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Machine Learning and Numerical Analysis
Outline

e Machine learning

— Supervised vs. unsupervised

e Convex optimization for supervised learning

— Sequence of linear systems

e Spectral methods for unsupervised learning

— Sequence of singular value decompositions

e Combinatorial optimization

— Polynomial-time algorithms and convex relaxations



Statistical machine learning
Computer science and applied mathematics

e Modelisation, prediction and control from training examples

e Theory

— Analysis of statistical performance

e Algorithms

— Numerical efficiency and stability

e Applications

— Computer vision, bioinformatics, neuro-imaging, text, audio



Statistical machine learning - Supervised learning
e Data (xz,yz) cXx)VY,1=1,...,n
e Goal: predicty € Y fromzxz € X, ie, find f: X — )

e Empirical risk minimization
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Data-fitting + Regularization

e Scientific objectives:

— Studying generalization error

— Improving calibration

— Choosing appropriate representations - selection of appropriate loss
— Two main types of norms: /5 vs. /3



Usual losses

e Regression: y € R, prediction §y = f(x),

— quadratic cost {(y, f(z)) = 3(y — f(x))?
e Classification : y € {—1,1} prediction § = sign(f(z)) 4

— loss of the form £(y, f(x)) = L(yf(z)) o
— “True” cost: L(yf(x)) = 1, ¢(z)<0 © o

— Usual convex costs:
5
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Supervised learning - Parsimony and /;-norm

e Data (z;,y;,) e RPx YV, i=1,...,n

wERP

1 -
min EZ@(yi,me) + )\Z ;|
i=1 j=1

Data-fitting + Regularization

e At the optimum, w Is in general sparse
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Sparsity in machine learning

e Assumption: y = w ' x + &, with w € R? sparse

— Proxy for interpretability

— Allow high-dimensional inference: | logp = O(n)

e Sparsity and convexity (¢;-norm regularization):

min L(w) + [[w]|1
wERP




Statistical machine learning - Unsupervised learning

e Dataz; € X, 71 =1,...,n. Goal: “Find” structure within data

— Discrete : clustering
— Low-dimension : principal component analysis




Statistical machine learning - Unsupervised learning

e Datax, € X,1=1,...,n. Goal: “Find” structure within data

— Discrete : clustering
— Low-dimension : principal component analysis

e Matrix factorization:

X =DA

— Structure on D and/or A
— Algorithmic and theoretical issues

e Applications



Learning on matrices - Collaborative filtering

e Given ny ‘movies’ x € X and ny “customers” y € ),
e predict the “rating” z(x,y) € Z of customer y for movie x

e Training data: large ny X ny incomplete matrix Z that describes the
known ratings of some customers for some movies

e Goal: complete the matrix.
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Learning on matrices - Image denoising
e Simultaneously denoise all patches of a given image

e Example from Mairal et al. (2009)




Learning on matrices - Source separation

e Single microphone (Févotte et al., 2009)
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Supervised learning - Convex optimization
e Data (azz,y,) cXx)VY,1=1,...,n
e Goal: predicty € Y fromzxz € X, ie, find f: X — )

e Empirical risk minimization

1 < A

— > Ly i —||£1I?

L2t f@) + 5]
Data-fitting + Regularization

e Typical problems

— f in vector space (e.g., RP)

— ¢ convex with respect to second variable, potentially non smooth
— Norm may be non differentiable

— p and/or n large



Convex optimization - Kernel methods

e Simplest case: least-squares

— X A
min -~ ly — Xl + Al

— Solution: w = (X "X +nX)71X Ty in O(p?)

e Kernel methods

— Maybe re-written as w = X ' (XX " +nXI)~ty in O(n?)
— Replace ] z; by any positive definite kernel function k(z;,x;),
e.g., k(z,2") = exp(—allz — 2||3)

e General losses : Interior point vs. first order methods

e Manipulation of large structured matrices



Convex optimization - Low precision

e Empirical risk minimization

1 A

— 4 79 ) o :

T2t f@)) + 5l
Data-fitting + Regularization

e No need to optimize below precision n~!/?

— Goal is to minimize test error
— Second-order methods adapted to high precision
— First-order methods adapted to low precision



Convex optimization - Low precision
(Bottou and Bousquet, 2008)
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Convex optimization - Sequence of problems

e Empirical risk minimization
1 « A
— 4 79 ) o °
n; (i f@)) + SIS
Data-fitting + Regularization
e In practice: Needs to be solved for many values of A

e Piecewise-linear paths

— |In favorable situations

e \Warm restarts



Convex optimization - First order methods

e Empirical risk minimization

1 n

=D Al f@) + A(f)
i=1
Data-fitting + Regularization

e Proximal methods adapted to non-smooth norms and smooth
losses

— Need to solve efficiently problems of the form

min | foll? + A

1 n
e Stochastic gradient: — E 0(y;, f(x;)) proxy for EL(y, f(x))
n
i=1
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Unsupervised learning - Spectral methods

e Spectral clustering: given similarity matrix W e R}*"

— Compute Laplacian matrix L = Diag(W1) —W =D — W
— Compute generalized eigenvector of (L, D)
— May be seen as relaxation of normalized cuts

e Applications

— Computer vision
— Speech separation



Application to computer vision
Co-segmentation (Joulin et al., 2010)

Segmentation Co-segmentation



Blind one-microphone speech separation
(Bach and Jordan, 2005)

Two or more speakers s1,...,S,, - one microphone x
|deal acoustics x = s+ so+ -+ + s,

Goal: recover sq,...,s,, from x

Blind: without knowing the speakers in advance

Formulation as spectogram segmentation



Spectrogram

e Spectrogram (a.k.a Gabor analysis, Windowed Fourier transforms)

— cut the signals in overlapping frames

— apply a window and compute the FFT
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Sparsity and superposition
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Building training set

Spectrogram of the mix Optlmal segmentation
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e Empirical property: there exists a segmentation that leads to audibly
acceptable signals (e.g., take arg max(|.S1|, |S2]|) )

- -5

e Work as possibly large training datasets
e Requires new way of segmenting images ...

e ... which can be learned from data



Very large similarity matrices
Linear complexity

e Three different time scales = W = a1 Wy + asWs + asWs

e Small

— Fine scale structure (continuity, harmonicity)

— very sparse approximation
e Medium

— Medium scale structure (common fate cues)

— band-diagonal approximation, potentially reduced rank
e Large

— Global structure (e.g., speaker identification)
— low-rank approximation (rank is independent of duration)



Experiments

e Two datasets of speakers: one for testing, one for training

o Left: optimal segmentation - right: blind segmentation

Frequency
Frequency

e Testing time (Matlab/C): T' duration of signal

— Building features ~ 4 x T
— Separation ~ 30 x T



Unsupervised learning - Convex relaxations

e Cuts: given any matrix W € R™*"”, find y € {—1,1}" that minimizes

- 1 1 1
Z Wijly#yj — 9 Z Wij(l - yiyj) — §1TW1 — §yTWy
ij=1 ij=1
—LetY =yy'. Wehave Y =0, diag(Y) = 1, rank(Y) =1
— Convex relaxation (Goemans and Williamson, 1997):

max tr WYy
Y0, diag(Y)=1

— May be solved as sequence of eigenvalue problems

t WY — 1 AmaX W D1 L 1—|_
V=0, I({ilz?gx(Y):l ' fé%é%n (W + Diag(p)) H



Submodular functions

o [':2Y — R is submodular if and only if
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Submodular functions

o [':2V — R is submodular if and only if

VA,BCV, F(A)+F(B)>FAnNB)+ F(AUDB)
& VkeV, Aw— F(AU{k}) — F(A) is non-increasing
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— Example: F': A+ g(Card(A)) is submodular if g is concave
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Submodular functions

o [':2Y — R is submodular if and only if

VA,BCV, F(A)+F(B)>FANB)+ F(AUB)
& VkeV, Aw— F(AU{k}) — F(A) is non-increasing

e Intuition 1: defined like concave functions ( “diminishing returns”)

— Example: F': A+ g(Card(A)) is submodular if g is concave

e Intuition 2: behave like convex functions

— Polynomial-time minimization, conjugacy theory

e Used in several areas of signal processing and machine learning

— Total variation/graph cuts
— Optimal design - Structured sparsity



Document modelisation (Jenatton et al., 2010)
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Machine learning - Specificities

e Low-precision

— Objective functions are averages

e Large scale

— Practical impact only when complexity close to linear

e Online learning

— Take advantage of special structure of optimization problems

e Sequence of problems

— Selecting hyperparameters



