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Machine Learning and Numerical Analysis

Outline

• Machine learning

– Supervised vs. unsupervised

• Convex optimization for supervised learning

– Sequence of linear systems

• Spectral methods for unsupervised learning

– Sequence of singular value decompositions

• Combinatorial optimization

– Polynomial-time algorithms and convex relaxations



Statistical machine learning

Computer science and applied mathematics

• Modelisation, prediction and control from training examples

• Theory

– Analysis of statistical performance

• Algorithms

– Numerical efficiency and stability

• Applications

– Computer vision, bioinformatics, neuro-imaging, text, audio



Statistical machine learning - Supervised learning

• Data (xi, yi) ∈ X × Y, i = 1, . . . , n

• Goal: predict y ∈ Y from x ∈ X , i.e., find f : X → Y

• Empirical risk minimization

1

n

n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2

Data-fitting + Regularization

• Scientific objectives:

– Studying generalization error

– Improving calibration

– Choosing appropriate representations - selection of appropriate loss

– Two main types of norms: ℓ2 vs. ℓ1



Usual losses

• Regression: y ∈ R, prediction ŷ = f(x),

– quadratic cost ℓ(y, f(x)) = 1
2(y − f(x))2

• Classification : y ∈ {−1, 1} prediction ŷ = sign(f(x))

– loss of the form ℓ(y, f(x)) = ℓ(yf(x))

– “True” cost: ℓ(yf(x)) = 1yf(x)<0

– Usual convex costs:
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Supervised learning - Parsimony and ℓ1-norm

• Data (xi, yi) ∈ R
p × Y, i = 1, . . . , n

min
w∈Rp

1

n

n∑

i=1

ℓ(yi, w
⊤xi) + λ

p∑

j=1

|wj|

Data-fitting + Regularization

• At the optimum, w is in general sparse
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Sparsity in machine learning

• Assumption: y = w⊤x+ ε, with w ∈ R
p sparse

– Proxy for interpretability

– Allow high-dimensional inference: log p = O(n)

• Sparsity and convexity (ℓ1-norm regularization): min
w∈Rp

L(w) + ‖w‖1
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Statistical machine learning - Unsupervised learning

• Data xi ∈ X , i = 1, . . . , n. Goal: “Find” structure within data

– Discrete : clustering

– Low-dimension : principal component analysis



Statistical machine learning - Unsupervised learning

• Data xi ∈ X , i = 1, . . . , n. Goal: “Find” structure within data

– Discrete : clustering

– Low-dimension : principal component analysis

• Matrix factorization:

X = DA

– Structure on D and/or A

– Algorithmic and theoretical issues

• Applications



Learning on matrices - Collaborative filtering

• Given nX “movies” x ∈ X and nY “customers” y ∈ Y,

• predict the “rating” z(x,y) ∈ Z of customer y for movie x

• Training data: large nX ×nY incomplete matrix Z that describes the

known ratings of some customers for some movies

• Goal: complete the matrix.
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Learning on matrices - Image denoising

• Simultaneously denoise all patches of a given image

• Example from Mairal et al. (2009)



Learning on matrices - Source separation

• Single microphone (Févotte et al., 2009)
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Supervised learning - Convex optimization

• Data (xi, yi) ∈ X × Y, i = 1, . . . , n

• Goal: predict y ∈ Y from x ∈ X , i.e., find f : X → Y

• Empirical risk minimization

1

n

n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2

Data-fitting + Regularization

• Typical problems

– f in vector space (e.g., Rp)

– ℓ convex with respect to second variable, potentially non smooth

– Norm may be non differentiable

– p and/or n large



Convex optimization - Kernel methods

• Simplest case: least-squares

min
w∈Rp

1

2n
‖y −Xw‖22 + λ‖w‖22

– Solution: w = (X⊤X + nλI)−1X⊤y in O(p3)

• Kernel methods

– Maybe re-written as w = X⊤(XX⊤ + nλI)−1y in O(n3)

– Replace x⊤
i xj by any positive definite kernel function k(xi, xj),

e.g., k(x, x′) = exp(−α‖x− x′‖22)

• General losses : Interior point vs. first order methods

• Manipulation of large structured matrices



Convex optimization - Low precision

• Empirical risk minimization

1

n

n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2

Data-fitting + Regularization

• No need to optimize below precision n−1/2

– Goal is to minimize test error

– Second-order methods adapted to high precision

– First-order methods adapted to low precision



Convex optimization - Low precision

(Bottou and Bousquet, 2008)



Convex optimization - Sequence of problems

• Empirical risk minimization

1

n

n∑

i=1

ℓ(yi, f(xi)) +
λ

2
‖f‖2

Data-fitting + Regularization

• In practice: Needs to be solved for many values of λ

• Piecewise-linear paths

– In favorable situations

• Warm restarts



Convex optimization - First order methods

• Empirical risk minimization

1

n

n∑

i=1

ℓ(yi, f(xi)) + λΩ(f)

Data-fitting + Regularization

• Proximal methods adapted to non-smooth norms and smooth

losses

– Need to solve efficiently problems of the form

min
f

‖f − f0‖
2 + λΩ(f)

• Stochastic gradient:
1

n

n∑

i=1

ℓ(yi, f(xi)) proxy for Eℓ(y, f(x))
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Unsupervised learning - Spectral methods

• Spectral clustering: given similarity matrix W ∈ R
n×n
+

– Compute Laplacian matrix L = Diag(W1)−W = D −W

– Compute generalized eigenvector of (L,D)

– May be seen as relaxation of normalized cuts

• Applications

– Computer vision

– Speech separation



Application to computer vision

Co-segmentation (Joulin et al., 2010)



Blind one-microphone speech separation

(Bach and Jordan, 2005)

• Two or more speakers s1, . . . , sm - one microphone x

• Ideal acoustics x = s1 + s2 + · · ·+ sm

• Goal: recover s1, . . . , sm from x

• Blind: without knowing the speakers in advance

• Formulation as spectogram segmentation



Spectrogram

• Spectrogram (a.k.a Gabor analysis, Windowed Fourier transforms)

– cut the signals in overlapping frames

– apply a window and compute the FFT
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Sparsity and superposition

s1 + s2 = x



Building training set
Spectrogram of the mix “Optimal” segmentation

• Empirical property: there exists a segmentation that leads to audibly

acceptable signals (e.g., take argmax(|S1|, |S2|) )

• Work as possibly large training datasets

• Requires new way of segmenting images ...

• ... which can be learned from data



Very large similarity matrices

Linear complexity

• Three different time scales ⇒ W = α1W1 + α2W2 + α3W3

• Small

– Fine scale structure (continuity, harmonicity)

– very sparse approximation

• Medium

– Medium scale structure (common fate cues)

– band-diagonal approximation, potentially reduced rank

• Large

– Global structure (e.g., speaker identification)

– low-rank approximation (rank is independent of duration)



Experiments

• Two datasets of speakers: one for testing, one for training

• Left: optimal segmentation - right: blind segmentation
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• Testing time (Matlab/C): T duration of signal

– Building features ≈ 4× T

– Separation ≈ 30× T



Unsupervised learning - Convex relaxations

• Cuts: given any matrixW ∈ R
n×n, find y ∈ {−1, 1}n that minimizes

n∑

i,j=1

Wij1yi 6=yj =
1

2

n∑

i,j=1

Wij(1− yiyj) =
1

2
1⊤W1−

1

2
y⊤Wy

– Let Y = yy⊤. We have Y < 0, diag(Y ) = 1, rank(Y ) = 1

– Convex relaxation (Goemans and Williamson, 1997):

max
Y <0, diag(Y )=1

trWY

– May be solved as sequence of eigenvalue problems

max
Y <0, diag(Y )=1

trWY = min
µ∈Rn

nλmax(W +Diag(µ))− 1⊤µ



Submodular functions

• F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

⇔ ∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing
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Submodular functions

• F : 2V → R is submodular if and only if

∀A,B ⊂ V, F (A) + F (B) > F (A ∩B) + F (A ∪B)

⇔ ∀k ∈ V, A 7→ F (A ∪ {k})− F (A) is non-increasing

• Intuition 1: defined like concave functions (“diminishing returns”)

– Example: F : A 7→ g(Card(A)) is submodular if g is concave

• Intuition 2: behave like convex functions

– Polynomial-time minimization, conjugacy theory

• Used in several areas of signal processing and machine learning

– Total variation/graph cuts

– Optimal design - Structured sparsity



Document modelisation (Jenatton et al., 2010)
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Machine learning - Specificities

• Low-precision

– Objective functions are averages

• Large scale

– Practical impact only when complexity close to linear

• Online learning

– Take advantage of special structure of optimization problems

• Sequence of problems

– Selecting hyperparameters


