StarPU: a runtime system for
multiGPU multicore machines

Raymond Namyst
RUNTIME group, INRIA Bordeaux

Journées du Groupe Calcul
Lyon, November 2010

The RUNTIME Team

High Performance Runtime Systems for Parallel Architectures

» Mid-size research
group
O permanent researchers
5 engineers
~10 PhD students

» Part of
INRIA Bordeaux - Sud-
Ouest Research Center

LaBRI, Computer Science
Lab at University of
Bordeaux 1

Overview of research activities
Toward “portability of performance”

» Do dynamically what can’t be done

statically
Understand evolution of architectures HPC Applications
Enable new programming models
Put intelligence into the runtime! Parallel Parallel
Compilers Libraries
» Exploiting shared memory machines A
Thread scheduling over hierarchical

multicore architectures

99999999
Task scheduling over accelerator-based

machines
» Communication over high speed
networks

Multicore-aware communication Runtime system
engines

Multithreaded MPI implementations
» Integration of multithreading and
communication

Runtime support for hybrid
programming
MPI + OpenMP + CUDA + TBB + ...

Operating System
CPU GPU

‘ Integrated:Memory Controller -13:Ch DDR31

Cdre 0. Core1 Core2 - Core3 :

Shared L3 Cache |

Evolution of multiprocessor architecture

Multicore is a solid trend

» Multicore chips
Architects’ answer to the
question: “*What circuits
should we add on a die?”
No point in adding new

predicators or other
intelligent units...

Back to complex memory
hierarchies

Shared caches

NUMA factors

Clusters can no longer be
considered as
“flat sets of processors”

IntegratediMembory Controller-13:Ch DDR3:

Core 0. Core 1 Core2 . Core 3

Shared L3 Cache

Thread Scheduling over Multicore Machines
Scheduling structured sets of threads

» The Bubble Scheduling
concept

Capturing application’s
structure with nested

bubbles
¥ ¥y
Scheduling = dynamic

mapping trees of threads Bub eSched)/
onto a tree of cores \ N\
Operating\ﬁﬁem \

Designing portable N\ \\
NUMA-aware scheduling J A g | cru
policies =

Focus on algorithmic Mem Mem

issues

Thread Scheduling over Multicore Machines
The ForestGOMP OpenMP environment

» Extension to GNU
OpenMP

Binary compliant with existing
applications
» Designing multicore-
friendly programs with
OpenMP

Parallel sections generate
bubbles

Nested parallelism is
welcome!
» Composability

Challenge = autotuning the
number of threads per
parallel region

void work ()

{

#pragma omp parallel for
for (int 1i=0; i<MAX; i++)
{

#fpragma omp parallel for
num threads (2)

for (int k=0; k<MAX; k++)

559595555

Mixing OpenMP with MPI

It makes sense even on shared-memory machines

» MPI should fit the
underlying topology

HWLOC library [with OpenMPI ~ Impact of Thread distribution
group] S 60
()]
5 o0
» Experimental platform for £ 40 B Optimum
hybrid applications £ 30
o " Worst
Topology-aware process £ 50
allocation S - Default
x 10
L
O el P Y

Customizable core/process

. BT-MZ.C.32 SP-MZ.C.32
ratio

Impact of thread/process
ratio

m = B I
64 32 16 8

Number of MPI processes

of OpenMP tasks
independent from # of cores

OMP_NUM_THREADS ignored

N B O

Execution time
(seconds)
O O O O o

Recent evolution of hardware
Towards multi-GPU clusters

» GPU are the new kids on the
block

Very powerful data-parallel
accelerators

Specific instruction set

No hardware memory
consistency

» Other chips already feature
specialized harware

IBM Cell/BE

1 PPU + 8 SPUs
Intel Larrabee MIC

48-core with SIMD units

» Are we happy with that?

No, but it's probably
unavoidable!

Future evolution of hardware
Heterogeneity is a also solid trend

» One interpretation of
“"Amdalh’s law”

We will always need
powerful, general
purpose cores to speed
up sequential parts of
our applications!

» “"Future processors will
be a mix of general
purpose and
specialized cores”

[anonymous source]

Mixed Large

and

—
T

Small Core i d d

sl

dd

--i ™

Programming environments
Programming the hard way

» Software Development Kits and Hardware Specific
Languages
“Stay close to the hardware and get good
performance”
Low-level abstractions

Compilers generate code for accelerator device

» Examples

Nvidia’s CUDA
Compute Unified Device Architecture)

ATI Stream
Previously Brook and Close-To-Metal

IBM Cell SDK

OpenCL

Programming environments
Are we forced to use such low-level tools?

» Higher-level libraries are available

Generic libraries
Intel CT

Well-known computation kernels

BLAS routines
e.g. CUBLAS

FFT kernels

» Implementations are continuously enhanced
High Efficiency
» Limitations

Data must usually fit accelerators memory
Multi-GPU configurations not yet supported

Programming environments
High-Level Languages and Tools

» Directive-based languages for offloading tasks
to accelerators

Idea: use simpler directives... and better
compilers!
HMPP (Caps Enterprise)

GPU SuperScalar (Barcelona Supercomputing Center)

#pragma omp task inout(C[BS][BS])

void matmul(float %A, float *B, float *C) {

// regular implementation

}

#pragma omp target device(cuda) implements(matmul)
copy in(A[BS][BS] , B[BS][BS] , C[BS][BS])

copy out(C[BS][BS])

void matmul cuda (float *A, float *B, float *C) {

// optimized kernel for cuda

}

Overview of StarPU
A runtime system for heterogeneous architectures

» Rational

Dynamically schedule
tasks on all

processing units
See a pool of

heterogeneous cores

Avoid unnecessary

data transfers
between accelerators

Software VSM for
heterogeneous
machines

Overview of StarPU

Maximizing PU occupancy, minimizing data transfers

» Ideas

Accept tasks that may

have multiple

implementations
Together with potential
inter-dependencies

Leads to a dynamic
acyclic graph of tasks

Provide a high-level
data management layer
Application should only

describe

which data may be
accessed by tasks

How data may be divided

Applications

Parallel
Compilers

Parallel
Libraries

StarPU

Drivers (CUDA, OpenCL)

CPU GPU

Memory Management
Automating data transfers

» StarPU provides a Virtual Applications
Shared Memory Parallel Parallel
subsystem Compilers Libraries

Weak consistency
Explicit data fetch
Replication
MSI protocol

Single writer
Except for specific,

“accumulation data” StarPU
High-level API
Partitioning filters Drivers (CUDA, OpenCL)
CPU GPU

» Input & output of tasks
= reference to VSM data

Tasks scheduling
Dealing with heterogeneous hardware accelerators

» Tasks = HPC Applications

Data input & output

Dependencies with
other tasks

Parallel Parallel
Compilers Libraries

Multiple
implementations

E.g. CUDA + CPU
implementation

Scheduling hints

\StarPU

» StarPU provides an

Open Scheduling

\
cpu \JDA, OpenCL)

latform |
P f gpp:' (Arw, Bk, CR))SPU

Scheduling algorithm =
plug-ins

Tasks scheduling
How does it work?

» When a task is submitted,
it first goes into a pool of
“frozen tasks” until all
dependencies are met

» Then, the task is “"pushed”
to the scheduler

» Idle processing units
actively poll for work

("pop”)

» What happens inside the
scheduler is... up to you!

l Push

Scheduler

Popl Popl
§28S =S

CPU GPU
workers workers

Tasks scheduling
Developing your own scheduler

» Queue based scheduler

Each worker « pops »

task in a specific queue Push

» Implementing a strategy
Easy!
Select queue topology

Implement « pop » and
« push » Pop
Priority tasks

OO MM | mm—

Work stealing
Performance models, ...

_ _ CPU GPU
» Scheduling algorithms workers workers

testbed

Tasks scheduling
Developing your own scheduler

» Queue based scheduler

Each worker « pops »
task in a specific queue

» Implementing a strategy
Easy!
Select queue topology

Implement « pop » and
« push »
Priority tasks
Work stealing
Performance models, ...

» Scheduling algorithms
testbed

CE 00

CPU
workers

GPU
workers

Dealing with heterogeneous architectures
Performance prediction

» Task completion time

estimation)
History-based cpu #1| W] I
User-defined cost -
function cpu #2 I} I
Parametric cost model [
cpu #3 | i
]
» Can be used to gpu #1 [T 'i'll
improve scheduling I
gpu #2L 1 | I il
E.g. Heterogeneous

Earliest Finish Time
time

Dealing with heterogeneous architectures
Performance prediction

» Data transfer time
estimation

Sampling based on cpu #1 | |

off-line calibration

i
I
cpu #2 | | ! I
I
» Can be used to 5w 23 | I | I
Better estimate [
overall exec time gpu #1 [T I II
Minimize data I
movements gpu #2L L | I i

v

time

Dealing with heterogeneous architectures

Performance

» On the influence of
the scheduling policy

LU decomposition

8 CPUs (Nehalem) + 3
GPUs (FX5800)

80% of work goes on
GPUs, 20% on CPUs

» StarPU exhibits good
scalability wrt:

Problem size
Number of GPUs

800
/700
600
500
400
300
200
100

H Greedy

B task
model

H prefetch

[data
model

0
S peed (GFlops)

—~= MAGMA
SarPl sreeees

36GB 16 L;.E d

Dealing with heterogeneous architectures
Implementing PLASMA on top of StarPU

. . . 1000 T . ,
» With University of 000 | —— 3GPUSs +5CPUs
Tennessee & INRIA _ 800
HiePACS g 700
holesky d iti s o
Cholesky decomposition 3 500
5 CPUs (Nehalem) + 3 GPUs £ 400
(FX5800) 2 300
Efficiency > 100% * 200 ’
100 -
0

5120 15360 25600 35840 46080
Matrix order

MEM.14083

14084

root progr. 14085

MEM 14078

MEM.14079

MEM.14080

cuda 0

cpu 0

Performance feedback API
Online/offline performance analysis

» “starpu_top”

100
80
60
40
20

0

100
80
60
40

20

22 24 26 28 30 32 34 36 38

10000 T T T T T T T

submitted —I

ready =
1000

100

10

22 24 26 28 30 32 34 36 38

Using StarPU through a standard API
A StarPU driver for OpenCL (Sylvain Henry)

» Run legacy OpenCL
codes on top of
StarPU

OpenCL sees a
number of starPU
devices

» Performance issues

OpenCL kernels are
“generic”

So they are likely to
behave well only on a
particular type of
architecture

Legacy OpenCL Application

OpenCL

StarPU

CPU GPU

Moving to multi-GPU clusters
Putting it all together

» MPI + StarPU

StarPU is able to use GPUs and CPUs
simultaneously

We just need to mix StarPU and MPI

Several applications
TPACF
LU decomposition
Stencil computation (e.g. Wave Propagation)

Experiments on the AC Cluster from NCSA
4 GPU quad-core nodes

Using raw MPI+StarPU integration
Without going to a full DSM system

» Keep MPI SPMD style

Static distribution of data (at the moment)
No load balancing between MPI processes

» StarPU scope limited to shared-memory nodes

» Inter-process data dependencies

MPI communications triggered by StarPU data
availability
StarPU memory management system provides support
MPI datatypes

LU with MPI+StarPU

Performance

» LU decomposition
MPI + multi-GPU

3500

» MPI Cyclic-distribution
~ SCALAPACK =
No pivoting ! i
» Future work " o
Integrate into
D-PLASMA b

500

=1 x (#1 GPU
=1 x (#4 GPU
2 x (#4 GPU

=4 x

10

(
(

N N N SN

#4 GPU

20 30 40

Problem size (GB)

50

60

70

Wave propagation
Stencil computation

» It’s all about data -m--mpmegee
movements
Prefetching

Asynchronism

B e o |
1

P S R

awil|

Wave propagation

Can a dynamic scheduler compete with a static approach?

» Load balancing vs data stability
We estimate the task cost as

o compute + f transfer

Problem size: 256 x 4096 x 4096, divided into 64
blocks

Task distribution (1 color per GPU)
Dynamic scheduling can lead to stable configurations

B=0 B=0.5 B =3 B=6

\4

Wave propagation
Performance

» Impact of scheduling policy
3 GPUs (FX5800) - no CPU used
256 x 4096 x 4096 : 64 blocks
Speed up = 2.7 (2 PCI 16x + 1 PCI 8x config)

2 12 _without prefetch ——3 T =
§ 14 with prefetch oy S 51
B B o — R e
P il O [- B ;
- 8pr D E— O »
G e ol
e S T g — LE=— <
© , 5 < R
— 2 |- PO) S 20 SRS S S
O | g 5 3
= 0 . .)

hef hef hef hef Statj

t-tm ttm‘l'n/t ttmdp ttmd -injs lic

Wave propagation
Behavior on several cluster nodes

20
19

18

©
°
o
[
g 17
2
g 16
o) =i K=1
(/2]
— —
@ — — — ——K=2
o 15
» K=4
C
2 —A—K=8
T 14
2

13

12 — — =

1

10

1 2 3 4

Number of MPI nodes

Towards parallel tasks on CPUs

Going further

» MPI + StarPU + OpenMP

Many algorithms can take
advantage of shared
memory

We can’t seriously
“taskify” the world!

» The Stencil case

When neighbor tasks can
be scheduled on a single
node

Just use shared memory!

Hence an OpenMP stencil
kernel

——

Integrating StarPU and Multithreading

How to deal with parallel tasks on multicore?

» Mixing StarPU with
OpenMP
Intel TBB
Pthreads
Etc.

» Raises the
Composability issue
Challenge =
autotuning the

number of threads per
parallel region

void work ()

{

#pragma omp parallel for
for (int 1i=0; i<MAX; i++)
{

#fpragma omp parallel for
num threads (2)

for (int k=0; k<MAX; k++)

)
} |

l

P7acN
55555555

Main plot
Composability is actually the biggest challenge

» Whatever your programming model, you need a
runtime system able to handle communlcatlon
multitasking, I/0, etc.

It should also make it possible to mix different execution
models

In Indirect Hybridization I trust!

» Up to now, we have designed separate multithreaded
runtime systems for

Multicore machines
Accelerator
Clusters

» Can we easily put it all together?
Only a matter of using a common threads library?
Early experiments on multi-GPU clusters

Integrating StarPU and Multithreading

Integrating tasks and threads

» First approach

Use an OpenMP main
stream

Suggested (?) by
recent parallel
language extension

proposals

E.g. Star SuperScalar
(UPC Barcelona) s ss 55 ss
HMPP (CAPS

[

[]

Enterprise)

Implementing

[]

[]

[]

[]
scheduling is difficult T T

Much more than a

simple offloading GPU GPU cPu | | cPu cru | | cpu

approach... i E

Integrating StarPU and Multithreading

Integrating tasks and threads

» Alternate approach

Let StarPU spawn
OpenMP tasks

Performance modeling
would still be valid

Would also work with other
tools

E.g. Intel TBB

How to find the appropriate
granularity?

May depend on the
concurrent tasks!

StarPU tasks = first class
citizen
Need to bridge the gap with
existing parallel languages

CPU
workers

GPU
workers

High-level integration
Generating StarPU code out of StarSs (Sylvain Gault)

» Experiments with

StarSs [UPC
Barcelona]

» Writing StarSs
+0OpenMP code is
easy

Platform for
experimenting hybrid
scheduling

OpenMP + StarPU

#pragma css task inout(v)
void scale_vector(float *v, float a, size_t n);

#pragma css target device(smp) implements
(scale_vector)
void scale_vector_cpu(float *v, float a, size_t n) {
inti;
for(i=0;i<n;i++)
v[i] *= a;

b
int main(void)

float v[] = {1, 2, 3,4, 5,6, 7,8, 9};
size_t vs = sizeof(v)/sizeof(*Vv);

#pragma css start

scale_vector(v, 4, vs);

Future work

» Bridge the gap with parallel languages

StarPU+0OpenMP as a target for the StarSs
language

Kernel generation

Data representation

StarPU+OpenMP+MPI as a target for XcalableMP?

» Enhance cooperation between runtime
systems and compilers

Granularity, runtime support for “divisible tasks”
Feedback for autotuning software
[PEPPHER European project]

Thank you!

» More information about StarPU
http://runtime.bordeaux.inria.fr

