left(\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} \right) : \nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}} \right).$$

On utilise la formule de Stokes discrète

$$\int_{\Omega} \left({}^{t} \left(\nabla^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}} \right) : \nabla^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}} \right) = - \int_{\Omega} \mathbf{div}^{\mathcal{T}} \left({}^{t} \left(\nabla^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}} \right) \right) \cdot \mathbf{u}^{\mathcal{T}}
= - \int_{\Omega} \mathbf{div}^{\mathcal{T}} (\mathbf{div}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}} \mathbf{Id}) \cdot \mathbf{u}^{\mathcal{T}}$$

A nouveau grâce au Stokes discret et $\operatorname{div}^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\mathcal{T}}}=(\operatorname{Id}:\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\mathcal{T}}}):$

$$\int_{\Omega} \left({}^t \left(\nabla^{\mathfrak{D}} \mathbf{u}^{\tau} \right) : \nabla^{\mathfrak{D}} \mathbf{u}^{\tau} \right) = \int_{\Omega} (\operatorname{div}^{\mathfrak{D}} \mathbf{u}^{\tau} \operatorname{Id} : \nabla^{\mathfrak{D}} \mathbf{u}^{\tau}) = \| \operatorname{div}^{\mathfrak{D}} \mathbf{u}^{\tau} \|_{2}^{2} \ge 0.$$

Stella Krell 12/49

(S-DDFV)
$$\begin{cases} \text{Trouver } \mathbf{u}^{\mathcal{T}} \in \mathbb{E}_{0} \text{ et } p^{\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}} \text{ tels que,} \\ \mathbf{div}^{\mathfrak{M}} (-\tau^{\mathfrak{D}} (\mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}})) = \mathbf{f}^{\mathfrak{M}}, \\ \mathbf{div}^{\mathfrak{M}^{*}} (-\tau^{\mathfrak{D}} (\mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}})) = \mathbf{f}^{\mathfrak{M}^{*}}, \\ \mathbf{div}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}} - \lambda h_{\mathfrak{D}}^{2} \Delta^{\mathfrak{D}} p^{\mathfrak{D}} = 0, \\ \sum_{\mathcal{D} \in \mathfrak{D}} m_{\mathcal{D}} p^{\mathcal{D}} = 0, \end{cases}$$

on rappelle $\tau_{\mathcal{D}}(D^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}}) = 2\eta_{\mathcal{D}}D^{\mathcal{D}}\mathbf{u}^{\boldsymbol{\tau}} - p^{\mathcal{D}}\mathrm{Id}.$

(K. '09)

Théorème (Existence et unicité)

Soit \mathcal{T} un maillage DDFV.

Pour toute valeur de $\lambda > 0$, le schéma (S-DDFV) admet une unique solution.

Stella Krell 13/49

Soient
$$\mathbf{u}^{\mathcal{T}} \in \mathbb{E}_{0}$$
 et $p^{\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}}$ tels que :
$$\begin{cases}
\text{Trouver } \mathbf{u}^{\mathcal{T}} \in \mathbb{E}_{0} \text{ et } p^{\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}} \text{ tels que,} \\
\mathbf{div}^{\mathfrak{M}} \left(-\tau^{\mathfrak{D}} (\mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}}) \right) = 0, \\
\mathbf{div}^{\mathfrak{M}^{*}} \left(-\tau^{\mathfrak{D}} (\mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}}) \right) = 0, \\
\mathbf{div}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}} - \lambda h_{\mathfrak{D}}^{2} \Delta^{\mathfrak{D}} p^{\mathfrak{D}} = 0, \quad \sum_{\mathcal{D} \in \mathfrak{D}} m_{\mathcal{D}} p^{\mathcal{D}} = 0.
\end{cases}$$

On utilise la formule de Stokes discrète

$$\int_{\Omega} \mathbf{div}^{\tau} (-\tau^{\mathfrak{D}} (\mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\tau}, p^{\mathfrak{D}})) \cdot \mathbf{u}^{\tau} = \int_{\Omega} \left(2\eta^{\mathfrak{D}} \mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\tau} : \mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\tau} \right) - \int_{\Omega} \mathrm{div}^{\mathfrak{D}} \mathbf{u}^{\tau} p^{\mathfrak{D}}.$$

L'équation de conservation de la masse donne

$$\begin{split} -\int_{\Omega} \mathrm{div}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}} p^{\mathfrak{D}} &= -\int_{\Omega} \lambda h_{\mathfrak{D}}^{2} \Delta^{\mathfrak{D}} p^{\mathfrak{D}} p^{\mathfrak{D}} = \lambda |p^{\mathfrak{D}}|_{h}^{2}, \\ \mathrm{où} \ |p^{\mathfrak{D}}|_{h}^{2} &= \sum_{\mathfrak{s} \in \mathfrak{S}} (h_{\mathcal{D}}^{2} + h_{\mathcal{D}'}^{2}) (p^{\mathcal{D}'} - p^{\mathcal{D}})^{2} \sim \mathbf{h}^{2} \|\mathbf{p}\|_{\mathbf{H}^{1}}^{2} \ . \end{split}$$

Stella Krell 14/49

On utilise l'inégalité de Korn discrète :

$$0 = \int_{\Omega} \mathbf{div}^{\tau} (-\tau^{\mathfrak{D}} (\mathbf{D}^{\mathfrak{D}} \mathbf{u}^{\tau}, p^{\mathfrak{D}})) \cdot \mathbf{u}^{\tau} \ge \underline{\mathbf{C}}_{\eta} |\!|\!| \nabla^{\mathfrak{D}} \mathbf{u}^{\tau} |\!|\!|_{2}^{2} + \lambda |p^{\mathfrak{D}}|_{h}^{2}.$$

On trouve donc

$$\|\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}\|_{2}^{2} = 0 \quad \text{et} \quad |p^{\mathfrak{D}}|_{h}^{2} = 0.$$

D'où $\mathbf{u}^{\mathcal{T}} = \mathbf{0}$ et $p^{\mathfrak{D}} = c$. Par la condition de normalisation $\sum m_{\mathcal{D}} p^{\mathcal{D}} = 0$, on obtient $p^{\mathfrak{D}} = 0$.

15/49

Théorème (Estimations d'erreur)

Soit \mathcal{T} un maillage DDFV général.

On note $(\mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}}) \in (\mathbb{R}^2)^{\mathcal{T}} \times \mathbb{R}^{\mathfrak{D}}$ la solution du schéma (S-DDFV). On suppose

- η est C^2 sur $\overline{\Omega}$
- La solution exacte du problème vérifie $(\mathbf{u}, p) \in (H^2(\Omega))^2 \times H^1(\Omega)$,

Alors il existe C > 0:

$$\|\mathbf{u} - \mathbf{u}^{\tau}\|_{2} + \|\nabla \mathbf{u} - \nabla^{\mathfrak{D}} \mathbf{u}^{\tau}\|_{2} \le C \operatorname{size}(\mathcal{T}),$$

et

$$||p - p^{\mathfrak{D}}||_2 \le C \operatorname{size}(\mathcal{T}).$$

Taux de convergence "optimal".

Stella Krell 16/49

▶ La forme bilinéaire associée au problème :

$$B(\mathbf{u}^{\tau}, p^{\mathfrak{D}}; \widetilde{\mathbf{u}}^{\tau}, \widetilde{p}^{\mathfrak{D}}) = \int_{\Omega} \mathbf{div}^{\tau} (-\tau^{\mathfrak{D}} (D^{\mathfrak{D}} \mathbf{u}^{\tau}, p^{\mathfrak{D}})) \cdot \widetilde{\mathbf{u}}^{\tau} + \int_{\Omega} (\mathrm{div}^{\mathfrak{D}} \mathbf{u}^{\tau} - \lambda h_{\mathfrak{D}}^{2} \Delta^{\mathfrak{D}} p^{\mathfrak{D}}) \widetilde{p}^{\mathfrak{D}}.$$

On sait qu'on n'a pas la coercivité au sens traditionnel

$$\|\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}\|_{2}^{2} + \|p^{\mathfrak{D}}\|_{2}^{2} \leq C_{2}B(\mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}}; \mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}}).$$

On a seulement une estimation

$$\|\nabla^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}}\|_{2}^{2} + \lambda |p^{\mathfrak{D}}|_{h}^{2} \leq C_{2}B(\mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}}; \mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}}),$$
avec $|p^{\mathfrak{D}}|_{h}^{2} = \sum_{\mathfrak{s} \in \mathfrak{S}} (h_{\mathcal{D}}^{2} + h_{\mathcal{D}'}^{2})(p^{\mathcal{D}'} - p^{\mathcal{D}})^{2}.$

Stella Krell 17/49

▶ La forme bilinéaire associée au problème :

$$B(\mathbf{u}^{\tau}, p^{\mathfrak{D}}; \widetilde{\mathbf{u}}^{\tau}, \widetilde{p}^{\mathfrak{D}}) = \int_{\Omega} \mathbf{div}^{\tau} (-\tau^{\mathfrak{D}} (D^{\mathfrak{D}} \mathbf{u}^{\tau}, p^{\mathfrak{D}})) \cdot \widetilde{\mathbf{u}}^{\tau} + \int_{\Omega} (\mathrm{div}^{\mathfrak{D}} \mathbf{u}^{\tau} - \lambda h_{\mathfrak{D}}^{2} \Delta^{\mathfrak{D}} p^{\mathfrak{D}}) \widetilde{p}^{\mathfrak{D}}.$$

On sait qu'on n'a pas la coercivité au sens traditionnel

$$\|\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}\|_{2}^{2} + \|p^{\mathfrak{D}}\|_{2}^{2} \leq C_{2}B(\mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}}; \mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}}).$$

On a seulement une estimation

$$\|\nabla^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}}\|_{2}^{2} + \lambda |p^{\mathfrak{D}}|_{h}^{2} \leq C_{2}B(\mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}}; \mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}}),$$
avec $|p^{\mathfrak{D}}|_{h}^{2} = \sum (h_{\mathcal{D}}^{2} + h_{\mathcal{D}'}^{2})(p^{\mathcal{D}'} - p^{\mathcal{D}})^{2}.$

▶ Idée : Trouver $\widetilde{\mathbf{u}}^{\tau}$, $\widetilde{p}^{\mathfrak{D}}$ ($\approx \mathbf{u}^{\tau}$, $p^{\mathfrak{D}}$) pour avoir l'inégalité inf-sup

$$\|\nabla^{\mathfrak{D}}\mathbf{u}^{\boldsymbol{\tau}}\|_{2} + \|p^{\mathfrak{D}}\|_{2} \leq C_{2} \frac{B(\mathbf{u}^{\boldsymbol{\tau}}, p^{\mathfrak{D}}; \widetilde{\mathbf{u}}^{\boldsymbol{\tau}}, \widetilde{p}^{\mathfrak{D}})}{\|\nabla^{\mathfrak{D}}\widetilde{\mathbf{u}}^{\boldsymbol{\tau}}\|_{2} + \|\widetilde{p}^{\mathfrak{D}}\|_{2}}.$$

(Eymard-Herbin-Latché '06)

Stella Krell 17/49

▶ La forme bilinéaire associée au problème :

$$B(\mathbf{u}^{\tau}, p^{\mathfrak{D}}; \widetilde{\mathbf{u}}^{\tau}, \widetilde{p}^{\mathfrak{D}}) = \int_{\Omega} \mathbf{div}^{\tau} (-\tau^{\mathfrak{D}} (D^{\mathfrak{D}} \mathbf{u}^{\tau}, p^{\mathfrak{D}})) \cdot \widetilde{\mathbf{u}}^{\tau} + \int_{\Omega} (\mathrm{div}^{\mathfrak{D}} \mathbf{u}^{\tau} - \lambda h_{\mathfrak{D}}^{2} \Delta^{\mathfrak{D}} p^{\mathfrak{D}}) \widetilde{p}^{\mathfrak{D}}.$$

Proposition (Stabilité de (S-DDFV))

Pour tout
$$(\mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}}) \in \mathbb{E}_0 \times \mathbb{R}^{\mathfrak{D}}$$
 avec $\sum_{\mathcal{D} \in \mathfrak{D}} m_{\mathcal{D}} p^{\mathcal{D}} = 0$, il existe $(\widetilde{\mathbf{u}}^{\mathcal{T}}, \widetilde{p}^{\mathfrak{D}}) \in \mathbb{E}_0 \times \mathbb{R}^{\mathfrak{D}}$ et $C_1, C_2 > 0$:

$$\|\nabla^{\mathfrak{D}}\widetilde{\mathbf{u}}^{\mathcal{T}}\|_{2} + \|\widetilde{p}^{\mathfrak{D}}\|_{2} \leq C_{1} \left(\|\nabla^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}}\|_{2} + \|p^{\mathfrak{D}}\|_{2}\right),$$

et

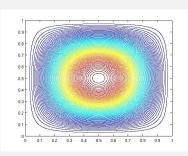
$$\|\nabla^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}}\|_{2}^{2} + \|p^{\mathfrak{D}}\|_{2}^{2} \leq C_{2}B(\mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}}; \widetilde{\mathbf{u}}^{\mathcal{T}}, \widetilde{p}^{\mathfrak{D}}).$$

Stella Krell 18/49

$$\mathbf{u}(x,y) = \begin{pmatrix} 1000x^2(1-x)^2 2y(1-y)(1-2y) \\ -1000y^2(1-y)^2 2x(1-x)(1-2x) \end{pmatrix},$$

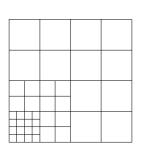
$$p(x,y) = x^2 + y^2 - \frac{2}{3},$$

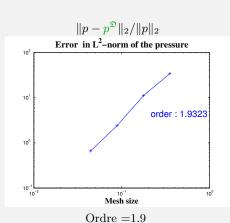
$$\eta(x,y) = 2x + y + 1.$$



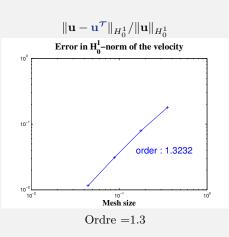
Lignes de courant

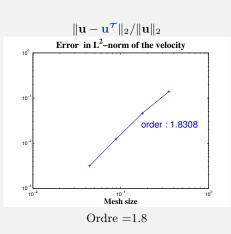
Maillage





Stella Krell 20/49



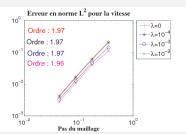


20/49

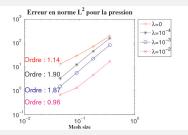
VISCOSITÉ VARIABLE

$$\|\mathbf{u} - \mathbf{u}^{\mathcal{T}}\|_{H_0^1} / \|\mathbf{u}\|_{H_0^1}$$

$$\|\mathbf{u} - \mathbf{u}^{\tau}\|_2 / \|\mathbf{u}\|_2$$

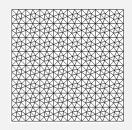


$$||p-p^{\mathfrak{D}}||_2/||p||_2$$



Stella Krell 21/49

CAVITÉ ENTRAÎNÉE.

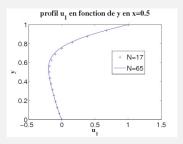


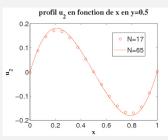
 \rightsquigarrow On choisit les points : $(x_{\mathcal{K}})_{\mathcal{K} \in \mathfrak{M}}$ aux centres de gravité des triangles.

$$\begin{cases} \operatorname{div}(-10^{-4}\nabla \mathbf{u} + p\operatorname{Id}) = 0 & \operatorname{dans } \Omega, \\ \operatorname{div}(\mathbf{u}) = 0 & \operatorname{dans } \Omega, \end{cases}$$
$$\mathbf{u} = \begin{cases} (1,0) & \operatorname{si } (x,y) \in A := \{(z,1), 0 \le z \le 1\} \\ (0,0) & \operatorname{si } (x,y) \in \partial \Omega \setminus A \end{cases}$$

Stella Krell 22/49

CAVITÉ ENTRAÎNÉE



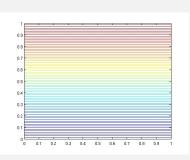


Stella Krell 23/49

$$\mathbf{u}(x,y) = \begin{pmatrix} y^2 - 0.5y & \text{pour } y > 0.5 \\ 10^4 (y^2 - 0.5y) & \text{sinon.} \\ 0 \end{pmatrix},$$

$$p(x,y) = 2x - 1,$$

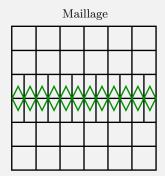
$$\eta(x,y) = \begin{cases} 1 & \text{pour } y > 0.5 \\ 10^{-4} & \text{sinon.} \end{cases}$$



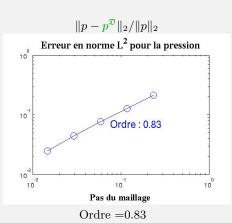
Lignes de courant

Stella Krell 24/49

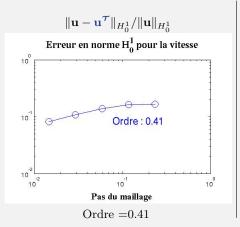
Viscosité discontinue

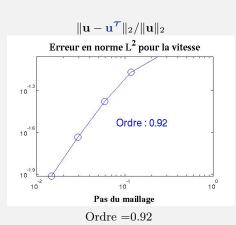


Maillage respecte la discontinuité de η (i.e. η constante sur κ) mais η est discontinue sur \mathcal{D} \leadsto Problème pour définir $\eta_{\mathcal{D}}$.



Stella Krell 25/49





Stella Krell 25/49

PLAN

1 L'approche DDFV pour le problème de Stokes

2 LE PROBLÈME AVEC VISCOSITÉ DISCONTINUE

3 Conclusion

Stella Krell 26/49

LE PROBLÈME AVEC VISCOSITÉ DISCONTINUE

$$(S_{\Gamma}) \begin{tabular}{l} & \operatorname{div} \left(-\tau(\mathrm{D}\mathbf{u},p) \right) = \mathbf{f}, & \operatorname{dans} \Omega_i, \\ & \operatorname{div}(\mathbf{u}) = 0, & \operatorname{dans} \Omega_i, \\ & \mathbf{u} = 0, & \operatorname{sur} \partial \Omega, & \int_{\Omega} p(x) \mathrm{d}x = 0, \\ & [\mathbf{u}] = \left[\tau(\mathrm{D}\mathbf{u},p) \right] \vec{\mathbf{n}} = 0, & \operatorname{sur} \Gamma, \end{tabular}$$

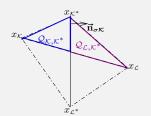
avec $D\mathbf{u} = \frac{1}{2}(\nabla \mathbf{u} + {}^t\nabla \mathbf{u})$ et $\tau(D\mathbf{u}, p) = 2\eta D\mathbf{u} - p\mathrm{Id}$.

- $\Omega_1 \cap \Omega_2 = \emptyset$ et $\overline{\Omega} = \overline{\Omega_1} \cup \overline{\Omega_2}$, $\Gamma = \partial \Omega_1 \cap \partial \Omega_2$.
- $\Gamma = \partial \Omega_1 \cap \partial \Omega_2$,

- $\vec{\mathbf{n}}$ est une normale à Γ et $[a] = (a_{|_{\Omega_1}} a_{|_{\Omega_2}})_{|_{\Gamma}}$ est le saut sur Γ .
- Viscosité η constante par morceaux : $\eta(x) = \eta_i$ pour $x \in \Omega_i$.
- $\begin{array}{ll} \mathbf{u} \in & (H^1(\Omega))^2, \quad \mathbf{u}_{|_{\Omega_i}} \in (H^2(\Omega_i))^2, \text{ pour } i=1,2, \\ \bullet & p \in & L^2(\Omega), \quad p_{|_{\Omega_i}} \in H^1(\Omega_i), \text{ pour } i=1,2. \end{array}, \text{ si } \Omega \text{ et } \mathbf{f} \text{ sont} \end{array}$
 - réguliers.

Stella Krell 27/49

Conservativité locale des flux exacts



Tenseur des contraintes $\tau(\mathrm{D}\mathbf{u}, p) = 2\eta \mathrm{D}\mathbf{u} - p\mathrm{Id}$. ~Conservativité locale à travers $[x_{\mathcal{K}^*}, x_{\mathcal{D}}]$:

$$\int_{[x_{\mathcal{K}^*}, x_{\mathcal{D}}]} \tau_{|\overline{\mathbb{Q}}_{\mathcal{K}, \mathcal{K}^*}}(\mathbf{u}, p) \vec{\mathbf{n}}_{\sigma \mathcal{K}} ds
= \int_{[x_{\mathcal{K}^*}, x_{\mathcal{D}}]} \tau_{|\overline{\mathbb{Q}}_{\mathcal{L}, \mathcal{K}^*}}(\mathbf{u}, p) \vec{\mathbf{n}}_{\sigma \mathcal{K}} ds.$$

Il faut définir sur chaque quart de diamant

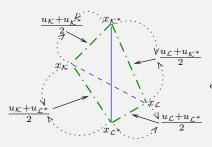
- une nouvelle inconnue en pression p^{Q}
- un nouveau tenseur des taux de déformation $\mathcal{D}_{\mathcal{Q}}^{\mathcal{N}}\mathbf{u}^{\mathcal{T}}$

Il faut assurer la conservativité des tenseurs des contraintes discrets $\tau_{\mathcal{Q}}$:

$$\Longrightarrow \tau_{\mathcal{Q}} = 2\eta_{\mathcal{Q}} \mathcal{D}_{\mathcal{Q}}^{\mathcal{N}} \mathbf{u}^{\mathcal{T}} - \mathbf{p}^{\mathcal{Q}} \mathrm{Id},$$

avec $\eta_{\mathcal{O}} = \eta(x_{\mathcal{O}})$.

Stella Krell 28/49



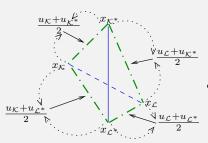
Cas scalaire Remarque :

$$\nabla^{\mathcal{D}} u^{\mathcal{T}} = \nabla \Pi_{\mathcal{D}} u^{\mathcal{T}},$$

où $\Pi_{\mathcal{D}} u^{\mathcal{T}}$ est l'unique fonction affine

$$\Pi_{\mathcal{D}} u^{\mathcal{T}} \left(\frac{x_{\mathcal{K}} + x_{\mathcal{K}^*}}{2} \right) = \frac{u_{\mathcal{K}} + u_{\mathcal{K}^*}}{2}, \cdots$$

Stella Krell 29/49



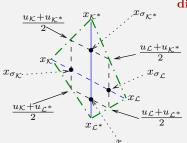
Cas scalaire Remarque :

$$\nabla^{\mathcal{D}} u^{\mathcal{T}} = \nabla \Pi_{\mathcal{D}} u^{\mathcal{T}},$$

où $\Pi_{\mathcal{D}} u^{\mathcal{T}}$ est l'unique fonction affine

$$\Pi_{\mathcal{D}} u^{\mathcal{T}} \left(\frac{x_{\mathcal{K}} + x_{\mathcal{K}^*}}{2} \right) = \frac{u_{\mathcal{K}} + u_{\mathcal{K}^*}}{2}, \cdots$$

On construit un nouveau gradient constant sur chaque quart diamant :



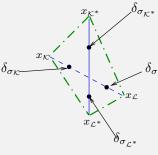
$$\nabla_{\mathcal{Q}}^{\mathcal{N}} u^{\mathcal{T}} = \nabla \widetilde{\Pi}_{\mathcal{D}} u^{\mathcal{T}}|_{\mathcal{Q}}, \qquad \forall \mathcal{Q} \subset \mathcal{D},$$

où $\widetilde{\Pi}_{\mathcal{D}} u^{\mathcal{T}}$ une fonction affine sur chaque \mathcal{Q}

- coïncide avec $\Pi_{\mathcal{D}} u^{\mathcal{T}}$ au milieu des arêtes du diamant \mathcal{D}
- continue en $x_{\sigma_{\mathcal{K}}}, x_{\sigma_{\mathcal{L}}}, x_{\sigma_{\mathcal{K}^*}}, x_{\sigma_{\mathcal{L}^*}}$.

Stella Krell 29/49

 $\nabla_{\mathcal{Q}}^{\mathcal{N}} u^{\mathcal{T}}$ déterminé par $u^{\mathcal{T}}$ et les valeurs $\widetilde{\Pi}_{\mathcal{D}} u^{\mathcal{T}}(x_{\sigma})$.



Cas scalaire:

$$\delta_{\sigma} = \widetilde{\Pi}_{\mathcal{D}} u^{\mathcal{T}}(x_{\sigma}) - \Pi_{\mathcal{D}} u^{\mathcal{T}}(x_{\sigma}),$$

$$\leadsto \delta^{\mathcal{D}} = (\delta_{\sigma_{\mathcal{K}}}, \delta_{\sigma_{\mathcal{L}}}, \delta_{\sigma_{\mathcal{K}^*}}, \delta_{\sigma_{\mathcal{L}^*}})^t$$

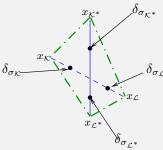
 $\nabla \widetilde{\Pi}_{\mathcal{D}} u^{\mathcal{T}} - \nabla \Pi_{\mathcal{D}} u^{\mathcal{T}}$ dépend linéairement de $\delta^{\mathcal{D}}$ \hookrightarrow Existence de matrices $B_{\mathcal{O}}$

$$\leadsto \nabla_{\mathcal{Q}}^{\mathcal{N}} u^{\mathcal{T}} = \nabla^{\mathcal{D}} u^{\mathcal{T}} + B_{\mathcal{Q}} \delta^{\mathcal{D}}, \, \forall \mathcal{Q} \subset \mathcal{D}.$$

(Boyer, Hubert '08)

Stella Krell 30/49

 $\nabla_{\mathcal{Q}}^{\mathcal{N}} u^{\mathcal{T}}$ déterminé par $u^{\mathcal{T}}$ et les valeurs $\widetilde{\Pi}_{\mathcal{D}} u^{\mathcal{T}}(x_{\sigma})$.



Cas scalaire:

$$\delta_{\sigma} = \widetilde{\Pi}_{\mathcal{D}} u^{\mathcal{T}}(x_{\sigma}) - \Pi_{\mathcal{D}} u^{\mathcal{T}}(x_{\sigma}),$$

$$\leadsto \delta^{\mathcal{D}} = (\delta_{\sigma_{\mathcal{K}}}, \delta_{\sigma_{\mathcal{L}}}, \delta_{\sigma_{\mathcal{K}^*}}, \delta_{\sigma_{\mathcal{L}^*}})^t$$

 $\nabla \widetilde{\Pi}_{\mathcal{D}} u^{\mathcal{T}} - \nabla \Pi_{\mathcal{D}} u^{\mathcal{T}} \text{ dépend linéairement de } \delta^{\mathcal{D}}$ \leadsto Existence de matrices $B_{\mathcal{O}}$

Cas vectoriel:

$$\leadsto \nabla_{\mathcal{O}}^{\mathcal{N}} \mathbf{u}^{\mathcal{T}} = \nabla^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} + {}^{t} (B_{\mathcal{Q}} \boldsymbol{\delta}^{\mathcal{D}}), \forall \mathcal{Q} \subset \mathcal{D}.$$

- $B_{\mathcal{Q}}$ est une matrice 2×4 ne dépendant que de la géométrie de \mathcal{Q} .
- $\delta^{\mathcal{D}} = (\delta_{\sigma_{\mathcal{K}}}, \delta_{\sigma_{\mathcal{L}}}, \delta_{\sigma_{\mathcal{K}^*}}, \delta_{\sigma_{\mathcal{L}^*}})^t$ sont 8 inconnues artificielles à déterminer.
- $B_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} = \frac{1}{m_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}}} (m_{\sigma_{\mathcal{K}}} \vec{\mathbf{n}}_{\mathcal{K}^*\mathcal{L}^*}, 0, m_{\sigma_{\mathcal{K}^*}} \vec{\mathbf{n}}_{\mathcal{K}\mathcal{L}}, 0).$

$$\leadsto \mathrm{D}_{\mathcal{Q}}^{\mathcal{N}}\mathbf{u}^{\mathcal{T}} = \frac{1}{2} \left(\nabla_{\mathcal{Q}}^{\mathcal{N}}\mathbf{u}^{\mathcal{T}} + {}^t \nabla_{\mathcal{Q}}^{\mathcal{N}}\mathbf{u}^{\mathcal{T}} \right), \, \forall \mathcal{Q} \subset \mathcal{D}.$$

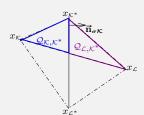
Stella Krell 30/49

Le tenseur des contraintes discret s'écrit alors

$$\tau_{\mathcal{Q}}\left(\mathcal{D}^{\mathcal{D}}\mathbf{u}^{\mathcal{T}},\boldsymbol{\delta}\right) = \eta_{\mathcal{Q}}(2\mathcal{D}^{\mathcal{D}}\mathbf{u}^{\mathcal{T}} + B_{\mathcal{Q}}\boldsymbol{\delta}^{\mathcal{D}} + {}^{t}(B_{\mathcal{Q}}\boldsymbol{\delta}^{\mathcal{D}})) - \mathbf{p}^{\mathcal{Q}}\mathrm{Id}.$$

Comment déterminer les nouvelles inconnues $\delta = (\delta^{\mathcal{D}}, \mathbf{p}_{\mathcal{D}}^{\mathfrak{Q}})$?

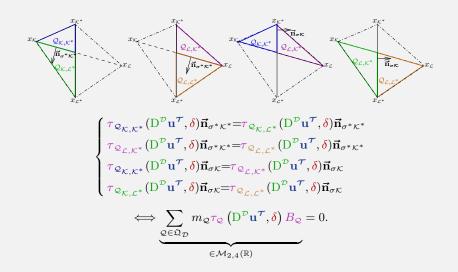
► CONSERVATIVITÉ LOCALE DES FLUX DISCRETS



$$\tau_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}}(D^{\mathcal{D}}\mathbf{u}^{\mathcal{T}},\boldsymbol{\delta})\vec{\mathbf{n}}_{\sigma\mathcal{K}} = \tau_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^*}}(D^{\mathcal{D}}\mathbf{u}^{\mathcal{T}},\boldsymbol{\delta})\vec{\mathbf{n}}_{\sigma\mathcal{K}}.$$

Stella Krell 31/49

Conservativité locale des flux directs



Stella Krell 32/49

DÉTERMINATION DES NOUVELLES INCONNUES

$$(\star) \begin{cases} \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} m_{\mathcal{Q}} \tau_{\mathcal{Q}} \left(D^{\mathcal{D}} \mathbf{u}^{\mathcal{T}}, \delta \right) B_{\mathcal{Q}} = 0, \\ \operatorname{Tr}(B_{\mathcal{Q}} \delta^{\mathcal{D}}) = 0, \forall \mathcal{Q} \subset \mathcal{D}, \qquad \sum_{\mathcal{Q} \in \mathfrak{Q}_{\mathcal{D}}} m_{\mathcal{Q}} p^{\mathcal{Q}} = m_{\mathcal{D}} p^{\mathcal{D}}. \end{cases}$$

Proposition (K. 09)

Pour tout $\mathcal{D} \in \mathfrak{D}$ et tout $(\mathbb{D}^{\mathcal{D}}\mathbf{u}^{\mathcal{T}}, p^{\mathcal{D}}) \in \mathcal{M}_{2,2}(\mathbb{R}) \times \mathbb{R}$, il existe un $\boldsymbol{\delta} = (\boldsymbol{\delta}^{\mathcal{D}}, \mathbf{p}^{\mathfrak{Q}}_{\mathcal{D}}) \in \mathcal{M}_{4,2}(\mathbb{R}) \times \mathbb{R}^4$ vérifiant (\star) .

Unicité plus délicate.

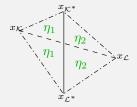
Stella Krell 33/49

Si η est constante sur le diamant

$$\Longrightarrow \delta^{\mathcal{D}} = 0, \mathbf{p}_{\mathcal{D}}^{\mathfrak{Q}} = p^{\mathcal{D}}$$

$$\leadsto \mathcal{D}_{\mathcal{Q}}^{\mathcal{N}} \mathbf{u}^{\mathcal{T}} = \mathcal{D}^{\mathcal{D}} \mathbf{u}^{\mathcal{T}}, \text{ et } \tau_{\mathcal{Q}} \left(\mathcal{D}^{\mathcal{D}} \mathbf{u}^{\mathcal{T}}, \delta \right) = \tau_{\mathcal{D}} (\mathcal{D}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}}), \forall \mathcal{Q}.$$

SI η est constante par mailles primales



Calculs avec **MAPLE**.

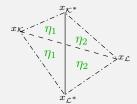
$$\delta_{\mathcal{K}} = \delta_{\mathcal{L}} = 0$$

$$\delta_{\mathcal{K}^*} = \delta_{\mathcal{L}^*} = -\frac{m_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} m_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^*}} (\eta_1 - \eta_2) D^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} \vec{\mathbf{n}}_{\sigma \mathcal{K}} \cdot \vec{\boldsymbol{\tau}}_{\mathcal{K},\mathcal{L}}}{\eta_2 m_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} + \eta_1 m_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^*}}} \vec{\boldsymbol{\tau}}_{\kappa,\mathcal{L}}$$

$$p_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} = p_{\mathcal{Q}_{\mathcal{K},\mathcal{L}^*}} = p^{\mathcal{D}} + 2(\eta_{1} - \eta_{2}) \mathbf{D}^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} \vec{\mathbf{n}}_{\sigma \mathcal{K}} \cdot \vec{\mathbf{n}}_{\sigma \mathcal{K}} \frac{m_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^*}}}{m_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} + m_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^*}}}$$
$$p_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^*}} = p_{\mathcal{Q}_{\mathcal{L},\mathcal{L}^*}} = p^{\mathcal{D}} - 2(\eta_{1} - \eta_{2}) \mathbf{D}^{\mathcal{D}} \mathbf{u}^{\mathcal{T}} \vec{\mathbf{n}}_{\sigma \mathcal{K}} \cdot \vec{\mathbf{n}}_{\sigma \mathcal{K}} \frac{m_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}}}{m_{\mathcal{Q}_{\mathcal{K},\mathcal{K}^*}} + m_{\mathcal{Q}_{\mathcal{L},\mathcal{K}^*}}}$$

Stella Krell 34/49

SI η est constante par mailles primales



$$\begin{aligned} & \frac{\text{Harmonique}}{h_2\eta_1 + h_1\eta_2} = \frac{(h_1 + h_2)\eta_1\eta_2}{h_2\eta_1 + h_1\eta_2} \\ & \text{Arithm\'etique} = \frac{h_1\eta_1 + h_2\eta_2}{h_1 + h_2} \end{aligned}$$

$$\begin{split} \tau_{\mathcal{D}}^{\mathcal{N}} \left(\begin{pmatrix} \alpha & \gamma \\ \gamma & \beta \end{pmatrix}, p^{\mathfrak{D}} \right) &= \frac{1}{m_{\mathcal{D}}} \sum_{\mathcal{Q} \subset \mathcal{D}} m_{\mathcal{Q}} \tau_{\mathcal{Q}} \left(\begin{pmatrix} \alpha & \gamma \\ \gamma & \beta \end{pmatrix}, \delta \right), \\ &= 2 \begin{pmatrix} A \alpha & \mathbf{H} \gamma \\ \mathbf{H} \gamma & A \beta \end{pmatrix} - p^{\mathcal{D}} \mathrm{Id}, \ \mathrm{dans} \ \mathrm{le} \ \mathrm{repère} \ (\vec{\mathbf{n}}_{\sigma \mathcal{K}}, \vec{\boldsymbol{\tau}}_{\mathcal{K}^*, \mathcal{L}^*}), \end{split}$$

à la place de
$$\tau_{\mathcal{D}}\left(\begin{pmatrix} \alpha & \gamma \\ \gamma & \beta \end{pmatrix}, p^{\mathfrak{D}}\right) = 2\eta_{\mathcal{D}}\begin{pmatrix} \alpha & \gamma \\ \gamma & \beta \end{pmatrix} - p^{\mathcal{D}} \mathrm{Id}.$$

CAS D'UN MAILLAGE CARTÉSIEN : généralisation du schéma MAC.

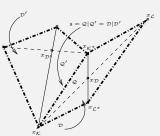
(Harlow, Welch '65)

Stella Krell 35/49

(S-m-DDFV)
$$\begin{cases} \operatorname{Trouver} \mathbf{u}^{\mathcal{T}} \in \mathbb{E}_{0} \text{ et } p^{\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}} \text{ tels que,} \\ \operatorname{\mathbf{div}}^{\mathfrak{M}} \left(-\tau_{\mathfrak{D}}^{\mathcal{N}} \left(\operatorname{D}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}} \right) \right) = \mathbf{f}^{\mathfrak{M}}, \\ \operatorname{\mathbf{div}}^{\mathfrak{M}^{*}} \left(-\tau_{\mathfrak{D}}^{\mathcal{N}} \left(\operatorname{D}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}}, p^{\mathfrak{D}} \right) \right) = \mathbf{f}^{\mathfrak{M}^{*}}, \\ \operatorname{\mathbf{div}}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}} - \lambda h_{\mathfrak{D}}^{2} \underline{\Delta}^{\mathfrak{D}} \mathbf{p}^{\mathfrak{D}} = 0, \\ \sum_{\mathcal{D} \in \mathfrak{D}} m_{\mathcal{D}} p^{\mathcal{D}} = 0, \end{cases}$$

avec

$$\underline{\underline{\Delta}}^{\mathcal{D}}\mathbf{p}^{\mathfrak{Q}} = \frac{1}{m_{\mathcal{D}}} \sum_{\substack{s=\mathcal{Q} \mid \mathcal{Q}' \\ =\mathcal{D} \mid \mathcal{D}' \in \mathcal{E}_{\mathcal{D}}}} \frac{h_{\mathcal{D}}^{2} + h_{\mathcal{D}'}^{2}}{h_{\mathcal{D}}^{2}} (\mathbf{p}^{\mathcal{Q}'} - \mathbf{p}^{\mathcal{Q}}).$$



Stabilisation à la Brezzi-Pitkäranta par quart de diamant.

Stella Krell 36/49

THÉORÈME

Soit \mathcal{T} un maillage DDFV.

Il existe une unique solution $(\mathbf{u}^{\tau}, p^{\mathfrak{D}})$ au schéma S-m-DDFV. On suppose que η est Lipschitzienne sur chaque quart de diamant.

 $Si~\mathbf{u}, p~sont~r\'eguliers~sur~chaque~quart~de~diamant~\mathcal{Q},~on~a$

$$\|\mathbf{u} - \mathbf{u}^{\tau}\|_{2} + \|\nabla \mathbf{u} - \nabla_{\mathfrak{Q}}^{\mathcal{N}} \mathbf{u}^{\tau}\|_{2} \le C \text{size}(\mathcal{T}),$$

et

$$||p - p^{\mathfrak{Q}}||_2 \le C \operatorname{size}(\mathcal{T}).$$

Stella Krell 37/49

Idée de preuve

On a besoin de :

• Nouvelle inégalité de Korn discrète.

$$|||\nabla_{\mathfrak{Q}}^{\mathcal{N}}\mathbf{u}^{\mathcal{T}}|||_{2} \leq C|||\mathbf{D}_{\mathfrak{Q}}^{\mathcal{N}}\mathbf{u}^{\mathcal{T}}|||_{2}.$$

- → Difficultés dues aux inconnues artificielles.
- Comparaisons entre les anciens et les nouveaux opérateurs.
- Théorème de stabilité.
 - → Difficultés dues à la stabilisation par quart de diamant.
- Erreur de consistance. Si (\mathbf{u}, p) est régulière sur chaque quart de diamant ϱ , la difficulté est

$$\sum_{\mathcal{Q} \subset \mathcal{D}} \int_{\mathcal{Q}} |\mathrm{D}\mathbf{u}(z) - \mathrm{D}_{\mathcal{Q}}^{\mathcal{N}} \mathbb{P}_{\boldsymbol{c}}^{\boldsymbol{\tau}} \mathbf{u}(z)|^{2} \mathrm{d}z \leq C h_{\mathcal{D}}^{2} \sum_{\mathcal{Q} \subset \mathcal{D}} \int_{\mathcal{Q}} (|\nabla \mathbf{u}|^{2} + |\nabla^{2}\mathbf{u}|^{2} + |\nabla \mathbf{p}|^{2}) \mathrm{d}z.$$

---- Hypothèse supplémentaire pour obtenir la même inégalité avec

$$\sum_{\mathcal{Q} \subset \mathcal{D}} \int_{\mathcal{Q}} |\nabla \mathbf{u}(z) - \nabla_{\mathcal{Q}}^{\mathcal{N}} \mathbb{P}_{\boldsymbol{c}}^{\boldsymbol{\tau}} \mathbf{u}(z)|^{2} dz.$$

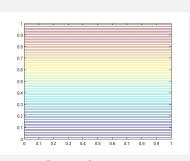
Stella Krell 38/49

Viscosité discontinue

$$\mathbf{u}(x,y) = \begin{pmatrix} \begin{cases} y^2 - 0.5y & \text{pour } y > 0.5 \\ 10^4 (y^2 - 0.5y) & \text{sinon.} \end{cases},$$

$$p(x,y) = 2x - 1,$$

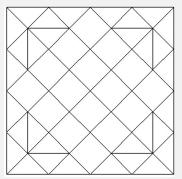
$$\eta(x,y) = \begin{cases} 1 & \text{pour } y > 0.5 \\ 10^{-4} & \text{sinon.} \end{cases}$$



Lignes de courant

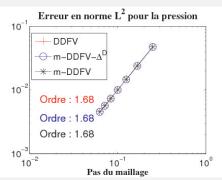
Stella Krell 39/49

Maillage Primal



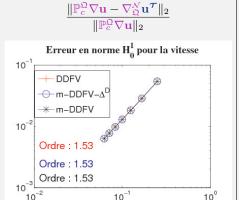
→ D respecte la discontinuité

$$\frac{\|\mathbb{P}_c^{\mathfrak{Q}}p-p^{\mathfrak{Q}}\|_2}{\|\mathbb{P}_c^{\mathfrak{Q}}p\|_2}$$

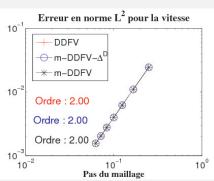


m-DDFV = S-m-DDFV. m-DDFV- $\Delta^{\mathcal{D}}$ = on remplace la conservation de la masse $\operatorname{div}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}} - \lambda h_{\mathfrak{D}}^{2} \Delta^{\mathfrak{D}} \mathbf{p}^{\mathfrak{Q}} = 0$, par $\operatorname{div}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}} - \lambda h_{\mathfrak{D}}^{2} \Delta^{\mathfrak{D}} p^{\mathfrak{D}} = 0$.

Stella Krell 40/49



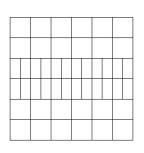
Pas du maillage



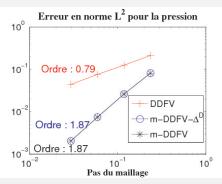
m-DDFV = S-m-DDFV. m-DDFV- $\Delta^{\mathcal{D}}$ = on remplace la conservation de la masse $\operatorname{div}^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}} - \lambda h_{\mathfrak{D}}^{2}\Delta^{\mathfrak{D}}\mathbf{p}^{\mathfrak{D}} = 0$, par $\operatorname{div}^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}} - \lambda h_{\mathfrak{D}}^{2}\Delta^{\mathfrak{D}}p^{\mathfrak{D}} = 0$.

Stella Krell 40/49

Maillage Primal



$$\frac{\|\mathbb{P}_c^{\mathfrak{Q}} p - p^{\mathfrak{Q}}\|_2}{\|\mathbb{P}_c^{\mathfrak{Q}} p\|_2}$$

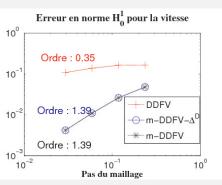


m-DDFV = S-m-DDFV. m-DDFV- $\Delta^{\mathcal{D}}$ = on remplace la conservation de la masse $\operatorname{div}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}} - \lambda h_{\mathfrak{D}}^{2} \Delta^{\mathfrak{D}} \mathbf{p}^{\mathfrak{Q}} = 0$, par $\operatorname{div}^{\mathfrak{D}} \mathbf{u}^{\mathcal{T}} - \lambda h_{\mathfrak{D}}^{2} \Delta^{\mathfrak{D}} p^{\mathfrak{D}} = 0$.

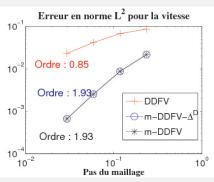
Stella Krell 41/49

Illustration numérique

$$\frac{\|\mathbb{P}_{c}^{\mathfrak{Q}}\nabla\mathbf{u} - \nabla_{\mathfrak{Q}}^{\mathcal{N}}\mathbf{u}^{\boldsymbol{\tau}}\|_{2}}{\|\mathbb{P}_{c}^{\mathfrak{Q}}\nabla\mathbf{u}\|_{2}}$$



$$\frac{\|\mathbb{P}_{c}^{\mathcal{T}}\mathbf{u} - \mathbf{u}^{\mathcal{T}}\|_{2}}{\|\mathbb{P}_{c}^{\mathcal{T}}\mathbf{u}\|_{2}}$$



m-DDFV = S-m-DDFV. m-DDFV- $\Delta^{\mathcal{D}}$ = on remplace la conservation de la masse $\operatorname{div}^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}} - \lambda h_{\mathfrak{D}}^2 \underline{\Delta}^{\mathfrak{D}}\mathbf{p}^{\mathfrak{D}} = 0$, par $\operatorname{div}^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}} - \lambda h_{\mathfrak{D}}^2 \Delta^{\mathfrak{D}}p^{\mathfrak{D}} = 0$.

Stella Krell 41/49

Nombre d'éléments non nul dans la matrice

Nombre total d'inconnues	DDFV	m-DDFV- Δ^D	m-DDFV
392	3 863 3 863		3 959
1 358	14 421	14 421	14 613
5 018	55 551	55 551	55 935
19 250	217 881	217 881	218 645
75 362	862 847	862 847	864 373

Stella Krell 42/49

Viscosité et pression discontinues

$$\eta(x,y) = \begin{cases} \eta_1 = 10^2 & \text{si } x \le 0.5, \\ \eta_2 = 10^{-2} & \text{sinon.} \end{cases}$$

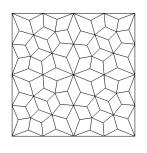
On note $c = -\frac{\eta_2 \pi}{\eta_1 + 0.5 \eta_2 \pi}$.

$$\mathbf{u}(x,y) = \begin{pmatrix} \left\{ (x-0.5)(cx+\sin(5.0\pi x))\frac{4.0\pi\cos(4.0\pi y)}{0.5c+1}, & \text{si } x \leq 0.5, \\ (x-0.5)(\cos(\pi x)+1)4.0\pi\cos(4.0\pi y), & \text{sinon.} \\ \left\{ -(cx+\sin(5.0\pi x)+(x-0.5)(c+5.0\pi\cos(5.0\pi x)))\frac{\sin(4.0\pi y)}{0.5c+1}, & \text{si } x \leq 0.5, \\ -(\cos(\pi x)+1-\pi(x-0.5)\sin(\pi x))\sin(4.0\pi y), & \text{sinon.} \right\} \end{pmatrix}$$

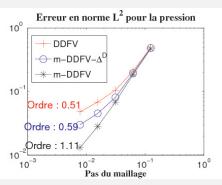
$$p(x,y) = \begin{cases} \cos(4\pi x)\sin(4\pi y) + 8.0\pi (\eta_1 - \eta_2)\cos(4\pi y), & \text{si } x \le 0.5, \\ \cos(4\pi x)\sin(4\pi y), & \text{sinon.} \end{cases}$$

Stella Krell 43/49

Maillage Primal



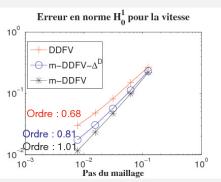
$$\frac{\|\mathbb{P}_c^{\mathfrak{Q}} p - p^{\mathfrak{Q}}\|_2}{\|\mathbb{P}_c^{\mathfrak{Q}} p\|_2}$$



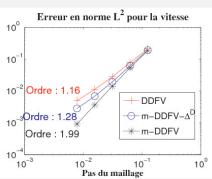
m-DDFV = S-m-DDFV. m-DDFV- $\Delta^{\mathcal{D}}$ = on remplace la conservation de la masse $\operatorname{div}^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}} - \lambda h_{\mathfrak{D}}^{2}\underline{\Delta}^{\mathfrak{D}}\mathbf{p}^{\mathfrak{D}} = 0, \text{ par } \operatorname{div}^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}} - \lambda h_{\mathfrak{D}}^{2}\Delta^{\mathfrak{D}}p^{\mathfrak{D}} = 0.$

Stella Krell 44/49

$$\frac{\|\mathbb{P}_{c}^{\mathfrak{Q}}\nabla\mathbf{u} - \nabla_{\mathfrak{Q}}^{\mathcal{N}}\mathbf{u}^{\mathcal{T}}\|_{2}}{\|\mathbb{P}_{c}^{\mathfrak{Q}}\nabla\mathbf{u}\|_{2}}$$



$$\frac{\|\mathbb{P}_{\boldsymbol{c}}^{\boldsymbol{\mathcal{T}}}\mathbf{u} - \mathbf{u}^{\boldsymbol{\mathcal{T}}}\|_{2}}{\|\mathbb{P}_{\boldsymbol{c}}^{\boldsymbol{\mathcal{T}}}\mathbf{u}\|_{2}}$$



m-DDFV = S-m-DDFV. m-DDFV- $\Delta^{\mathcal{D}}$ = on remplace la conservation de la masse $\operatorname{div}^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}} - \lambda h_{\mathfrak{D}}^{2}\Delta^{\mathfrak{D}}\mathbf{p}^{\mathfrak{D}} = 0$, par $\operatorname{div}^{\mathfrak{D}}\mathbf{u}^{\mathcal{T}} - \lambda h_{\mathfrak{D}}^{2}\Delta^{\mathfrak{D}}p^{\mathfrak{D}} = 0$.

Stella Krell 44/49

Nombre d'éléments non nul dans la matrice

Nombre total d'inconnues	DDFV	m-DDFV- $\Delta^{\mathcal{D}}$	m-DDFV	
2 226	39 363	39 379	39 443	
8 674	159 763	159 797	159 927	
34 242	644 019	644 093	644 363	
136 066	2 586 355	2 586 495	2 587 120	
542 466	10 366 323	10 366 645	10 368 019	

Stella Krell 45/49

PLAN

1 L'approche DDFV pour le problème de Stokes

2 LE PROBLÈME AVEC VISCOSITÉ DISCONTINUE

3 Conclusion

Stella Krell 46/49

- Grâce à un terme de stabilisation, l'approche DDFV a toutes les bonnes propriétés attendues :
 - Système bien posé et stable sur des maillages très généraux.
 - Estimations d'erreur :
 - Ordre 1 en pression en norme L^2 .
 - Ordre 1 en vitesse en norme H^1 .
 - Numériquement : ordre 2 en vitesse en norme L^2 .
 - Implémentation facile en parcourant les arêtes (=les diamants).
- Viscosité discontinue : on garde les bonnes propriétés en adoptant l'approche S-m-DDFV.

Celle-ci est assez lourde sur le papier mais numériquement indolore.

Stella Krell 47/49

Prise en compte du terme non-linéaire $(\mathbf{u} \cdot \nabla)\mathbf{u}$ en $2\mathbf{D}$

(K. '11)

- Discrétisation des équations de Navier-Stokes instationnaires.
- Approximation du terme non-linéaire en utilisant les flux de masse (prenant compte la stabilisation) pour définir le terme d'inertie (inspiré de (Eymard-Gallouët-Herbin-Latché '05)).
- Première étude avec les estimations d'énergie.
- Reste à faire l'étude de la convergence.

$$\mathbf{u} = \begin{pmatrix} -\cos(2\pi x)\sin(2\pi y)e^{-2t} \\ \sin(2\pi x)\cos(2\pi y)e^{-2t} \end{pmatrix}, \quad p = -\frac{1}{4}(\cos(4\pi x) + \cos(4\pi y))e^{-4t}.$$

 $\Omega =]0,1[^2$ avec le maillage en damier, avec T = 1 et $\delta t = 10^{-2}$.

NbCell	Ervel	Ratio	Ergradvel	Ratio	Erpre	Ratio
208	2.804E-02	-	8.508E-02	-	1.526E+00	-
736	6.761E-03	2.052	4.309E-02	0.9815	6.574E-01	1.215
2752	1.803E-03	1.907	2.158E-02	0.9973	3.237E-01	1.022
10624	6.045E-04	1.577	1.079E-02	1.001	1.633E-01	0.9874

Stella Krell 48/49

PERSPECTIVES

EXTENSIONS À PLUS LONG TERMES DANS CE DOMAINE

- Conditions aux limites en contrainte ou sauts de contrainte dans le système (tension de surface).
 - Conditions faciles en prendre en compte dans le schéma.
 - Difficulté dans l'inégalité de Korn.
- \bullet Dépendance non-linéaire de la viscosité en fonction de D ${\bf u}$ (fluides non newtoniens).
 - Les méthodes DDFV sont un cadre approprié pour ce genre de problème (voir modèle de Leray-Lions dans (Boyer-Hubert '08)).
- Poursuivre l'extension des différents résultats en 3D.

Stella Krell 49/49