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Motivation

Context: Systems of nonlinear partial differential equations (PDEs) of hyperbolic or parabolic type.
Turbulent reactive or non-reactive flows exhibit a multitude of active spatial and temporal scales.
Scales are mostly not uniformly distributed in the space-time domain,

Efficient numerical discretizations could take advantage of this property -> adaptivity in space and time
Reduction of the computational complexity with respect to uniform discretizations

while controlling the accuracy of the adaptive discretization.

Here: adaptive multiresolution techniques




Introduction

- Multiresolution schemes (Harten 1995)

o Solution on fine grid -> solution on coarse grid + details
o Details “small” -> interpolation, no computation (CPU time reduced)
o 2d non-linear hyperbolic problems (Bihari-Harten 1996, Abgrall-Harten 1996, Chiavassa-Donat 2001,

Dahmen et al. 2001, ...)

- Adaptive Multiresolution schemes
(Muller 2001, Cohen et al. 2002, Roussel et al. 2003, Burger et al. 2007, ...)

o Details “small” -> interpolation and remove from memory (CPU time and memory reduction)

- Aim of this talk

o fully adaptive schemes (space + time) for 2d and 3d problems
o Compare with Adaptive Mesh Refinement (preliminary results)
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Adaptivity: space and time

Numerical method: finite volume schemes

Space adaptivity (MR): Harten’s multiresolution (MR) for cell averages.
Decay of the wavelet coeffcients to obtain information on local regularity of the solution.
coarser grids in regions where coeffcients are small and the solution is smooth,

while fine grids where coeffcients are significant and the solution has strong variations.

Controlled Time Stepping (CTS): The time integration with variable time steps,
time step size selection is based on estimated local truncation errors.
When the estimated local error is smaller than a given tolerance, the time step is increased to

make the integration more effcient.

Local time stepping (LTS): Scale-dependent time steps. Different time steps, according to each cell scale: if At is
used for the cells in the finest level, then a double time step 2At is used in coarser level with double spacing.

Required missing values in ghost cells are interpolated in intermediate time levels.




Harten multiresolution

Nested dyadic grids Q2 = (£2;;)g<;coi 0 <I< L

Data: Cell-average value on €2;; : Um Udy

€214 Ja,
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We denote by U, = (U,;)

0<i<2l”



Harten multiresolution

Multiresolution decomposition for cell-average values

Projection : (or restriction) U;_1 =P;_;_1 0
Prediction : (or prolongation) Uj41 = P41 T,

Pl—>l—|—1 is local and consistent with Pl—>l—11 l.e.
P 1P 41 = 1d
Details: Dy; = U;; — Up;. If P is consistent, they are redundant.

The knowledge of U for the N children is equivalent to the
knowledge of U for the parent and N —1 details: U; « (U;_1, Dy).

Multiresolution transform : M : U; — (Ugp, D1,...,Dy)



Adaptive multiresolution method

Thresholding : Delete D, ; if |D; ;| < ¢ = error controlled

Data : graded tree structure U; = (4 )o<i<L, ieA,

| ’; |
- — — — — e
uso uz 1| Uz2 Uz 3| U34 us e usz
Uo g Usq Us 3
Uio Uuqq
Upo
- hodes leaves - virtual leaves



Adaptive multiresolution method

Discretization of the compressible Navier-Stokes equations

e Compressible Navier-Stokes equations: non-linear parabolic equations
of the form

U =D(U), U= (p,pt,pe)’, and D(U) = -V - (f(U) + ¢(U,VU)) + SU)

e EXxplicit time and space discretization:
V(l,1) € N\, 0U,; = Dy,
with
Udy

U =
Il Ja,

and

Dy, = . Ddy = — . / (f(U) + (U, VU)) -nyids + S;
Lil Jou,

1€214] Ja, €2

9
Ref. Roussel, Schneider, Tsigulin, Bockhorn. JCP 188 (2003)
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Adaptive multiresolution method

Algorithm

"+l =M-1T(e) M E(AL) O

e Thresholding: T(e)

— After thresholding, one more level is added = undelete details

e Time evolution: E(At)
— Only on leaves. Virtual leaves are used for the flux computation.

— To ensure conservativity : flux always computed on the higher level

e Complexity: O(N log N), N = number of degrees of freedom
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Ref. Roussel, Schneider, Tsigulin, Bockhorn. JCP 188 (2003)



Conservative flux computation

/ ‘/2 -

Ingoing and outgoing flux computation in 2D for two different levels

Ref. Roussel, Schneider, Tsigulin, Bockhorn. JCP 188 (2003)



Wavelet normalization

The detail D;; is proportional to the wavelet coefficient < U, TZZ,@' >, 15;,@' being
the dual wavelet function.

Biorthogonal wavelets — the choice of the wavelet basis is not unigue.

| < U,y > | < e Dyl < g

o if ||yl

1, then ¢ = Qd(l_L)EL.

L,

o if |4l

L, = 1, then € — 2§(Z_L)€L.
o if ||1Zl,i||H1 = 1, then ¢ = Q(g_l)(l_L)EL.
All these normalizations will be tested.

Best normalization — for a given number of degrees of freedom, the one
which contains the most coherent vortices.
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Local Time Stepping (LTS) : main aspects

» On the finest scale L, At is imposed by the stability condition
of the explicit scheme

> On larger scales ¢ < L, Att = 2L=fAt
> One LTS cycle: t, — t"+2"

» At intermediate steps of the evolution of fine cells, required
information of coarser neighbours are interpolated in time.
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Scheme of local scale-dependent time-stepping

RK2 Ist. time step

1st. stage X 2nd. stage

2nd. time step
1st. stage 2nd. stage

ﬂ evolution (expensive)
.......> interpolation (cheap)

——————— = return to the stored value (no cost)

Ref. Domingues, Gomes, Roussel and Schneider. JCP 227 (2008)



Controlled Time Stepping (CTS) :

main aspects

Runge—Kutta
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MR/CTS/LTS scheme

Combination of MR, CTS and LTS strategies:

1. MR/CTS is applied to determine the time step At required to
attain a specified accuracy with a global time stepping;

2. the MR/LTS cycle is computed using the obtained step size
At for the evolution of the cell averages on the finest scale;

3. another MR/CTS time step is then done to adjust the next
time step, and so on.
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Numerical validation

Error analysis

e Stability
Convection-diffusion equation: dwu + d,u = 3-02,u, TVD if (Bihari 1996)
AN 2
At < * , Az o 27T (7)
APe-1 + Ax
e Accuracy
Nal, — aygll < g — apyll + |apy — @ygll (8)

Discretization error: ||ul, — uk,/|| oc 272F
i . —L —L — T
Perturbation error: |[uy,, — uyg|| o< ne = L€ (Cohen et al 2002)

We want the perturbation error to be of the same order as the discretization
error. T herefore we choose

2—(a—|—1)L

e=Cpoms >0 (9)

Ref. Roussel, Schneider, Tsigulin, Bockhorn. JCP 188 (2003)



Numerical validation

% CPU time compression % Memory compression
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Convection-diffusion: Pe = 10000, t = 0.2, C = 5.108



Numerical validation

Viscous Burgers equation: du+ 0, (%) = £02,u

Analogously, we set ‘

2—(a—|—1)L ( )
e="C , C >0 10
Re + 2L+2
T T T 1 T T . T 1 1e+00
100 - MR —— 4 100 - MR —— 4 le-01
80 |- ] 80 ] 1e-02
60 1e-03 P
407 le-04
20 le-05
0 le-06 L1 1
7 8 910111213
L
% CPU time compression % Memory compression Ll-error

Re = 1000, t =0.2, C =5.108

Ref. Roussel, Schneider, Tsigulin, Bockhorn. JCP 188 (2003)



Coherent Vortex Simulation

Compressible Navier-Stokes equations

Turbulent weakly compressible 3d mixing layer




Coherent Vortex Simulation

incoherent

—|olm 0 |®]max

2d vorticity field

(M. Farge and K. Schneider. Flow, Turbulence and Combustion, 66, 2001.).

see also K. Schneider and O. Vasilyev. Wavelet methods in CFD. Annu. Rev. Fluid Mech., 42, 2010.



Principle of CVS (1)

CVS of incompressible turbulent flows: decomposition of the vorticity
w = V X u into coherent and incoherent parts using thresholding of
the wavelet coefficients.

Evolution of the coherent flow is then computed deterministically in a
dynamically adapted wavelet basis and the influence of the incoherent
components is statistically modelled (Farge & Schneider 2001).

Here: compressible flows.

Decompose the conservative variables U = (p, puqy, pus, pus, pe) into
a biorthogonal wavelet series.

A decomposition of the conservative variables into coherent and inco-
herent components is then obtained by decomposing the conservative
variables into wavelet coefficients, applying a thresholding and recon-
structing the coherent and incoherent contributions from the strong
and weak coefficients, respectively.


kschneid
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Principle of CVS (II)

Dimensionless density and pressure are decomposed into

p pc + o1 (5)
p = pcTPpr-
where po and po respectively denote the coherent part of the den-

sity and pressure fields, while p; and p; denote the corresponding
incoherent parts.

Velocity wy, up, uz, temperature 7' and energy e, are decomposed
using the Favre averaging technique, i.e. density weighted.

For a quantity ¢ we obtain,

_ (pw)c

a (6)
(p)c

Finally, retaining only the coherent contributions of the conservative

variables we obtain the filtered compressible Navier-Stokes equations

which describe the flow evolution of the coherent flow Ugs.  The

influence of the incoherent contributions Uy is in the current approach

completely negleted.

p = o+ pr, where p¢



Navier—Stokes equations for compressible flows (I)

T hree-dimensional compressible flow of a Newtonian fluid in the Stokes
hypothesis in a domain Q ¢ R3.

P _ 0 )
ot (95133 J
0 0
o (puy) = ———(puju; +pojj—7i;
0 0 oT
5 (P E) = o, ((pe + p) Uj—uﬂz',j—/\aj)

p, p, 1" and e denote the dimensionless density, pressure, temperature
and specific total energy per unit of mass, respectively, (ul,uz,u3)T
IS the dimensionless velocity vector.



Navier—Stokes equations for compressible flows (II)

The components of the dimensionless viscous strain tensor 7; ; are
o[ Ou; Ou; 2 Ouy
" TR ( Tt e T 3 o, 0]
€ aajj (9513@' 3 axk
where p denotes the dimensionless molecular viscosity and Re the
Reynolds number. The dimensionless conductivity X is defined by

L
(v—1) Ma? Re Pr’

A =

where v, Ma and Pr respectively denote the specific heat ratio and
the Mach and Prandtl numbers.

The system is completed by an equation of state for a calorically ideal
gas
p'T
v Ma?
and suitable initial and boundary conditions.

p:



Navier—Stokes equations for compressible flows (III)

Assuming the temperature to be larger than 120 K, the molecular
viscosity varies with the temperature according to the dimensionless

Sutherland law
T + T

where Ts ~ 0.404.

Denoting by (x,vy,2) the three Cartesian directions, this system of
equations can be written in the following compact form

oU _ 8F 9G OH

ot or Oy 0z

where U = (p, pui, puo, pus, pe)l denotes the vector of the conser-
vative quantities, and F', G, H are the flux vectors in the directions
x, Yy, and z, respectively.
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Time evolution (I)

Explicit 2-4 Mac Cormack scheme, which is second-order accurate in
time, fourth-order in space for the convective terms, and second-order
in space for the diffusive terms

—7F* .  4+8FM, .., —F" .
7k N l,Z,],k l,Z—I—l,],k l,Z+2,],k
Ulije = Ul g T At( )

OAx
Gk T8 G 1k — Glijtok

[ e
( |

+ At

(77 (77 (77,
— 0 H e T8 H i kr1 — Hp g kao

At
T 6 Az




Time evolution (II)

Lij,k = T

ad 2 2 6 Ax
2 6Ay
2 6Az

Note that, for the computation of the diffusive terms, we do not
use a decentered scheme. Here the diffusive terms are approximated
the same way as if we were using a second-order Runge-Kutta-Heun
method in time, together with a second-order centered scheme in

Space.



Coherent Vortex Simulation

e Test-case: 3D compressible, temporally developing mixing layer

e Computational domain 2 = [-30,30]3

o Ma—=0.3, Pr= 0.7, no forcing

e Reynolds based on half vorticity thickness Re = 50

e Dimensionless physical time t = 80

e Maximal resolution N = 1283

e Initial perturbation — quasi two-dimensional

e Comparison with DNS using the same numerical schemes

e NoO statistical model used: incoherent part is only discarded.
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Flow configuration of the mixing layer

We initialize the test-case by setting two layers of a fluid stacked one upon the
other one, each of them with the same velocity norm but opposed directions.

- A :
L . :
/7 -
Ly

Lx

Fig. 2. Flow configuration: domain and initial basic flow ug of the three-dimensional

mixing layer.



Coherent Vortex Simulation

Top : isolines of vorticity 0.5 (red) and 0.25 (yellow). Bottom : slice at y = 0.
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Coherent Vortex Simulation

Slices of vorticity aty =0



Coherent Vortex Simulation

Adaptive grid



Coherent Vortex Simulation
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Coherent Vortex Simulation
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Method | Norm £ CPU time % CPU % Mem % E % Z

DNS 7d 6h 100 % 100 % 100 % % 100 %

CVS L1 0.2 2d 13h 35.05 % 33.44 % 99.92 % 84.85 %

CVS Lo 0.08 2d 18h 37.93 % 30.55 % 99.96 % 88.17 %

CVS H, 0.03 2d 8h 32.18 % | 34.54 % | 99.88 % | 98.66 %
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Coherent Vortex Simulation

e Test-case: 3D compressible, temporally developing mixing layer

e Computational domain Q2 = [-60,60]3

o Ma=0.3, Pr= 0.7, no forcing

e Reynolds based on half vorticity thickness Re = 200

e Dimensionless physical time ¢t = 80

e Maximal resolution N = 2563, pictures downsampled on 1283
e Initial perturbation — quasi two-dimensional

e No statistical model used: incoherent part is only discarded.

e CPU time compression 23.12 %, memory compression 16.86 %
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Fig. 17. Time evolution of a weakly compressible mixing layer at resolution N = 2563
in the quasi-2D regime. CVS computation with ¢ = 0.03 and norm #3. First row:
Two-dimensional cut of vorticity at y = 0, 10 isolines of vorticity between 0.1 and
1. Second row: Corresponding isosurfaces of vorticity ||w|| = 0.5 (black) and ||w||
= 0.25 (gray). Third Row: Corresponding adaptive mesh of the CVS computation.
The corresponding time instants are t = 19 (left), t = 37 (center) and t = 78 (right).
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Fig. 18. Energy spectra in the streamwise direction at ¢t = 80 (left). Time evolution

of the kinetic energy (center) and enstrophy (right) for the CVS computations at
Re = 200, N = 2563.



Conclusions (CVS )

Adaptive multiresolution method to solve the three-dimensional com-
pressible Navier—Stokes equations in a Cartesian geometry.

Extension of the Coherent Vortex Simulation approach to compress-
ible flows.

Time evolution of the coherent flow contributions computed effi-
ciently using the adaptive multiresolution method.

Generic test case: weakly compressible turbulent mixing layers.
Different thresholding rules, i.e. L1, L2 and H! norms.

H! based threshold yields the best results in terms of accuracy and
efficiency.



Conclusions (CVS 1I)

CVS required only about 1/3 of the CPU time needed for DNS and
allows furthermore a memory reduction by almost a factor 5. Never-
theless all dynamically active scales of the flow are well resolved.

Drawbacks:

Explicit time discretization, imposes a time step limitation due to
stability reasons, i.e. the smallest spatial scale dictates the actual
size of the time step ( — local time stepping strategies).

Using local time stepping the time step on larger scales can be in-
creased without violating the stability criterion of the explicit time
integration (further speed up).

Generalisation to complex geometries: volume penalization approach
(cf. Angot et al. 1999, Schneider & Farge 2005).

http://www.cmi.univ-mrs.fr/~kschneid http://wavelets.ens.fr



Compressible Euler equations

Multiresolution or Adaptive Mesh Refinement ?
2D Riemann problem: Lax-Liou test case 5

3D expanding circular shock wave

R.Deiterding, M.Domingues, S.Gomes, O.Roussel and K.Schneider. ESAIM Proc., 2009, to appear.



2D/3D Euler equations

The compressible Euler equations:

0Q OF . L
E+E 0, with Q= ZZ and

where t is time,

7 is 2D position vector with |F|= /(x2 + y?),

p = p(7, t) density,

v = V(r, t) velocity with components (v, ),
e = e(r, t) energy per unit of mass and
p = p(7, t) pressure.

F =

—

pu® +p

(pe + p)

<U
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The equation of state for an ideal gas

212
pszTZ(v—l)f)(e—Vz'),

completes the system, where
T = T(r,t) is temperature,
~ specific heat ratio and
R universal gas constant.

In dimensionless form, we obtain the same system of equations,
but the equation of state becomes p =
the Mach number.

7977;2, where Ma denotes



Inviscid implosion phenomenon (2d)

The initial conditions are
. 1 if r<n
pr,0) = { 0.125 if r>r,
_ 2.5 if r<n
pe(r;0) —{ 025 if r>n,

vi = v» = 0 and rp denotes the initial radius.
This initial condition is stretched in one direction and a rotation in the axes is

applied.
X2 Y2
=VZE TR

X = xcosf—ysinf,
Y = —xsinf+ ycosf

The parameters of the ellipse: a =1/3, b =1, the rotation angle is § = —7/3
with an initial radius ro = 1, computational domain is Q = [—2,2]2,5 =102

Ref.: Domingues et al., ANM, 59, 2009.
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Multiresolution Computation : elliptical implosion

Density Grid

Ref.: Domingues et al., ANM, 59, 2009.
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Comparison for the numerical solutions of the 2D Euler equations for t=0.5 with L=10 and-d& 2.

Method Error CPU
E Time Memory

(%) | 10sec)| (%) | (%)
FV-RK2, CFL(0)=0.18(Ref.) 0.60 45 100 100
MR-RK2, cFL©) =018 0.67 10 23 18
MR/LTS-RK2,cFL(0) =0.18 1.09 9 19 16
MR/CTYLTS-RK2(3),cFL©) =024 | 0.66 8 18 18
FV-RK3, CFL(0)=0.18(Ref.) 0.59 65 100 100
MR-RK3, cFL©) =0.18 0.66 12 18 18
MR/CTS-RK2(3),cFL(©0) = 0.24 0.63 9 14 18




2d Riemann problem: Lax-Liu test case 5

Computational domain is Q = [0, 1] x [0, 1],
4 free-slip boundary conditions and
Physical parameters Ma=1 and v = 1.4.

Initial conditions:

Parameters Domain position y

1 2 3 4
Density(p) 1.00 2.00 1.00 3.00 - !
Presure (p) 1.00 1.00 1.00 1.00
Velocity Component (v1) -0.75 -0.75 0.75 0.75 3 4
Velocity Component (v») -0.50 0.50 0.50 -0.50
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MR and AMR computations

MR method: 2nd order MUSCL with AUSM+-up Scheme flux
vector splitting Liou(JCP, 2006) with van Albada limiter is used.
RK2. Wavelet threshold ¢ = 0.01.

AMR method: 2nd order unsplit shock-capturing MUSCL scheme
with AUSMDV flux vector splitting Wada& Liou (SIAM J.Comput.
Sci., 1997) . Limiting and reconstruction in primitive variables with
Minmod limiter. Modified RK2. Adaptive parameters

1, = np = 0.05 and €, = €, = 0.05, with coarser level 128 x 128.

Computations at final time 0.3.
Target CFL number is 0.45.

In collaboration with Ralf Deiterding, Oak Ridge, USA
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Adaptive Multiresolution Computation : Lax-Liu test case 5

Density Grid
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AMR simulation

Uniform rnp3 =222 Reference solution
Ax =1/1024 Ax =1/1024 x = 1/4096

Reference solution computed with Wave Propagation Method.

In collaboration with Ralf Deiterding, Oak Ridge, USA
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Summary of the results for MR and AMR/LT

MR
Level | L§(p) Overhead Grid Compression  Overhead
[1072] per it. cell (%) per it. (%)
L=8 4.13 0.58 24.98 14.6
L=9 2.79 0.52 13.23 6.8
L=10 | 1.84 0.63 6.58 4.2
AMR
Level | L§(p) Overhead Grid Compression  Overhead
[1072] per it. cell (%) per it. (%)
L=8 4.00 0.13 68.2 8.7
L=9 2.66 0.03 44.4 1.3
L=10 | 1.57 0.12 26.2 3.1

In collaboration with Ralf Deiterding, Oak Ridge, USA  Preliminary results
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3d expanding circular shock-wave

As 3D test case, we study an inviscid expansion phenomenon in a
square periodic box which contains the same gas, but with
different conditions of pressure and temperature.

The initial condition is given by

(

5
0 for |7| < ro,
12.5
Q(r,t=0) =
1
0 otherwise.
2.5

The computational domain is Q = [0, 1] x [0, 1] x [0, 1].
The computations are performed until t = 0.84.
The physical parameters are Ma =1 and v = 1.4.
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MR computations

Numerical Parameters: L =7, e = 0.001, RK2 scheme, MUSCL
AUSM+-up flux, CFL = 0.8.

Density initial condition.
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Evolution of density at
t = 0.042,0.084,0.126, 0.210, 0.252,0.294, 0.336, 0.378, 0.420
(from left to right and top to bottom).



Adaptive grid: xy projection grid at
t = 0.042,0.084,0.126,0.210, 0.252, 0.294, 0.336, 0.378, 0.420
(from left to right and top to bottom).



AMR computations

Numerical Parameters: 2 levels with refinement factor 2 are used,
finest level: 120 x 120 x 120 grid (1.73 M cells), coarse grid of
30 x 30 x 30 cells, minmod-limiter, CFL = 0.8, until physical time
t = 0.84, 58 time steps.

Evolution of density at t = 0,t = 0.21 and t = 0.84
(from left to right).
Source: amroc.sourceforge.net/examples/euler/3d /html.

In collaboration with Ralf Deiterding, Oak Ridge, USA
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Evolution of the density solution, adaptive computations with 3

levels and 2 buffer cells.
Cut at z=0 and z = 0.5 at time t = 0.84 (from left to right) .

Source: amroc.sourceforge.net/examples/euler/3d/html.

In collaboration with Ralf Deiterding, Oak Ridge, USA



Reaction-diffusion equations

2D thermo-diffusive flames

3D flame balls




Governing equations

Non-dimensional thermodiffusive equations

O +T-VT —V°T = w—s (1)
- 1
&Y +7-VY — —V?Y = —w (2)
Le
_ Ze? Ze(T — 1) _
w(T,Y) = 2—LeY exp [1 (T — 1)] (reaction rate)
s(T) =~ [(T +a - 1)4 — (a7t = 1)4] (heat loss due to radiation)
-+ initial and boundary conditions
Y=Y, T= j: — 1:“ Le =2 (Lewis), a = 1 _ Tu, Ze = ozﬂ (Zeldovich)
Ty, — Tu D T RT,

v given by the incompressible NS equations. When the fluid is at rest, v = 0.



Governing equations

Planar flames
e Flame propagation at the velocity vy

e When the fresh mixture is advected at v = —v; = steady planar flame

AB: fresh mixture, BC: preheat zone, CD: reaction zone d = O(Ze~1), DE: burnt mixture



Governing equations

Thermodiffusive instability
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Stable: w for Le = 1, Ze = 10 (animation) - Unstable: w for Le = 0.3, Ze = 10 (animation)

Asymptotic theory for Ze >> 1 (Sivashinsky 1977, Joulin-Clavin 1979)

1) Ze(Le — 1) < —2 : cellular flames

2) Ze(Le — 1) > 16 : pulsating flames
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Application to TD flames

The flame ball configuration

e Simplest experiment to study the interaction of chemistry and transport of
gases (experimental: Ronney 1984, theory: Buckmaster-Joulin-Ronney 1990-91)

e Enables to study the flammability limit of lean gaseous mixtures

COLD PREMIXED GAS

radiation

heat conduction

P
\

HOT BURNT GAS
reactant diffusion

-
-

e Problem: the combustion chamber is finite = Interaction with wall



Application to TD flames

Interaction flame front-adiabatic wall: the 1D case
e Lean mixture Hy-air, Ze = 10, a = 0.64, Q2 = [0, 30]

e Radiation neglected

e Adiabatic walls = Neuman boundary conditions
e ODbjective: study the inflence of Le

e Profiles of T' and w for Le = 0.3 (animation 1)
e Profiles of T' and w for Le = 1 (animation 2)

e Profiles of T and w for Le = 1.4 (animation 3)

Ref. Roussel, Schneider, CTM 10 (2006)



Application to TD flames

Interaction flame front-adiabatic wall: the 1D case
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Flame velocity v, for Le < 0.95 Flame velocity v, for Le > 0.95

Ref. Roussel, Schneider, CTM 10 (2006)



Application to TD flames

Interaction flame ball-adiabatic wall
e Radiation neglected, Ze = 10, a = 0.64, Q = [-50, 50]¢
e Adiabatic walls = Neuman boundary conditions
e At t = 0, the radius of the flame ball is ro = 2.
e 2D: Evolution of T' and mesh for Le = 0.3 (animations 1-2)
e 2D: Evolution of T for Le = 1 (animation 3)
e 2D: Evolution of T for Le = 1.4 (animation 4)
e 3D: Evolution of T and mesh for Le = 1 (animations 5-6)

e Analogy with capillarity for a fluid droplet

Ref. Roussel, Schneider, CTM 10 (2006)



Application to TD flames

Interaction flame ball-adiabatic wall

140
120
100
80
60
40
20
0

t

szwdQ in 2D

8000
7000
6000
5000
4000
3000
2000
1000

R:fwdQ in 3D

Ref. Roussel, Schneider, CTM 10 (2006)



Application to TD flames

Interaction flame ball-adiabatic wall: Performances

d| Le| Nmax | % CPU | % Mem

0.3 | 2562 | 25.50% | 14.10%
1| 2562 | 21.50% | 11.75%
1.4 | 2562 | 21.00% | 11.10%

N NN

3 1| 1283 | 12.98% | 4.38%




Application to TD flames

Interaction flame ball-vortex

e Phenomenon which happens e.g. in furnaces
e T hermodiffusive model, ¥ analytic solution of Navier-Stokes

e Evolution of T and mesh for Ze = 10, Le = 0.3, no radiation (animations)



Application to TD flames

Interaction flame ball-vortex
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R = fw ds2: for MR and FV methods with and without vortex

Ref. Roussel, Schneider Comp. Fluids 34 (2005)



3D flame ball, Le = 1

Temperature Adaptive grid



Splitting flame ball computed with the MR/LTS method

ITemperatureI I Concentration I |grid Xy Igrid yz

|so-surfaces and isolines on the cut-plane for temperature (top) and concentration (bottom) with
L=8 scales, Le=0.3, Ze=10,k=0.1.

Ref. Domingues Gomes, Roussel and Schneider. JCP 227 (2008)



Splitting flame ball: projections of the cell centers used on
the adaptive mesh
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Ref. Domingues Gomes, Roussel and Schneider. JCP 227 (2008)



Splitting flame ball: CPU and memory compressions for the
different methods with L=8 scales

Method % CPU time % Memory Integral reaction
rate
MR 2.7 1.05 669.09
MR/LTS 2.3 1.05 669.11

Ref. Domingues Gomes, Roussel and Schneider. JCP 227 (2008)



Conclusions

Finite volume discretization with explicit time integration (both of second-order) to
solve evolutionary PDEs in Cartesian geometry.

Efficient space-adaptive multiresolution method (MR) with local time stepping (LTS).
CPU speed-up and memory reduction, while controling the accuracy.

Further speed-up due to an improved time advancement using larger time steps on
large scales without violating the stability condition of the explicit scheme.

However, synchronization of the tree data structure necessary.

Time-step control (CTS) for space adaptive schemes (embedded Runge-Kutta schemes)
and combination with LTS.

Applications to reaction-diffusion equations, compressible Euler and Navier-Stokes equations.
Next: develop level dependent time step control which allows to adapt the time step within a

cycle of the level dependent time stepping MR/LTS.

http://www.cmi.univ-mrs.fr/~kschneid http://wavelets.ens.fr





