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To summarize

Dynamics involving many “species” and “reactions”

Multiple scales problems

“Complex Chemistry”

Convection-diffusion coupled to chemistry

∂tU +
∑

∂i
(
Φi(U, ∂xU)

)
= Ω(U)

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions and Perspectives

Unsteady reactive phenomena
Numerical Strategies
Splitting

Examples
KPP or Fischer equation

∂tβ − ∂xxβ = β2(1− β)

Belousov-Zhabotinsky system of equations
Compressible flame equations with complex chemistry
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Belousov-Zhabotinsky system of equations

∂a
∂τ

− Da∆a =
1
µ

(−qa− ab + fc),

∂b
∂τ

− Db∆b =
1
ε

(qa− ab + b(1− b)) ,

∂c
∂τ

− Dc∆c = b − c,

Compressible flame equations with complex chemistry
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Strategies

Resolving the large scale spectrum coupled

Explicit methods in time (high order in space)
Fully implicit methods with adaptative time stepping
Method of lines coupled to a stiff ODE solver
Semi-implicit methods (IMEX, source/diffusion explicit in
time)

The computational cost and memory requirement have
suggested the study of alternative methods : decoupling

Reduction of chemistry (large litterature)
Operator Splitting techniques
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Operator splitting techniques

Operator splitting : separate convection-diffusion and chemistry

High order methods exist
Allow the use of dedicated solver for each step
Yield lower storage and optimization capability

Descombes et al. Multi-scale reaction waves simulation



Context and Motivation
Multi-scale Simulation Algorithms

Conclusions and Perspectives

Unsteady reactive phenomena
Numerical Strategies
Splitting

Basis of operator splitting - I

Reaction-diffusion system to be solved (t : time interval)

U(t) = T tU0

{
∂tU −∆U = Ω(U)

U(0) = U0

Two elementary “blocks”.

V (t) = X tV0

{
∂tV −∆V = 0

V (0) = V0

W (t) = Y tW0

{
∂tW = Ω(W )

W (0) = W0
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Basis of operator splitting II

First order methods :

Lie Formulae.

Lt
1 U0 = X t Y t U0 Lt

1 U0 − T t U0 = O(t2),

Lt
2 U0 = Y t X t U0 Lt

2 U0 − T t U0 = O(t2),
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Basis of operator splitting III

Second order methods :

Strang Formulae.

St
1 U0 = Y t/2 X t Y t/2 U0 St

1 U0 − T t U0 = O(t3),

St
2 U0 = X t/2 Y t X t/2 U0 St

2 U0 − T t U0 = O(t3),

Higher order...
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Error estimates by Lie formalism

Application to Lie et Strang formulae denoting by F the reaction
term for a scalar equation.

T tu0 − Y tX tu0 =
t2

2
F”(u0)(∂xu0)

2 + O(t3),

T tu0 − Y t/2X tY t/2u0 =

t3

24

(
2F (4)(u0)(∂xu0)

4 + 8F (3)(u0)(∂xu0)
2(∂xxu0) + 4F”(u0)(∂xxu0)

2
)

− t3

24

((
F (u0)F (3)(u0) + F”(u0)F ′(u0)

)
(∂xu0)

2
)

+ O(t4)
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Stiffness comes into play

Detected by the beginning of 90’
(Hairer Wanner 91, D’Angelo Larrouturou 95)

Numerical analysis of linear model ODEs
(Verwer Sportisse 00)

Various origins of stiffness
Large spectrum of temp. scales in chemical source
Large spatial gradients of the solutions
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Large spectrum of temporal scales

A “model” problem for the fast scales for Uε = (uε, vε)t∂tuε − ∂x · (Bu(uε, vε) ∂xUε) = f (uε, vε), x ∈ Rd

∂tvε − ∂x · (Bv (uε, vε) ∂xUε) =
g(uε, vε)

ε
, x ∈ Rd

The entropic structure of the RD system of equations ⇒
Dynamics on the partial equilibrium manifold

∂tu − ∂x ·
(

Bu(u, h(u)) ∂x

(
u

h(u)

))
= f (u, h(u))

Order reduction due to fast scales
Diag. diffusion : Lie RD order 0 fast variable only
Diag. diffusion : Strang DRD order 0 fast variable only
Non-diag. diffusion : Lie DR and RD order 0
Non-diag. diffusion : Strang RDR order 1, DRD order 0
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High spatial gradients

Initial data with high gradient (L2 norm)

High constant in the error estimate O(t2) = C(||U0||H1) t2

Regularizing effect of diffusion
Example of error estimate for DR

|Lt
1 − T t | < C(||U0||L2)t3/2

various asymptotics with a threshold time step
Key issue from a numerical point of view
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Stability + Accuracy

Considering:

y ′ = λy =⇒ yn+1 = R(z)yn z = hλ

We are particularly looking for:

A-stable methods

High order methods

L-stable methods

Descombes et al. Multi-scale reaction waves simulation
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Implicit Runge Kutta Methods

Based on Ehle’s Methods of type II: (RadauIIA)

Order: p = 2s − 1 (s: stage number)
A-stable

L-stable

RADAU5
(Hairer & Wanner Springer-Verlag 91)

Based on RadauIIA with s = 3 and p = 5

Simplified Newton Method =⇒ Linear Algebra tools

Adaptative time integration step

Descombes et al. Multi-scale reaction waves simulation
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Explicit Runge-Kutta methods

We want to solve the discrete heat equation

u̇ = Au,

with an explicit s-stage Runge-Kutta method.

Because of the properties of the matrix A, we need to find a
stable Runge-Kutta method for the simple problem

u̇ = λu,

with λ real, negative and as big as possible...
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ROCK4

(Abdulle SIAM J. Sci. Comput. 02)

Extended Stability Domain (along R−) by increasing the
number of stages

Order 4 - Stability ×s2.

Adaptative time integration step

Explicit Methods =⇒ NO Linear Algebra problems

Low Memory Demand

Descombes et al. Multi-scale reaction waves simulation
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Explicit/Implicit Operator Splitting

Numerical Strategy:

∂tU − ε∆U︸ ︷︷ ︸
ROCK4

= Ω(U)︸ ︷︷ ︸
RADAU5

Reduction in Computational Time

Reduction in Memory Demand

Same previous accuracy established by Splitting Scheme

Highly parallelizable - Diffusion - Reaction

Descombes et al. Multi-scale reaction waves simulation
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Background

Consider the general nonlinear system of ODEs:

u′(t) = f (u(t))
u(0) = u0

on t ∈ (0, T ) where f : RM → RM and u : R → RM .
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Decomposition of the Time Direction

We decompose the time domain Ω = (0, T ) into N time
subdomains Ωn = (Tn, Tn+1) and consider for
n = 0, 1, . . . , N − 1:

u′
n(t) = f (un(t))

un(Tn) = Un

on t ∈ (Tn, Tn+1).
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Parareal Algorithm

( Lions et al. C. R. Acad. Sci. Paris Sér. I Math. 01)

Combination of two solvers

Coarse Solver =⇒ fast (sequential calculation)
Fine Solver =⇒ slow (parallel calculation)

Convergence from a coarse approximation to the detailed
dynamics
Iterative Method
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Parareal Algorithm

The parareal algorithm is based on two propagation operators :
G∆Tn(U) and F∆Tn(U), that provide respectively a coarse and
an accurate approximation of φ∆Tn(U). In this way, the
algorithm starts with an initial approximation U0

n given for
example by the sequential computation

U0
0 = u0, U0

n = G∆Tn−1(U0
n−1) for n = 1, . . . , N,

and then performs for i = 1, . . . , iconv the correction iterations

Ui
0 = u0, Ui

n = F∆Tn−1(Ui−1
n−1)+G∆Tn−1(Ui

n−1)−G∆Tn−1(Ui−1
n−1)

for n=1,. . . ,N.
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“Toy” Model

Belousov-Zhabotinsky system of equations

∂a
∂τ

− Da∆a =
1
µ

(−qa− ab + fc),

∂b
∂τ

− Db∆b =
1
ε

(qa− ab + b(1− b)) ,

∂c
∂τ

− Dc∆c = b− c,

ε = 10−2 µ = 10−5 f = 1, 6 q = 2.10−3

Da = 2, 5.10−3 Db = 2, 5.10−3 Dc = 1, 5.10−3
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“Toy” Model
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“Toy” Model - Some results

Grid 129× 129 257× 257
Coarse solver RDR Strang Rock4 RDR Strang Rock4

Nproc 64
Nproc/Nite 16 32 16 32
Tfine/Tpara 2.16 3.21 2.02 2.88

Table: Computation time ratios, 2D BZ
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Conclusions

Convergence rate diminished due to Stiff phenomena

Parallel speedup is possible, but the speedup is modest

Appropriate Coarse Solvers −→ Cheap Stiff Integrators
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2D Configuration

Adaptive Multiresolution (Cohen et al. Mathematics of Computation
01).

Time Domain : T = [0, 4]

Spatial Domain : Ω = [0, 1]× [0, 1]

Integration Time Step : ∆t = 4/1024
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Adaptive Grid

Compression −→ 1.41%
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Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
One Illustrating Example with Adaptive Multiresolution

Adaptive Grid

Compression −→ 2.96%
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Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
One Illustrating Example with Adaptive Multiresolution

Adaptive Grid

Compression −→ 3.90%
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Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
One Illustrating Example with Adaptive Multiresolution

Adaptive Grid

Compression −→ 4.69%
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Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
One Illustrating Example with Adaptive Multiresolution

Adaptive Grid

Compression −→ 5.77%
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Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
One Illustrating Example with Adaptive Multiresolution

3D Configuration

Time Domain : T = [0, 2]

Spatial Domain : Ω = [0, 1]× [0, 1]× [0, 1]

Integration Time Step : ∆t = 2/256
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Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
One Illustrating Example with Adaptive Multiresolution

Adaptive Grid

Compression −→ 4.46%
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Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
One Illustrating Example with Adaptive Multiresolution

Adaptive Grid

Compression −→ 10.38%
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Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
One Illustrating Example with Adaptive Multiresolution

Adaptive Grid

Compression −→ 17.00%
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Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
One Illustrating Example with Adaptive Multiresolution

Adaptive Grid

Compression −→ 12.97%
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Suitable Stiff Integrators - Parallelization
Parareal
One Illustrating Example
One Illustrating Example with Adaptive Multiresolution

Adaptive Grid

Compression −→ 12.95%
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Conclusions and perspectives

Splitting methods and efficient splitting methods
Numerical analysis of temporal and spatial origins of order
loss

fast temporal scales in the reaction source term
−→ dynamics on an “equilibrium manifold”
−→ effect of non-diagonal diffusion
high spatial variation of the solution

Work in progress
Real problems with Complex chemistry
Adaptative time step
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