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Simulation and errors

Simulation framework.

Basic ingredients

@ Understanding of the physics involved (optional ?) :
selection of the mathematical model.

@ Numerical method(s) to solve the model.

@ Specify a set of data :
select a system among the class spanned by the model.
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Simulation and errors

Simulation framework.

Basic ingredients

@ Understanding of the physics involved (optional ?) :
selection of the mathematical model.

@ Numerical method(s) to solve the model.

@ Specify a set of data :
select a system among the class spanned by the model.

Simulation errors
@ Model errors : physical approximations and simplifications.
@ Numerical errors : discretization, approximate solvers,
finite arithmetics.

@ Data error : boundary/initial conditions, model constants
and parameters, external forcings, ...




Introduction
o0

Data uncertainty

Sources of data uncertainty

@ Inherent variability (e.g. industrial processes).
@ Epistemologic uncertainty (e.g. model constants).
@ May not be fully reductible, even theoretically.
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Data uncertainty

Sources of data uncertainty

@ Inherent variability (e.g. industrial processes).
@ Epistemologic uncertainty (e.g. model constants).
@ May not be fully reductible, even theoretically.

Probabilistic framework

@ Define an abstract probability space (2, A, du).

@ Consider data D as random quantity : D(w), w € Q.

@ Simulation output S is random and on (2, A, dyu).

@ Data D and simulation output S are dependent random
quantities (through the mathematical model M) :

M(S(w),D(w)) =0, Ywe Q.
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Data uncertainty

Propagation and Quantification of data uncertainty
Data density
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Propagation and Quantification of data uncertainty
Data density
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Propagation and Quantification of data uncertainty
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@ Variability in model output : numerical error bars.
@ Assessment of predictability.
@ Support decision making process.

@ What type of information (abstract quantities, confidence
intervals, density estimations, structure of dependencies,
...) one needs ?




Introduction
[ le]

Alternative UQ methods

Deterministic methods

@ Sensitivity analysis (adjoint based, AD, ...) : local.

@ Perturbation techniques : limited to low order and simple
data uncertainty.

@ Neuman expansions : limited to low expansion order.

@ Moments method : closure problem (non-Gaussian /
non-linear problems).

Simulation techniques Monte-Carlo
Spectral Methods
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Alternative UQ methods

Deterministic methods
Simulation techniques Monte-Carlo

@ Generate a sample set of data realizations and compute
the corresponding sample set of model ouput.

@ Use sample set based random estimates of abstract
characterizations (moments, correlations, .. .).

@ Plus : Very robust and re-use deterministic codes :
(parallelization, complex data uncertainty).

@ Minus : slow convergence of the random estimates with
the sample set dimension.

Spectral Methods
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Alternative UQ methods

Deterministic methods

Simulation techniques Monte-Carlo

Spectral Methods

@ Parametrization of the data with random variables (RVs).

@ | projection of solution on the (L,) space spanned by the
RVs.

@ Plus : arbitrary level of uncertainty, deterministic
approach, convergence rate, information contained.

@ Minus : parametrizations (limited # of RVs), adaptation
of simulation tools (legacy codes), robustness
(non-linear problems, non-smooth output, ...).

@ Not suited for model uncertainty
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Alternative UQ methods
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Generalized PC expansion

Polynomial Chaos expansion [Wiener-1938]
Any well behaved RV U(w) (e.g. 2nd-order one) defined on
(Q, A, du) has a convergent expansion of the form :

U(w) = U0r0 + Z ul1 |_1 €I1 + Z Z UI1 12 |_2 §I1 (w glg( ))
l1 1 l1 1 12 1
oo

+ Z Z Z Uiy iy, 13 5/1 g"2((’0)’5"3((‘))) +

I1 1I2 1I31

@ {{4,&, ...} independent normalized Gaussian RVs.
@ [, polynomials with degree p, orthogonal to 'y, Vg < p.

@ Convergence in the mean square sense (Cameron and
Martin, 1947).
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Generalized PC expansion

Polynomial Chaos expansion [Wiener-1938]
Truncated PC expansion at order No and N RVs :
P

Ue) = 3 Vi€, €= (68, _ (N+Noj!.

NI!No!
@ {ux}k—o,. p : deterministic expansion coefficients,

@ {Vy}k—o,. p: L random polynomials wrt the inner
product involving the density of & :

EV V] = (Wi, V)

/Q Wi (&)W (E())du(w)
/ Wk (E)V/(€)P(E)dE = by (WE) .
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Generalized PC expansion

Polynomial Chaos expansion [Wiener-1938]
Truncated PC expansion at order No and N RVs :
P

Ue) = 3 Vi€, €= (68, _ (N+Noj!.

NI!No!
@ {ux}k—o,. p : deterministic expansion coefficients,

@ {Vy}k—o,. p: L random polynomials wrt the inner
product involving the density of & :

EV V] = (Wi, V)

/Q Wi (&)W (E())du(w)
/ Wk (E)V/(€)P(E)dE = by (WE) .

p(¢) =TI, oxp(~ i/Q) = V(&) : Hermite polynomials
@ {Vg,...,Vp}is an orthogonal basis of S* C Ly(Z, p(¢)).
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Generalized PC expansion

Polynomial Chaos expansion [Wiener-1938]
Truncated PC expansion : U(w) = 3 ko UV (E(w))-
@ Convention Wy = 1 : mean mode.
@ Expectation of U :
P
E[U] = / U(w)dp(w) ~ Zuk/ p(€)de = uo.

k=0 -

@ Variance of U :

VIU] = E[U?] - E[U]? ~ Zuk Wy, W)

@ Extension to random vectors & stochastic processes :

U1 Uy

~> | (X, 1) W (§(w))-

Un k=0 Um J
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Generalized PC expansion

Generalized PC expansion [Xiu and Karniadakis, 2002]

Askey scheme

Distribution of &; | Polynomial familly
Gaussian Hermite
Uniform Legendre
Exponential Laguerre
[-distribution Jacobi

Also : discrete RVs (Poisson process).

U(w) = Yo UkVk(§(w))
where WV : classical (or mixture of) polynomials.
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Application to spectral UQ

Data parametrization

Parametrization of D using N < oo independent RVs with
prescribed distribution p(¢) :

D(w) = D(§(w)), &= (&1,..-,&n) €=

@ |so-probabilistic Transformation of random variables.

@ Karhunen-Loéve expansion : D(x,w) stochastic
field/process.

@ Independent components analysis.

v

Solution expansion
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Application to spectral UQ

Data parametrization

We assume that for a.e. £ € =, the problem M(S,D(&)) =0
©Q is well-posed,
© has a unique solution

and that

the random solution S(§) € Lo(=, pe) ‘ :

E[s?] = [ Senante) = [ S*ep(erde < +x.

Solution expansion
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Application to spectral UQ
Data parametrization

Model

Solution expansion
Let {Wo, V4,...} be a basis of Lx(=, p¢) then

S(€) = Y skwl©).
k

@ Knowledge of the spectral coefficients s, fully determine
the random solution.

@ Makes explicit the dependence between D(&) and S(€).
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Application to spectral UQ
Data parametrization

Model

Solution expansion
Let {Wo, V4,...} be a basis of Lx(=, p¢) then

S(€) = Y skwl©).
k

@ Knowledge of the spectral coefficients s, fully determine
the random solution.

@ Makes explicit the dependence between D(&) and S(€).
@ Need efficient procedure(s) to compute the s.
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Application to spectral UQ
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Non-Intrusive Methods

Non-intrusive methods Basics

Use code as a black-box

@ Compute/estimate spectral coefficients via a set of
deterministic model solutions

@ Requires a deterministic solver only

Q S=={c", ... &M sample set of ¢
@ Let s() be the solution of the deterministic problem
M (3(07 D(gi))) ~0
Q Ss={s",... s(M} sample set of model solutions
© Estimate expansion coefficients sx from this sample set.

@ Complex models, reuse of determinsitic codes,
planification, ...

@ Error control and computational complexity (curse of
dimensionality), . ..
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Non-Intrusive Methods

Least square fit “Regression”

@ Best approximation is defined by minimizing a (weighted)
sum of squares of residuals :

P 2
RZ(S(),...,SP) EZW,- <S(i) _Zskwk (g(/))) '
k=0

Advantages/issues
@ Convergence with number of regression points m

@ Selection of the regression points and “regressors” Wy
@ Error estimate
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Non-Intrusive Methods

Non intrusive spectral projection : NISP
Exploit the orthogonality of the basis :

E[wE]s= (5w = [ S©)vi(©p()de.

Computation of (P + 1) N-dimensional integrals
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Non-Intrusive Methods

Non intrusive spectral projection : NISP
Exploit the orthogonality of the basis :

E[WE]s = (5.w) = [ S@)vie)p(e)de.
Computation of (P + 1) N-dimensional integrals

Nq

(S, Wg) ~ Z ws (5(1')) P (5(/‘)) '

i=1
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Non-Intrusive Methods

Non intrusive projection Random Quadratures
Approximate integrals from a (pseudo) random sample set Sg :

m

(S, W) ~ % > wishu (0)

i=1
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Non-Intrusive Methods

Non intrusive projection Random Quadratures
Approximate integrals from a (pseudo) random sample set Sg :

(S, W) ~ Z wD gy (5(:')) ‘

@ Convergence rate

@ Error estimate

@ Optimal sampling
strategy
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Non-Intrusive Methods

Non intrusive projection Deterministic Quadratures
Approximate integrals by N-dimensional quadratures :

(S, W) ~ Z wD sy, (5(’ )

Quadrature points ¢() and weights w() obtained by
@ full tensorization of n points 1-D quadrature (i.e. Gauss) :
NQ = nN

@ partial tensorization
of nested 1-D quadrature formula (Féjer, Clenshaw-Curtis) :

Ng << nN
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Non-Intrusive Methods
Non intrusive projection Deterministic Quadratures
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@ Important development of sparse-grid methods
@ Anisotropic and adaptivity

@ Extension to collocation approach (N-dimensional interpolation)
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Stochastic Galerkin Projection

Galerkin projection

@ Weak solution of the stochastic problem M(S, D) = 0.
@ Needs adaptation of deterministic codes.
@ Usually more efficient than NI techniques.

@ Better suited to improvement (error estimate, optimal and
basis reduction, ...), thanks to spectral theory and
functional analysis.
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Stochastic Galerkin Projection

Galerkin projection Method of weighted residual
@ Introduce truncated expansions in model equations
@ Require residual to be L to the stochastic subspace S*

<M (Z skWk(€), D(g)) wm(5)> =0 form=0,...,P.
k=0

’Set of P+ 1 coupled problems.

@ Implicitly account for
modes’ coupling.

@ Requires adaptation of
deterministic solvers.

@ Treatment of
non-linearities.

@ Often inherit properties of
the deterministic model.
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Stochastic Galerkin Projection

Example of Galerkin projection

Convection dispersion equation A. Cartalade (CEA)
@ 1-D Convection dispersion : concentration C(x, t)
oC 0 oC
S 5F = "ax {qC—(éde\lql) }
@ ICand BC: C(x,t=0)=0,C(x=0,t)=1a.s.
@ Model coefficients :

g > 0 : Darcy velocity (1 m/day),

¢ : fluid fraction 0 < ¢ < 1,

dm : molecular diffusivity (<< 1),

A :uncertain hydrodynamic dispersion coefficient.

Uncertainty model
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Stochastic Galerkin Projection

Example of Galerkin projection

Model equation

Uncertainty model

@ A follows an uncertain power-law : A= AP

@ A and B independent random variables with p.d.f.
logig A ~ U[—4,-2] and B ~ U[-3.5, —1]
@ Parametrization with two RV &4, & ~ U[-1,1] :

A(&y) = exp(p1 +01&1) B = o + 028

@ Expansion of A : (2-D Legendre basis)

N1, &) =D MVk(ér,&2)
K
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Stochastic Galerkin Projection

Stochastic convection dispersion equation becomes :
81’0 + anC - D(S)axxc - O

Expansion of the solution : C(&,t, x) = Y p_o ck(X, t)Wk(€)
Insert and project : form=20,...,P

P

> 0iek (Wi, W) + GOxCk (Wi, W) — (W D(€), W) Oxx G = O
k=0
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Stochastic Galerkin Projection

Stochastic convection dispersion equation becomes :
Expansion of the solution : C(&, t, x) ~ Zi:o ck(Xx, HWg(€)
Insert and project : form=0,...,P

P

OtCm + qOxCm — Z
k=0

(VkD(§), Vm)
=22 L0 Ck =0
<\U.m’ \Um> xx Lk
Coupling of the stochastic modes c(x, t) through the
stochastic dispersion operator.
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Stochastic Galerkin Projection

Proceed with the deterministic discretization :
e Time derivative dicx = (it — ¢f)/ At + O(Al)
@ Implicit scheme with FV scheme with n. spatial cells

P
chzﬂ =b(c?), m=0,...,P

k=0 <\Um7 Wm>
where ¢} € R™ and A(£) is a random matrix in R"e* "
@ Random matrix expansion A(¢) = S} _o[AlkVk(€)

P

> MumlAlke]t! = b(eh), My =
K.1=0

(VW ), V)
<Wma Wm>

@ Linear system of (P + 1) x n; equations.
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Stochastic Galerkin Projection

Structure of the Galerkin system :
@ Usually the matrices [A]x inherit the structure of the
determinstic problem
@ The Galerkin product tensor M is sparse
(examples for No = 3 -left- and N = 5 -right-)

N=4-P=35 N=6-P=84 No=2-P=20 No =3-P=255

N=8P=164 N=10-P=285 No=4-P=126 No = 5-P =251
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Stochastic Galerkin Projection

Resolution of the Galerkin system

P P
Z ZMklm[A]kC/r’+1 =b(cl), form=0,...,P
k=0 1=0
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Stochastic Galerkin Projection

Resolution of the Galerkin system

ZMOIm[A]Ocn+1+ZZMklm[A]kcn+1 = b(cy), form=0,....P
1=0 k=11=0
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Stochastic Galerkin Projection

Resolution of the Galerkin system

P P
[Aloc™ ! = b(ch) — Z Z Mk/m[A]k07+1, form=0,...,P
k=1 1=0

@ Suggest Jacobi type iterations

@ Factorization of [A]lop = E [A] only

@ Other iterative (Krylov-type) methods with preconditioner
P = diag(E [A])

@ Efficiency depends on the variability of A.



Solution Methods
0000000800

Stochastic Galerkin Projection

Convection dispersion equation results

T
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No=1—-P+1=3,No=6 — P+1=145.
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Stochastic Galerkin Projection

Convection dispersion equation results

Convergence of pdfs at 0]
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Stochastic Galerkin Projection

Convection dispersion equation results
Further uncertainty analysis : quartiles & ANOVA (Sobol)
1
0.8
0.6
° 0.4
0.2
0
0 0 5 10 1‘5 20 25
t (hour)




Conclusion

Conclusion
@ Propagation des incertitudes = calculs intensifs
@ HPC nécessaire (tant en intrusif que non intrusif)

@ Non-intrusif : plateformes / lanceurs, planification,
répartition de charge, . ..

@ Galerkin : strategies de parallélisation appropriées
(distribution de la résolution des modes / décomposition de
domaine spatial), équilibrage et optimisation des volumes
de communication entre processeurs

@ Multi-résolution : procédures de type AMR au niveau
stochastique, nombreux probléemes de Galerkin découplés,

@ Incertitudes de modélisation par MC
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