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Motivation 
 
 

 
Context: Systems of nonlinear partial differential equations (PDEs) of hyperbolic or parabolic type.  
 
Turbulent reactive or non-reactive flows exhibit a multitude of active spatial and temporal scales.  
 
Scales are mostly not uniformly distributed in the space-time domain, 
 
Efficient numerical discretizations could take advantage of this property -> adaptivity in space and time  
 
Reduction of the computational complexity with respect to uniform discretizations 
 
while controlling the accuracy of the adaptive discretization. 

 
 

Here: adaptive multiresolution techniques



 
 

Introduction 
 
 

 
- Multiresolution schemes (Harten 1995) 

o Solution on fine grid -> solution on coarse grid + details 
o Details “small” -> interpolation, no computation (CPU time reduced) 
o 2d non-linear hyperbolic problems (Bihari-Harten 1996, Abgrall-Harten 1996, Chiavassa-Donat 2001, 

Dahmen et al. 2001, …) 
 
 

- Adaptive Multiresolution schemes  
(Müller 2001, Cohen et al. 2002, Roussel et al. 2003, Bürger et al. 2007, …) 

 
o Details “small” -> interpolation and remove from memory (CPU time and memory reduction) 

 
- Aim of this talk    

o fully adaptive schemes (space + time) for 2d and 3d problems 
o Compare with Adaptive Mesh Refinement (preliminary results)

 



 
 

Adaptivity: space and time 
 
 

Numerical method: finite volume schemes 
 

Space adaptivity (MR): Harten’s multiresolution (MR) for cell averages.  

Decay of the wavelet coeffcients to obtain information on local regularity of the solution.  

coarser grids in regions where coeffcients are small and the solution is smooth,  

while fine grids where coeffcients are significant and the solution has strong variations. 
 

Controlled Time Stepping (CTS): The time integration with variable time steps,  

time step size selection is based on estimated local truncation errors.  

When the estimated local error is smaller than a given tolerance, the time step is increased to  

make the integration more effcient. 
 

Local time stepping (LTS): Scale-dependent time steps. Different time steps, according to each cell scale: if ∆t is 

used for the cells in the finest level, then a double time step 2∆t is used in coarser level with double spacing.  

Required missing values in ghost cells are interpolated in intermediate time levels. 
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(

Ul,i
)

0≤i<2l

�

�



� � � � � � � � � �

� �� � 	� �� � � � � 	 �� � � 
 �� � � � 	 � 	 �� � �� 
 �� �	� � 
 �� � � � 
 � � � ��

% , � � +
 � ) �� � � �� � �� �� 	 
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Conservative flux computation 
 
 

 
 
 

Ingoing and outgoing flux computation in 2D for two different levels 
 

Ref. Roussel, Schneider, Tsigulin, Bockhorn. JCP 188 (2003) 
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Local Time Stepping (LTS) : main aspects

I On the finest scale L, ∆t is imposed by the stability condition
of the explicit scheme

I On larger scales ` < L, ∆t` = 2L−`∆t

I One LTS cycle: tn → tn+2L

I At intermediate steps of the evolution of fine cells, required
information of coarser neighbours are interpolated in time.

Kai Schneider



Scheme of local scale-dependent time-stepping 

 
 

 

Ref. Domingues, Gomes, Roussel and Schneider. JCP 227 (2008) 
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2nd. time step
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Controlled Time Stepping (CTS) : main aspects

Kai Schneider



MR/CTS/LTS scheme

Combination of MR, CTS and LTS strategies:

1. MR/CTS is applied to determine the time step ∆t required to
attain a specified accuracy with a global time stepping;

2. the MR/LTS cycle is computed using the obtained step size
∆t for the evolution of the cell averages on the finest scale;

3. another MR/CTS time step is then done to adjust the next
time step, and so on.

Kai Schneider



Numerical validation

Error analysis

• Stability
Convection-diffusion equation: ∂tu + ∂xu = 1

Pe
∂2

xxu, TVD if (Bihari 1996)

∆t ≤
∆x2

4Pe−1 + ∆x
, ∆x ∝ 2−L (7)

• Accuracy

||ūL
ex − ūL

MR|| ≤ ||ū
L
ex − ūL

FV ||+ ||ūL
FV − ūL

MR|| (8)

Discretization error: ||ūL
ex − ūL

FV || ∝ 2−αL

Perturbation error: ||ūL
FV − ūL

MR|| ∝ nε = T
∆t

ε (Cohen et al 2002)

We want the perturbation error to be of the same order as the discretization
error. Therefore we choose

ε = C
2−(α+1)L

Pe + 2L+2
, C > 0 (9)

Ref. Roussel, Schneider, Tsigulin, Bockhorn. JCP 188 (2003) 
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Numerical validation

Viscous Burgers equation: ∂tu + ∂x

(

u2

2

)

= 1
Re

∂2
xxu

Analogously, we set

ε = C
2−(α+1)L

Re + 2L+2
, C > 0 (10)
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Ref. Roussel, Schneider, Tsigulin, Bockhorn. JCP 188 (2003) 



 
 

Coherent Vortex Simulation 
 
 

 
 
 

Compressible Navier-Stokes equations 
 

Turbulent weakly compressible 3d mixing layer 



max|ω|−|ω|’ƒž P

=
+

total coherent incoherent

Coherent Vortex Simulation

(M . Farge and K . S c hne ide r. Flow , Turbule nc e and Com bustion , 66, 2001. ).

Coherent flow computed deterministically, while the influence of the

incoherent flow neglected.

Adaptive space discretizations a key ingredient for efficient represen-

tation of the coherent flow.

Aim:

Extension of the CVS method to subsonic compressible turbulent

flows using and adaptive multiresolution algorithm.

The influence of the wavelet filtering of the conserved quantities and

choice of the filter tolerance and the normalization of the wavelets.

2d vorticity field

see also K. Schneider and O. Vasilyev. Wavelet methods in CFD. Annu. Rev. Fluid Mech., 42, 2010.



Principle of CVS (I)

C VS of i nc om pr e ssi bl e t ur bul e nt flow s: de c om p osi t i on of t he v or t i c i ty

ωψ = ∇ × uψ i nt o c ohe r e nt a nd i nc ohe r e nt par t s usi ng t hr e shol di ng of

the wavelet coefficients.

Evolution of the coherent flow is then computed deterministically in a

dynamically adapted wavelet basis and the influence of the incoherent

components is statistically modelled (Farge & Schneider 2001).

He r e : c om pr e ssi bl e flow s.

D e c om p ose t he c onse r v a t i v e v ar i a bl e s Uψ = (ρ,ψ ρu1, ρu2, ρu3, ρe) into

a biorthogonal wavelet series.

A decomposition of the conservative variables into coherent and inco-

herent components is then obtained by decomposing the conservative

variables into wavelet coefficients, applying a thresholding and recon-

structing the coherent and incoherent contributions from the strong

and weak coefficients, respectively.

kschneid
c ohe r e nt

kschneid
i nc ohe r e nt



Principle of CVS (II)

D i m e nsi onl e ss de nsi ty a nd pr e ssur e ar e de c om p ose d i nt o

ρ = ρC + ρI , (5)

p = pC + pI .

where ρC and pC respectively denote the coherent part of the den-

sity and pressure fields, while ρI and pI denote the corresponding

incoherent parts.

Velocity u1, u2, u3, temperature T and energy e, are decomposed

usi ng t he Fa v r e a v e r a gi ng t e c hni que , i .e . de nsi ty we i ght e d.

For a quantity ϕ we obtain,

ϕ = ϕC + ϕI , where ϕC =
(ρϕ)C
(ρ)C

(6)

Finally, retaining only the coherent contributions of the conservative

v  ar  i  a  bl  e  s  we  obt  a  i  n  t  he  fil  t  e  r  e  d  c  om  pr  e  ssi  bl  e  Na v i e r - S t okes e qua t i ons

w  hi  c  h  de  sc  r  i  b  e  t  he  flow  e  v  ol  ut  i  on  of  t  he  c  ohe r e nt flow UC. The

influence of the incoherent contributions UI is in the current approach

completely negleted.



Navier–Stokes equations for compressible flows (I)

Thr e e - di m e nsi ona l c om pr e ssi bl e flow of a Ne w t oni a n flui d i n the S t oke s

hypothesis in a domain Ω ⊂ R3.

∂ρ

∂t
= −

∂

∂xj

(
ρ uj

)

∂

∂t
(ρ ui) = −

∂

∂xj

(
ρ ui uj + p δi,j − τi,j

)

∂

∂t
(ρ e) = −

∂

∂xj

(
(ρ e + p) uj − ui τi,j − λ

∂T

∂xj

)

ρψ, p,Tψ a nd eψ de not e t he di m e nsi onl e ss de nsi ty, pr e ssur e , t e m p e r a t ur e

a nd sp e c i fic t ot a l e ne r gy p e r uni t of m a ss, r e sp e c t i v e l y ; (u1, u2, u3)
T

is the dimensionless velocity vector.



Navier–Stokes equations for compressible flows (II)

The c om p one nt s of t he di m e nsi onl e ss v i sc ous st r a i n t e nsor τi,j are

τi,j =
µ

Re

(
∂ui
∂xj

+
∂uj

∂xi
−

2

3

∂uk
∂xk

δi,j

)
,

where µ denotes the dimensionless molecular viscosity and Re the

R  e  y  nol  ds  num  b  e  r  .  The  di  m  e  nsi  onl  e  ss  c  onduc  t  i  v  i  ty  λψ i s de fine d by

λ =
µ

(γ − 1) Ma2 Re Pr
,ψ

where γ, Ma and Pr respectively denote the specific heat ratio and

the Mach and Prandtl numbers.

The  sy  st  e  m  i  s  c  om  pl  e  t  e  d  by a n e qua t i on of st a t e for a c a l or i c a l l y i de a l

gas

p =
ρ T

γψ Mψa2 

.ψ

and suitable initial and boundary conditions.



Navier–Stokes equations for compressible flows (III)

Assum i ng t he t e m p e r a t ur e t o b e l ar ge r t ha n 120 Kψ, t he m ol e c ul ar

v i sc osi ty v ar i e s w i t h t he t e m p e r a t ur e a c c or di ng t o t he di m ensi onl e ss

Sutherland law

µ = T
3
2

(
1 + Ts

T + Ts

)

where Ts ≈ 0.404.

Denoting by (x, y, z) the three Cartesian directions, this system of

equations can be written in the following compact form

∂U

∂t
= −

∂F

∂x
−
∂G

∂y
−
∂H

∂ψzψ

where U = (ρ, ρu1, ρu2, ρu3, ρe)
T denotes the vector of the conser-

vative quantities, and F , G, H are the flux vectors in the directions

x, y, and z, respectively.

kschneid
∂U
∂t
= −
∂F
∂x
−
∂G
∂y
−
∂H
∂ψzψ

kschneid
flux vectors



Time evolution (I)

E x pl i c i t 2- 4 M a c C or m a c k sc he m e , w hi c h i s se c ond- or de r a c c ur a t e i n

time, fourth-order in space for the convective terms, and second-order

in space for the diffusive terms

Ū∗
l,i,j,k = Ūnl,i,j,k + ∆t



−7 F̄nl,i,j,k + 8 F̄nl,i+1,j,k − F̄nl,i+2,j,k

6∆x




+ ∆t



−7 Ḡnl,i,j,k + 8 Ḡnl,1,j+1,k − Ḡnl,i,j+2,k

6∆y




+ ∆t



−7 H̄n

l,i,j,k + 8 H̄n
l,1,j,k+1 − H̄n

l,i,j,k+2

6∆z






Time evolution (II)

Ūn+1
l,i,j,k =

Ūnl,i,j,k + Ū∗
l,i,j,k

2
+

∆t

2



−7 F̄nl,i,j,k + 8 F̄nl,i−1,j,k − F̄nl,i−2,j,k

6∆x




+
∆t

2



−7 Ḡnl,i,j,k + 8 Ḡnl,1,j−1,k − Ḡnl,i,j−2,k

6∆y




+
∆t

2



−7 H̄n

l,i,j,k + 8 H̄n
l,1,j,k−1 − H̄n

l,i,j,k−2

6∆z




Not e t ha t , for t he c om put a t i on of t he di ff usi v e t e r m s, we do not

use a decentered scheme. Here the diffusive terms are approximated

t he sa m e way a s i f we we r e usi ng a se c ond- or de r R unge - K ut t a - He un

m e t ho d i n t i m e , t oge t he r w i t h a se c ond- or de r c e nt e r e d sc he me i n

space.
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4 Numerical results

As test case for the CVS method we consider in the following a three-dimensional
weakly compressible temporally developing turbulent mixing layer, see [22].
The CVS results are compared with a DNS reference computation, using a
finite volume scheme on the finest regular grid. We study the impact of the
different thresholding rules, the choice of the threshold and the influence of
the Reynolds number to assess the precision and efficiency of CVS.

Flow configuration of the mixing layer

We initialize the test-case by setting two layers of a fluid stacked one upon the
other one, each of them with the same velocity norm but opposed directions.

L x

L y

L z

Uo

Fig. 2. Flow configuration: domain and initial basic flow u0 of the three-dimensional
mixing layer.

The computational domain of all computations is a three-dimensional cube
Ω = [−30, 30]3 with sidelength L = 60, and the final time of all computations
corresponds to t = 80. We set periodic boundary conditions for the x- and
y-direction and Neumann conditions are imposed in the z-direction, i.e. on the
top and bottom boundaries. The Prandtl and Mach numbers are set to 0.71
and 0.3 respectively, whereas the specific heat ratio γ equals 1.4. The CFL
number is set to 0.4 and the maximal resolution is 1283, which corresponds
to L = 7 scales, except in section 4.5 where L = 8 scales, coresponding to a
resolution of 2563, are considered.
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Coherent Vortex Simulation

Slices of vorticity at y = 0
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Fig. 17. Time evolution of a weakly compressible mixing layer at resolution N = 2563

in the quasi-2D regime. CVS computation with ǫ = 0.03 and norm #3. First row:
Two-dimensional cut of vorticity at y = 0, 10 isolines of vorticity between 0.1 and
1. Second row: Corresponding isosurfaces of vorticity ||ω|| = 0.5 (black) and ||ω||
= 0.25 (gray). Third Row: Corresponding adaptive mesh of the CVS computation.
The corresponding time instants are t = 19 (left), t = 37 (center) and t = 78 (right).
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Fig. 18. Energy spectra in the streamwise direction at t = 80 (left). Time evolution
of the kinetic energy (center) and enstrophy (right) for the CVS computations at
Re = 200, N = 2563.
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Conclusions (CVS I)

Adaptive multiresolution method to solve the three-dimensional com-

pressible Navier–Stokes equations in a Cartesian geometry.

E x t e nsi on of t he C ohe r e nt Vor t e x S i m ul a t i on a ppr oa c h t o c ompr e ss-

ible flows.

Time evolution of the coherent flow contributions computed effi-

ciently using the adaptive multiresolution method.

Generic test case: weakly compressible turbulent mixing layers.

Different thresholding rules, i.e. L1, L2 and H1 norms.

Hψ

1 ba se d t hr e shol d y i e l ds t he b e st r e sul t s i n t e r m s of a c c ur a c y a nd

efficiency.



Conclusions (CVS II)

C VS r e qui r e d onl y a b out 1/ψ3 of t he C P U t i m e ne e de d for D NS a nd

a l l ow s fur t he r m or e a m e m or y r e duc t i on by a l m ost a fa c t or 5. Ne v e r -

t he l e ss a l l dy na m i c a l l y a c t i v e sc a l e s of t he flow ar e we l l r e sol v e d.

D r aw ba c k s:

E x pl i c i t t i m e di sc r e t i z a t i on, i m p ose s a t i m e st e p l i m i t a t ion due t o

stability reasons, i.e. the smallest spatial scale dictates the actual

size of the time step ( −→ local time stepping strategies).

U si ng l o c a l t i m e st e ppi ng t he t i m e st e p on l ar ge r sc a l e s c a n b e i n-

creased without violating the stability criterion of the explicit time

integration (further speed up).

G e ne r a l i sa t i on t o c om pl e x ge om e t r i e s: v ol um e p e na l i z a t i on a ppr oa c h

(cf. Angot et al. 1999, Schneider & Farge 2005).

http://www.cmi.univ-mrs.fr/~kschneid http://wavelets.ens.fr
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3D expanding circular shock wave 
 
 
 
 
 
 
 

R.Deiterding, M.Domingues, S.Gomes, O.Roussel and K.Schneider. ESAIM Proc., 2009, to appear.



2D/3D Euler equations

The compressible Euler equations:

∂Q

∂t
+
∂F

∂~r
= 0, with Q =

 ρ
ρ~v
ρe

 and F =

 ρ~v
ρu2 + p

(ρe + p)~v


where t is time,
~r is 2D position vector with |~r |=

√
(x2 + y2),

ρ = ρ(~r , t) density,
~v = ~v(~r , t) velocity with components (v1, v2),
e = e(~r , t) energy per unit of mass and
p = p(~r , t) pressure.

Kai Schneider




The equation of state for an ideal gas

p = ρRT = (γ − 1) ρ

(
e − |

~v |2

2

)
,

completes the system, where
T = T (~r , t) is temperature,
γ specific heat ratio and
R universal gas constant.

In dimensionless form, we obtain the same system of equations,
but the equation of state becomes p = ρT

γMa2 , where Ma denotes
the Mach number.



Inviscid implosion phenomenon (2d)

The initial conditions are

ρ(r , 0) =


1 if r ≤ r0

0.125 if r > r0,

ρe(r , 0) =


2.5 if r ≤ r0

0.25 if r > r0,

v1 = v2 = 0 and r0 denotes the initial radius.
This initial condition is stretched in one direction and a rotation in the axes is
applied.

r =

r
X 2

a2
+

Y 2

b2
,

X = x cos θ − y sin θ,
Y = −x sin θ + y cos θ

The parameters of the ellipse: a = 1/3, b = 1, the rotation angle is θ = −π/3

with an initial radius r0 = 1, computational domain is Ω = [−2, 2]2,ε = 10−2.

Ref.: Domingues et al., ANM, 59, 2009.

Kai Schneider



Multiresolution Computation : elliptical implosion

Density Grid

Ref.: Domingues et al., ANM, 59, 2009.

Kai Schneider



adaptive schemes, Table 5 shows that the MR/CTS/LTS-RK2(3) method is 1.5 times faster than the MR-RK3 method,
and 8.33 times faster than the FV-RK3 computation, which nicely illustrates the additional speed-up of adaptive and
local time stepping.

Comparison for the numerical solutions of the 2D Euler equations for t = 0.5 with L = 10 and ǫ = 2←·←10−3.

Method Error CPU
E Time Memory

(%) (103 sec) (%) (%)

FV-RK2, CFL(0)=0.18(Ref.) 0.60 45 100 100
MR-RK2, CFL(0) = 0.18 0.67 10 23 18
MR/LTS-RK2,CFL(0) = 0.18 1.09 9 19 16
MR/CTS/LTS-RK2(3),CFL(0) = 0.24 0.66 8 18 18

FV-RK3, CFL(0)=0.18(Ref.) 0.59 65 100 100
MR-RK3, CFL(0) = 0.18 0.66 12 18 18
MR/CTS-RK2(3),CFL(0) = 0.24 0.63 9 14 18

In Fig. 16, we plot the evolution of the time step, together with theCFL number. We observe that all the methods
with a fixed time step and the MR/CTS-RK2(3) method guarantee the conditionCFL ≤ 0.5. However, the MR/CTS-
RK2(3) scheme forces the time step to decrease in the region aroundt = 0.1, whereλmax is larger. Aftert = 0.2, for
smaller values ofλmax, the time step increases again. This behavior illustrates the ability of CTS methods to adapt the
step size according to needs of the numerical solution.

For the MR/CTS/LTS-RK2(3) method, theCFL locally reaches 0.65, since the time step on the finest grid can
only be modified at the end of a time cycle (see Fig. 16, left). Nevertheless, this fact does not affect much the quality of
the solution, since the error on the kinetic energy is roughly the same as the one obtained using the MR-RK3 method.
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Figure 16: 2D Euler equations: time evolution of the time step ∆t (left) and the CFL number (right) for the different adaptive methods.

5. Conclusion

In the present paper, different time stepping strategies for space adaptive MR methods for hyperbolic conservation
laws were investigated and applied to the compressible Euler equations in one and two space dimensions. We have
compared explicit time stepping using a fixed time step with alevel-dependent time-stepping MR/LTS method, where

21



2d Riemann problem: Lax-Liu test case 5

Computational domain is Ω = [0, 1]× [0, 1],
4 free-slip boundary conditions and
Physical parameters Ma = 1 and γ = 1.4.

Initial conditions:
Parameters Domain position

1 2 3 4

Density(ρ) 1.00 2.00 1.00 3.00
Presure (p) 1.00 1.00 1.00 1.00
Velocity Component (v1) -0.75 -0.75 0.75 0.75
Velocity Component (v2) -0.50 0.50 0.50 -0.50 x

y

3 4

12

Kai Schneider



MR and AMR computations

MR method: 2nd order MUSCL with AUSM+-up Scheme flux
vector splitting Liou(JCP, 2006) with van Albada limiter is used.
RK2. Wavelet threshold ε = 0.01.

AMR method: 2nd order unsplit shock-capturing MUSCL scheme
with AUSMDV flux vector splitting Wada& Liou (SIAM J.Comput.

Sci., 1997) . Limiting and reconstruction in primitive variables with
Minmod limiter. Modified RK2. Adaptive parameters
ηρ = ηp = 0.05 and εp = ερ = 0.05, with coarser level 128× 128.

Computations at final time 0.3.
Target CFL number is 0.45.

In collaboration with Ralf Deiterding, Oak Ridge, USA

R.Deiterding, M.Domingues, S.Gomes, O.Roussel and K.Schneider. ESAIM Proc., 2009, to appear.R.Deiterding, M.Domingues, S.Gomes, O.Roussel and K.Schneider. ESAIM Proc., 2009, to appear.

Kai Schneider



Adaptive Multiresolution Computation : Lax-Liu test case 5 

Density Grid

Kai Schneider



AMR simulation

Uniform r1,2,3 = 2, 2, 2 Reference solution
∆x = 1/1024 ∆x = 1/1024 x = 1/4096

Reference solution computed with Wave Propagation Method.

In collaboration with Ralf Deiterding, Oak Ridge, USA

Kai Schneider



Summary of the results for MR and AMR/LT

MR
Level Le

1(ρ) Overhead Grid Compression Overhead
[10−2] per it. cell (%) per it. (%)

L=8 4.13 0.58 24.98 14.6
L=9 2.79 0.52 13.23 6.8

L=10 1.84 0.63 6.58 4.2

AMR
Level Le

1(ρ) Overhead Grid Compression Overhead
[10−2] per it. cell (%) per it. (%)

L=8 4.00 0.13 68.2 8.7
L=9 2.66 0.03 44.4 1.3

L=10 1.57 0.12 26.2 3.1

Preliminary resultsIn collaboration with Ralf Deiterding, Oak Ridge, USA

R.Deiterding, M.Domingues, S.Gomes, O.Roussel and K.Schneider. ESAIM Proc., 2009, to appear.

Kai Schneider



3d expanding circular shock-wave

As 3D test case, we study an inviscid expansion phenomenon in a
square periodic box which contains the same gas, but with
different conditions of pressure and temperature.
The initial condition is given by

Q(~r , t =0) =



 5
~0

12.5

 for |~r | < r0,

 1
~0

2.5

 otherwise.

The computational domain is Ω = [0, 1]× [0, 1]× [0, 1].
The computations are performed until t = 0.84.
The physical parameters are Ma = 1 and γ = 1.4.

Kai Schneider



MR computations

Numerical Parameters: L = 7, ε = 0.001, RK2 scheme, MUSCL
AUSM+up flux, CFL = 0.8.

Density initial condition.

Kai Schneider



Evolution of density at
t = 0.042, 0.084, 0.126, 0.210, 0.252, 0.294, 0.336, 0.378, 0.420
(from left to right and top to bottom).



Adaptive grid: xy projection grid at
t = 0.042, 0.084, 0.126, 0.210, 0.252, 0.294, 0.336, 0.378, 0.420
(from left to right and top to bottom).



AMR computations

Numerical Parameters: 2 levels with refinement factor 2 are used,
finest level: 120× 120× 120 grid (1.73 M cells), coarse grid of
30× 30× 30 cells, minmod-limiter, CFL = 0.8, until physical time
t = 0.84, 58 time steps.

Evolution of density at t = 0,t = 0.21 and t = 0.84
(from left to right).
Source: amroc.sourceforge.net/examples/euler/3d/html.

In collaboration with Ralf Deiterding, Oak Ridge, USA

Kai Schneider



Evolution of the density solution, adaptive computations with 3
levels and 2 buffer cells.
Cut at z = 0 and z = 0.5 at time t = 0.84 (from left to right) .
Source: amroc.sourceforge.net/examples/euler/3d/html.

In collaboration with Ralf Deiterding, Oak Ridge, USA



 
 

Reaction-diffusion equations 
 
 
 
 
 

2D thermo-diffusive flames 
 

3D flame balls 
 



Governing equations

Non-dimensional thermodiffusive equations

∂tT + ~v · ~∇T −∇2T = ω − s (1)

∂tY + ~v · ~∇Y −
1

Le
∇2Y = −ω (2)

ω(T, Y ) =
Ze2

2Le
Y exp

[

Ze(T − 1)

1 + α(T − 1)

]

(reaction rate)

s(T) = γ
[

(

T + α−1 − 1
)4
−

(

α−1 − 1
)4

]

(heat loss due to radiation)

+ initial and boundary conditions

Y = Y1, T =
T̄ − T̄u

T̄b − T̄u

, Le =
κ

D
(Lewis), α =

T̄b − T̄u

T̄b

, Ze = α
Ea

RTb

(Zeldovich)

~v given by the incompressible NS equations. When the fluid is at rest, ~v = ~0.



Governing equations

Planar flames

• Flame propagation at the velocity vf

• When the fresh mixture is advected at v = −vf ⇒ steady planar flame

ω
Y
T

EDCBA

1

0

AB: fresh mixture, BC: preheat zone, CD: reaction zone d = O(Ze−1), DE: burnt mixture



Governing equations

Thermodiffusive instability

x x
Burnt gas Fresh gas

ϕ < 0

Fresh gas Burnt gas

yy

mass
heat

Stable: ω for Le = 1, Ze = 10 (animation) - Unstable: ω for Le = 0.3, Ze = 10 (animation)

Asymptotic theory for Ze >> 1 (Sivashinsky 1977, Joulin-Clavin 1979)

1) Ze(Le− 1) < −2 : cellular flames 2) Ze(Le− 1) > 16 : pulsating flames



2D Flame front
 

 
 Temperature   Reaction rate   Adaptive grid 

 
 
 
stable 
Le = 1.0 
 
 
 
 
 
Unstable 
Le = 0.3 



Application to TD flames

The flame ball configuration

• Simplest experiment to study the interaction of chemistry and transport of
gases (experimental: Ronney 1984, theory: Buckmaster-Joulin-Ronney 1990-91)

• Enables to study the flammability limit of lean gaseous mixtures

HOT BURNT GAS

COLD PREMIXED GAS

radiation

heat conduction

reactant diffusion

• Problem: the combustion chamber is finite ⇒ Interaction with wall



Application to TD flames

Interaction flame front-adiabatic wall: the 1D case

• Lean mixture H2-air, Ze = 10, α = 0.64, Ω = [0,30]

• Radiation neglected

• Adiabatic walls ⇒ Neuman boundary conditions

• Objective: study the inflence of Le

• Profiles of T and ω for Le = 0.3 (animation 1)

• Profiles of T and ω for Le = 1 (animation 2)

• Profiles of T and ω for Le = 1.4 (animation 3)

Ref. Roussel, Schneider, CTM 10 (2006) 



Application to TD flames

Interaction flame front-adiabatic wall: the 1D case

Le = 0.9
Le = 0.8
Le = 0.7
Le = 0.3

121086420

2

1.5

1

0.5

0

Le = 1.4
Le = 1

Le = 0.95

121086420

7

6

5

4

3

2

1

0

t t

Flame velocity vf for Le < 0.95 Flame velocity vf for Le ≥ 0.95

Ref. Roussel, Schneider, CTM 10 (2006) 



Application to TD flames

Interaction flame ball-adiabatic wall

• Radiation neglected, Ze = 10, α = 0.64, Ω = [−50,50]d

• Adiabatic walls ⇒ Neuman boundary conditions

• At t = 0, the radius of the flame ball is r0 = 2.

• 2D: Evolution of T and mesh for Le = 0.3 (animations 1-2)

• 2D: Evolution of T for Le = 1 (animation 3)

• 2D: Evolution of T for Le = 1.4 (animation 4)

• 3D: Evolution of T and mesh for Le = 1 (animations 5-6)

• Analogy with capillarity for a fluid droplet

Ref. Roussel, Schneider, CTM 10 (2006) 



Application to TD flames

Interaction flame ball-adiabatic wall

Le = 1.4
Le = 1

Le = 0.3
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Ref. Roussel, Schneider, CTM 10 (2006) 



Application to TD flames

Interaction flame ball-adiabatic wall: Performances

d Le Nmax % CPU % Mem

2 0.3 2562 25.50% 14.10%

2 1 2562 21.50% 11.75%

2 1.4 2562 21.00% 11.10%

3 1 1283 12.98% 4.38%



Application to TD flames

Interaction flame ball-vortex

v

X

• Phenomenon which happens e.g. in furnaces

• Thermodiffusive model, ~v analytic solution of Navier-Stokes

• Evolution of T and mesh for Ze = 10, Le = 0.3, no radiation (animations)



Application to TD flames

Interaction flame ball-vortex
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ω dΩ: for MR and FV methods with and without vortex

Ref. Roussel, Schneider. Comp. Fluids 34 (2005) 



3D flame ball, Le = 1 
 
 

Temperature      Adaptive grid 
 
 
 



Splitting flame ball computed with the MR/LTS method 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Iso-surfaces and isolines on the cut-plane for temperature (top) and concentration (bottom) with 
L=8 scales, Le=0.3, Ze=10,k=0.1. 
 

Ref. Domingues Gomes, Roussel and Schneider. JCP 227 (2008) 

Temperature Concentration grid xy grid yz



Splitting flame ball: projections of the cell centers used on 
the adaptive mesh 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Ref. Domingues Gomes, Roussel and Schneider. JCP 227 (2008) 



Splitting flame ball: CPU and memory compressions for the 
different methods with L=8 scales 

 
 

 
Method 

 

 
% CPU time 

 
% Memory 

 
Integral reaction 

rate 
 

MR 
 

 
2.7 

 
1.05 

 
669.09 

 
MR/LTS 

 

 
2.3 

 
1.05 

 
669.11 

 
 
 

Ref. Domingues Gomes, Roussel and Schneider. JCP 227 (2008) 

 
 



 
 

Conclusions 
 
 

• Finite volume discretization with explicit time integration (both of second-order) to 
solve evolutionary PDEs in Cartesian geometry. 

 
• Efficient space-adaptive multiresolution method (MR) with local time stepping (LTS). 

CPU speed-up and memory reduction, while controling the accuracy. 
 

• Further speed-up due to an improved time advancement using larger time steps on 
large scales without violating the stability condition of the explicit scheme. 

 
• However, synchronization of the tree data structure necessary. 

 
• Time-step control (CTS) for space adaptive schemes (embedded Runge-Kutta schemes) 

and combination with LTS. 
 

• Applications to reaction-diffusion equations, compressible Euler and Navier-Stokes equations. 
 

• Next: develop level dependent time step control which allows to adapt the time step within a 
cycle of the level dependent time stepping MR/LTS.  

 

 
http://www.cmi.univ-mrs.fr/~kschneid  http://wavelets.ens.fr 




