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Application Background
Numerical simulation of unsteady reactive phenomena

@ Flames (Instabilities, dynamics, pollutants)
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Application Background

Numerical simulation of unsteady reactive phenomena

@ Flames (Instabilities, dynamics, pollutants)
@ Chemical “waves” (spiral waves, scroll waves)

@ Biochemical Engineering (migraines, Rolando’s region,
strokes)

white matter grey matter
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Dynamics involving many “species” and “reactions”

Multiple scales problems

“Complex Chemistry”

Convection-diffusion coupled to chemistry

U+ 9,(di(U, 0. U)) = QU)
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Examples
@ KPP or Fischer equation

3tﬂ - axxﬁ = 52(1 - ﬁ)
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Examples
@ KPP or Fischer equation
@ Belousov-Zhabotinsky system of equations

oa 1

5 D,ha = ﬁ(—qa— ab + fc),

ob 1

E—D,,Ab = E(qa—ab+b(1—b)),
oc

E - DCAC — b - C,
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Numerical Strategies
Splitting

Examples
@ KPP or Fischer equation
@ Belousov-Zhabotinsky system of equations
@ Compressible flame equations with complex chemistry
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o Context and Motivation

@ Time integration numerical strategies
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Strategies

Resolving the large scale spectrum coupled

@ Explicit methods in time (high order in space)
@ Fully implicit methods with adaptative time stepping
@ Method of lines coupled to a stiff ODE solver

@ Semi-implicit methods (IMEX, source/diffusion explicit in
time)

The computational cost and memory requirement have
suggested the study of alternative methods : decoupling

@ Reduction of chemistry (large litterature)
@ Operator Splitting techniques
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@ Operator splitting and stiffness
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Operator splitting techniques

Operator splitting : separate convection-diffusion and chemistry

@ High order methods exist
@ Allow the use of dedicated solver for each step
@ Yield lower storage and optimization capability
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Basis of operator splitting - |

Reaction-diffusion system to be solved (t : time interval)

0,U— AU = Q(U)

u(t) = T, {U(O) _

Two elementary “blocks”.

V(t) = X'V, {afz(g)ivvj 0
o=y {4t 700

O

v
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Basis of operator splitting I

First order methods :

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation Unsteady reactive phenomena
Numerical Strategies
Splitting

Basis of operator splitting I

First order methods :

Lie Formulae.

LYUp= X" YUy LY Uy — THUy = O(£2),

LhUy=Y'X"Uy  LhUy— THUy = O(£3),
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Basis of operator splitting Il

Second order methods :
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Basis of operator splitting Il

Second order methods :

Strang Formulae.

St Uy = XY Uy  StUy— THUy = O(),

ShlUp=X"2VIX"2Uy  ShUy— THUy = O(£%),
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Basis of operator splitting Il

Second order methods :

Strang Formulae.

St Uy = XY Uy  StUy— THUy = O(),

ShlUp=X"2VIX"2Uy  ShUy— THUy = O(£%),

Higher order...
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Error estimates by Lie formalism

Application to Lie et Strang formulae denoting by F the reaction
term for a scalar equation.

2
Tt — YXtup = %F”(uo)(ﬁxuo)z + o),
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Error estimates by Lie formalism

Application to Lie et Strang formulae denoting by F the reaction
term for a scalar equation.

2
Tt — YXtup = %F”(uo)(ﬁxuo)z + o),

Tlug — Y'2X!Y2yq =

ztz <2F(4)(uo)(8xuo)4 + 8FC) () (Do) (DxxUp) + 4F"" (Up)(Oxx uO)Q)

3
e (FF® o) + F (w0)F () (0 )?) + O(E)
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Stiffness comes into play

@ Detected by the beginning of 90’
(Hairer Wanner 91, D’Angelo Larrouturou 95)

@ Numerical analysis of linear model ODEs
(Verwer Sportisse 00)
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Stiffness comes into play

@ Detected by the beginning of 90’
(Hairer Wanner 91, D’Angelo Larrouturou 95)

@ Numerical analysis of linear model ODEs
(Verwer Sportisse 00)
Various origins of stiffness
@ Large spectrum of temp. scales in chemical source
@ Large spatial gradients of the solutions
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Large spectrum of temporal scales

@ A “model” problem for the fast scales for U° = (u°, v¢)!
OHUF — Oy - (BU(UP, ve) 0y UF) = , X€ERY
OpvE — Oy - (BY(UF, ve) OxUF) = , xeRd
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Large spectrum of temporal scales

@ A “model” problem for the fast scales for U° = (u°, v¢)!
OHUF — Oy - (BU(UP, ve) 0y UF) = , X€ERY
OpvE — Oy - (BY(UF, ve) OxUF) = , XERY

@ The entropic structure of the RD system of equations =
Dynamics on the partial equilibrium manifold

et — Oy - (B“(u, h(u)) by <h("u))> _
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Large spectrum of temporal scales

@ A “model” problem for the fast scales for U° = (u°, v¢)!
OHUF — Oy - (BU(UP, ve) 0y UF) = , X€ERY
OpvE — Oy - (BY(UF, ve) OxUF) = , xeRd

@ The entropic structure of the RD system of equations =
Dynamics on the partial equilibrium manifold

et — Oy - (B“(u, h(u)) by <h("u))> _

@ Order reduction due to fast scales
e Diag. diffusion : Lie RD order 0 fast variable only
e Diag. diffusion : Strang DRD order 0 fast variable only
e Non-diag. diffusion : Lie DR and RD order 0
e Non-diag. diffusion : Strang RDR order-1, DRD order-0
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High spatial gradients

@ Initial data with high gradient (L2 norm)
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High spatial gradients

@ Initial data with high gradient (L2 norm)
@ High constant in the error estimate O(t?) = C(||Up|| 1) 2
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High spatial gradients

@ Initial data with high gradient (L2 norm)

@ High constant in the error estimate O(t?) = C(||Ug|| 1) t?

e Regularizing effect of diffusion
e Example of error estimate for DR

L3 = T < C(/|Uoll12)£

e various asymptotics with a threshold time step
o Key issue from a numerical point of view

Descombes et al. Multi-scale reaction waves simulation



Suitable Stiff Integrators - Parallelization

Parareal

One lllustrating Example

One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

Outline

e Algorithms for multi-scale reaction waves simulation
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Parareal

One lllustrating Example

One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

Stability + Accuracy

Considering:

y'=Xy = Yp1=R(@y, z=h\

We are particularly looking for:

@ A-stable methods
@ High order methods

@ L-stable methods
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One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

Implicit Runge Kutta Methods

@ Based on Ehle’s Methods of type Il: (RadaullA)

@ Order: p = 2s — 1 (s: stage number)
@ A-stable

@ L-stable

RADAU5
(Hairer & Wanner Springer-Verlag 91)

@ Based on RadaullAwiths=3andp=5
@ Simplified Newton Method — Linear Algebra tools

@ Adaptative time integration step
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One lllustrating Example with Adaptive Multiresolution

Explicit Runge-Kutta methods

We want to solve the discrete heat equation
u=Au,

with an explicit s-stage Runge-Kutta method.

Because of the properties of the matrix A, we need to find a
stable Runge-Kutta method for the simple problem

U= \u,

with A real, negative and as big as possible...
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One lllustrating Example with Adaptive Multiresolution

(Abdulle SIAM J. Sci. Comput. 02)

@ Extended Stability Domain (along R™) by increasing the
number of stages

@ Order 4 - Stability xs2.
@ Adaptative time integration step
@ Explicit Methods = NO Linear Algebra problems

@ Low Memory Demand
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Parareal

One lllustrating Example

One lllustrating Example with Adaptive Multiresolution

Explicit/Implicit Operator Splitting

Multi-scale Simulation Algorithms

Numerical Strategy:

o;U—- eAU = Q(U)
ROCK4  RaADAUS

@ Reduction in Computational Time
@ Reduction in Memory Demand
@ Same previous accuracy established by Splitting Scheme

@ Highly parallelizable - Diffusion - Reaction
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e Algorithms for multi-scale reaction waves simulation

@ Parallelization of the Time Direction
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One lllustrating Example

One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

Background

Consider the general nonlinear system of ODEs:

u(t) = f(u(t)
u0) = do°

onte (0,T)where f : RM = RMandu : R — RM.
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One lllustrating Example with Adaptive Multiresolution

Decomposition of the Time Direction

We decompose the time domain Q = (0, T) into N time
subdomains Q, = (T, Ths1) and consider for
n=0,1,...,N—1:

up(t) = f(un(t))
un(Tn) = U,

onte (Th, Thit).
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One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

Parareal Algorithm

(Lions et al. C. R. Acad. Sci. Paris Sér. | Math. 01)
Combination of two solvers

@ Coarse Solver — fast (sequential calculation)
@ Fine Solver — slow (parallel calculation)

@ Convergence from a coarse approximation to the detailed

dynamics
@ lterative Method

Descombes et al. Multi-scale reaction waves simulation
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One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

Parareal Algorithm

The parareal algorithm is based on two propagation operators :
GATn(U) and F2Tn(U), that provide respectively a coarse and
an accurate approximation of ¢“Tn(U). In this way, the
algorithm starts with an initial approximation U3 given for
example by the sequential computation

UJ=u® U%=gATn1Ul Yforn=1,... N,
and then performs fori=1,...,iconv the correction iterations
Up=ul, Up=r2T (U )+ 65T (U, ) =A™ (U

for n=1,... ,N.
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One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

Outline

e Algorithms for multi-scale reaction waves simulation

@ One lllustrating Example
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One lllustrating Example

One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

“Toy” Model

Belousov-Zhabotinsky system of equations

oa 1
5 D,Aa = ;(—qa —ab +fc),
ob 1
@ — DcAc = b - C,
\ OT

e=10"2 4=10"° f=1,6 q=2.10"3
D,=2,510"2% Dp=2,510"2% D¢=1,5.10"3
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One lllustrating Example

One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

y” Model

il
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One lllustrating Example with Adaptive Multiresolution

“Toy” Model - Some results

Grid 129 x 129 257 x 257
Coarse solver | RDR Strang | Rock4 | RDR Strang | Rock4
Nproc 64
Nproc/Nite 16 32 16 32
Ttine/ Tpara 216 3.21 2.02 2.88

Table: Computation time ratios, 2D BZ
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Parareal

One lllustrating Example

One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

Conclusions

@ Convergence rate diminished due to Stiff phenomena
@ Parallel speedup is possible, but the speedup is modest

@ Appropriate Coarse Solvers — Cheap Stiff Integrators

Descombes et al. Multi-scale reaction waves simulation
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e Algorithms for multi-scale reaction waves simulation

@ One lllustrating Example with Adaptive Multiresolution
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Parareal

One lllustrating Example

One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

2D Configuration

Adaptive Multiresolution (Cohen et al. Mathematics of Computation
01).

@ Time Domain : T = [0, 4]

@ Spatial Domain : Q = [0, 1] x [0, 1]

@ Integration Time Step : At =4/1024

Descombes et al. Multi-scale reaction waves simulation
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Suitable Stiff Integrators - Parallelization

Parareal

One lllustrating Example

One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

3D Configuration

@ Time Domain: T = [0, 2]
@ Spatial Domain : Q = [0, 1] x [0,1] x [0, 1]
@ Integration Time Step : At =2/256
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Parareal

One lllustrating Example

One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

Adaptive Grid

Compression — 4.46%
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Parareal

One lllustrating Example

One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

Adaptive Grid

Compression — 10.38%
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One lllustrating Example

One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

Adaptive Grid

Compression — 17.00%
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One lllustrating Example

One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

Adaptive Grid

Compression — 12.97%
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Parareal

One lllustrating Example

One lllustrating Example with Adaptive Multiresolution

Multi-scale Simulation Algorithms

Adaptive Grid

Compression — 12.95%
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Conclusions and Perspectives

Conclusions and perspectives

@ Splitting methods and efficient splitting methods
@ Numerical analysis of temporal and spatial origins of order
loss
o fast temporal scales in the reaction source term
— dynamics on an “equilibrium manifold”
— effect of non-diagonal diffusion
e high spatial variation of the solution
@ Work in progress

o Real problems with Complex chemistry
o Adaptative time step
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