
StarPU: a runtime system for
multiGPU multicore machines

Raymond Namyst
RUNTIME group, INRIA Bordeaux

Journées du Groupe Calcul
Lyon, November 2010

  Mid-size research
group
  9 permanent researchers
  5 engineers
  ~10 PhD students

  Part of
  INRIA Bordeaux – Sud-

Ouest Research Center
  LaBRI, Computer Science

Lab at University of
Bordeaux 1

The RUNTIME Team
High Performance Runtime Systems for Parallel Architectures

Parallel
Compilers

HPC Applications

Runtime system

Operating System

CPU

Parallel
Libraries

  Do dynamically what can’t be done
statically
  Understand evolution of architectures
  Enable new programming models
  Put intelligence into the runtime!

  Exploiting shared memory machines
  Thread scheduling over hierarchical

multicore architectures
  OpenMP

  Task scheduling over accelerator-based
machines

  Communication over high speed
networks
  Multicore-aware communication

engines
  Multithreaded MPI implementations

  Integration of multithreading and
communication
  Runtime support for hybrid

programming
  MPI + OpenMP + CUDA + TBB + …

Overview of research activities
Toward “portability of performance”

GPU …

  Multicore chips
  Architects’ answer to the

question: “What circuits
should we add on a die?”
  No point in adding new

predicators or other
intelligent units…

  Back to complex memory
hierarchies
  Shared caches
  NUMA factors

  Clusters can no longer be
considered as
“flat sets of processors”

Evolution of multiprocessor architecture
Multicore is a solid trend

  The Bubble Scheduling
concept
  Capturing application’s

structure with nested
bubbles

  Scheduling = dynamic
mapping trees of threads
onto a tree of cores

  Designing portable
NUMA-aware scheduling
policies
  Focus on algorithmic

issues

Thread Scheduling over Multicore Machines
Scheduling structured sets of threads

BubbleSched

Operating System

CPU CPU CPU CPU

Mem Mem

  Extension to GNU
OpenMP
  Binary compliant with existing

applications

  Designing multicore-
friendly programs with
OpenMP
  Parallel sections generate

bubbles
  Nested parallelism is

welcome!

  Composability
  Challenge = autotuning the

number of threads per
parallel region

Thread Scheduling over Multicore Machines
The ForestGOMP OpenMP environment

void work()
{
 ...

#pragma omp parallel for
 for (int i=0; i<MAX; i++)

 {
 ...

#pragma omp parallel for
num_threads (2)
 for (int k=0; k<MAX; k++)
 ...
 }
}

  MPI should fit the
underlying topology
  HWLOC library [with OpenMPI

group]

  Experimental platform for
hybrid applications
  Topology-aware process

allocation

  Customizable core/process
ratio

  # of OpenMP tasks
independent from # of cores
  OMP_NUM_THREADS ignored

Mixing OpenMP with MPI
It makes sense even on shared-memory machines

0
10
20
30
40
50
60

BT-MZ.C.32 SP-MZ.C.32

E
x
e
cu

ti
o

n
 t

im
e
 (

se
cs

) Impact of Thread distribution

Optimum
Worst
Default

0
20
40
60
80

64 32 16 8

E
x
e
cu

ti
o

n
 t

im
e

(s
e
co

n
d

s)

Number of MPI processes

Impact of thread/process
ratio

  GPU are the new kids on the
block
  Very powerful data-parallel

accelerators
  Specific instruction set
  No hardware memory

consistency

  Other chips already feature
specialized harware
  IBM Cell/BE

  1 PPU + 8 SPUs
  Intel Larrabee MIC

  48-core with SIMD units

  Are we happy with that?
  No, but it’s probably

unavoidable!

Recent evolution of hardware
Towards multi-GPU clusters

  One interpretation of
“Amdalh’s law”
  We will always need

powerful, general
purpose cores to speed
up sequential parts of
our applications!

  “Future processors will
be a mix of general
purpose and
specialized cores”
 [anonymous source]

Future evolution of hardware
Heterogeneity is a also solid trend

Mixed Large
and

Small Core

Programming environments

  Software Development Kits and Hardware Specific
Languages
  “Stay close to the hardware and get good

performance”
  Low-level abstractions

  Compilers generate code for accelerator device

  Examples
  Nvidia’s CUDA

  Compute Unified Device Architecture)
  ATI Stream

  Previously Brook and Close-To-Metal
  IBM Cell SDK

  OpenCL

Programming the hard way

Programming environments

  Higher-level libraries are available
  Generic libraries

  Intel CT

  Well-known computation kernels
  BLAS routines

  e.g. CUBLAS
  FFT kernels

  Implementations are continuously enhanced
  High Efficiency

  Limitations
  Data must usually fit accelerators memory
  Multi-GPU configurations not yet supported

Are we forced to use such low-level tools?

Programming environments

  Directive-based languages for offloading tasks
to accelerators
  Idea: use simpler directives… and better

compilers!
  HMPP (Caps Enterprise)
  GPU SuperScalar (Barcelona Supercomputing Center)

High-Level Languages and Tools

#pragma omp task inout(C[BS][BS])!

void matmul(float ∗A, float ∗B, float ∗C) {!

// regular implementation!

}!

#pragma omp target device(cuda) implements(matmul)!

copy_in(A[BS][BS] , B[BS][BS] , C[BS][BS])!

copy_out(C[BS][BS])!

void matmul cuda (float ∗A, float ∗B, float ∗C) {!

// optimized kernel for cuda!

} !

  Rational
  Dynamically schedule

tasks on all
processing units
  See a pool of

heterogeneous cores

  Avoid unnecessary
data transfers
between accelerators
  Software VSM for

heterogeneous
machines

Overview of StarPU
A runtime system for heterogeneous architectures

A = A+B

M.

CPU

CPU

CPU

CPU M. GPU

M. GPU

CPU

CPU

CPU

CPU

M. A

B
B

M. GPU

M. GPU

  Ideas
  Accept tasks that may

have multiple
implementations
  Together with potential

inter-dependencies
  Leads to a dynamic

acyclic graph of tasks

  Provide a high-level
data management layer
  Application should only

describe
  which data may be

accessed by tasks
  How data may be divided

Overview of StarPU
Maximizing PU occupancy, minimizing data transfers

Parallel
Compilers

Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel
Libraries

GPU …

Parallel
Compilers

Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel
Libraries

  StarPU provides a Virtual
Shared Memory
subsystem
  Weak consistency

  Explicit data fetch
  Replication

  MSI protocol
  Single writer

  Except for specific,
“accumulation data”

  High-level API
  Partitioning filters

  Input & output of tasks
= reference to VSM data

Memory Management
Automating data transfers

GPU …

CPU

Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

Parallel
Libraries

  Tasks =
  Data input & output
  Dependencies with

other tasks
  Multiple

implementations
  E.g. CUDA + CPU

implementation
  Scheduling hints

  StarPU provides an
Open Scheduling
platform
  Scheduling algorithm =

plug-ins

Tasks scheduling
Dealing with heterogeneous hardware accelerators

GPU … (ARW, BR, CR) f
cpu
gpu
spu

  When a task is submitted,
it first goes into a pool of
“frozen tasks” until all
dependencies are met

  Then, the task is “pushed”
to the scheduler

  Idle processing units
actively poll for work
(“pop”)

  What happens inside the
scheduler is… up to you!

Tasks scheduling
How does it work?

Scheduler

CPU
workers

GPU
workers

Push

Pop Pop

  Queue based scheduler
  Each worker « pops »

task in a specific queue

  Implementing a strategy
  Easy!
  Select queue topology
  Implement « pop » and

« push »
  Priority tasks
  Work stealing
  Performance models, …

  Scheduling algorithms
testbed

Tasks scheduling
Developing your own scheduler

CPU
workers

GPU
workers

Push

Pop

  Queue based scheduler
  Each worker « pops »

task in a specific queue

  Implementing a strategy
  Easy!
  Select queue topology
  Implement « pop » and

« push »
  Priority tasks
  Work stealing
  Performance models, …

  Scheduling algorithms
testbed

Tasks scheduling
Developing your own scheduler

CPU
workers

GPU
workers

?

Push

Pop

  Task completion time
estimation
  History-based
  User-defined cost

function
  Parametric cost model

  Can be used to
improve scheduling
  E.g. Heterogeneous

Earliest Finish Time

Dealing with heterogeneous architectures
Performance prediction

time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

  Data transfer time
estimation
  Sampling based on

off-line calibration

  Can be used to
  Better estimate

overall exec time
  Minimize data

movements

Dealing with heterogeneous architectures
Performance prediction

time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

  On the influence of
the scheduling policy
  LU decomposition

  8 CPUs (Nehalem) + 3
GPUs (FX5800)

  80% of work goes on
GPUs, 20% on CPUs

  StarPU exhibits good
scalability wrt:
  Problem size
  Number of GPUs

Dealing with heterogeneous architectures
Performance

  With University of
Tennessee & INRIA
HiePACS
  Cholesky decomposition

  5 CPUs (Nehalem) + 3 GPUs
(FX5800)

  Efficiency > 100%

Dealing with heterogeneous architectures
Implementing PLASMA on top of StarPU

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 5120 15360 25600 35840 46080

Pe
rfo

rm
an

ce
 (G

flo
p/

s)

Matrix order

4 G
B

3 GPUs + 5 CPUs
3 GPUs
2 GPUs
1 GPU

Performance feedback API

  “starpu_top”

Online/offline performance analysis

 1

 10

 100

 1000

 10000

 22 24 26 28 30 32 34 36 38

submitted
ready

 0

 20

 40

 60

 80

 100

 22 24 26 28 30 32 34 36 38

cp
u

 0

 0

 20

 40

 60

 80

 100

 22 24 26 28 30 32 34 36 38

cu
d

a
 0

  Run legacy OpenCL
codes on top of
StarPU
  OpenCL sees a

number of starPU
devices

  Performance issues
  OpenCL kernels are

“generic”
  So they are likely to

behave well only on a
particular type of
architecture

Using StarPU through a standard API
A StarPU driver for OpenCL (Sylvain Henry)

OpenCL

StarPU

CPU GPU …

Legacy OpenCL Application

Moving to multi-GPU clusters

  MPI + StarPU
  StarPU is able to use GPUs and CPUs

simultaneously

  We just need to mix StarPU and MPI

  Several applications
  TPACF
  LU decomposition
  Stencil computation (e.g. Wave Propagation)

  Experiments on the AC Cluster from NCSA
  4 GPU quad-core nodes

Putting it all together

Using raw MPI+StarPU integration

  Keep MPI SPMD style
  Static distribution of data (at the moment)

  No load balancing between MPI processes

  StarPU scope limited to shared-memory nodes

  Inter-process data dependencies
  MPI communications triggered by StarPU data

availability
  StarPU memory management system provides support

  MPI datatypes

Without going to a full DSM system

  LU decomposition
  MPI + multi-GPU

  MPI Cyclic-distribution
  ~ SCALAPACK
  No pivoting !

  Future work
  Integrate into

D-PLASMA

LU with MPI+StarPU
Performance

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70

S
pe

ed
 (G

Fl
op

/s
)

Problem size (GB)

1 x (#1 GPU)
1 x (#4 GPU)
2 x (#4 GPU)
4 x (#4 GPU)

  It’s all about data
movements
  Prefetching
  Asynchronism

Wave propagation
Stencil computation

Wave propagation

  Load balancing vs data stability
  We estimate the task cost as
   α compute + β transfer
  Problem size: 256 x 4096 x 4096, divided into 64

blocks
  Task distribution (1 color per GPU)
  Dynamic scheduling can lead to stable configurations

Can a dynamic scheduler compete with a static approach?

Tim
e

β = 0	
 β = 6	
β = 0.5	
 β = 3	

Wave propagation

  Impact of scheduling policy
  3 GPUs (FX5800) – no CPU used
  256 x 4096 x 4096 : 64 blocks
  Speed up = 2.7 (2 PCI 16x + 1 PCI 8x config)

Performance

Wave propagation
Behavior on several cluster nodes

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4

Ite
ra

tio
ns

 p
er

 s
ec

on
d

pe
r n

od
e

Number of MPI nodes

K=1

K=2

K=4

K=8

  MPI + StarPU + OpenMP
  Many algorithms can take

advantage of shared
memory

  We can’t seriously
“taskify” the world!

  The Stencil case
  When neighbor tasks can

be scheduled on a single
node
  Just use shared memory!
  Hence an OpenMP stencil

kernel

Towards parallel tasks on CPUs
Going further

  Mixing StarPU with
  OpenMP
  Intel TBB
  Pthreads
  Etc.

  Raises the
Composability issue
  Challenge =

autotuning the
number of threads per
parallel region

Integrating StarPU and Multithreading
How to deal with parallel tasks on multicore?

void work()
{
 ...

#pragma omp parallel for
 for (int i=0; i<MAX; i++)

 {
 ...

#pragma omp parallel for
num_threads (2)
 for (int k=0; k<MAX; k++)
 ...
 }
}

Main plot

  Whatever your programming model, you need a
runtime system able to handle communication,
multitasking, I/O, etc.
  It should also make it possible to mix different execution

models
  In Indirect Hybridization I trust!

  Up to now, we have designed separate multithreaded
runtime systems for
  Multicore machines
  Accelerator
  Clusters

  Can we easily put it all together?
  Only a matter of using a common threads library?
  Early experiments on multi-GPU clusters

Composability is actually the biggest challenge

  First approach
  Use an OpenMP main

stream
  Suggested (?) by

recent parallel
language extension
proposals
  E.g. Star SuperScalar

(UPC Barcelona)
  HMPP (CAPS

Enterprise)

  Implementing
scheduling is difficult
  Much more than a

simple offloading
approach…

Integrating StarPU and Multithreading
Integrating tasks and threads

CPU CPU CPU CPU

Mem Mem

GPU GPU

  Alternate approach
  Let StarPU spawn

OpenMP tasks
  Performance modeling

would still be valid

  Would also work with other
tools
  E.g. Intel TBB

  How to find the appropriate
granularity?
  May depend on the

concurrent tasks!

  StarPU tasks = first class
citizen
  Need to bridge the gap with

existing parallel languages

Integrating StarPU and Multithreading
Integrating tasks and threads

CPU
workers

GPU
workers

  Experiments with
  StarSs [UPC

Barcelona]

  Writing StarSs
+OpenMP code is
easy
  Platform for

experimenting hybrid
scheduling
  OpenMP + StarPU

High-level integration
Generating StarPU code out of StarSs (Sylvain Gault)

#pragma css task inout(v)
void scale_vector(float *v, float a, size_t n);

#pragma css target device(smp) implements
(scale_vector)
void scale_vector_cpu(float *v, float a, size_t n) {

 int i;
 for (i = 0; i < n; i++)
 v[i] *= a;

}

int main(void)
{

 float v[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
 size_t vs = sizeof(v)/sizeof(*v);

#pragma css start

scale_vector(v, 4, vs);
…

Future work

  Bridge the gap with parallel languages
  StarPU+OpenMP as a target for the StarSs

language
  Kernel generation
  Data representation

  StarPU+OpenMP+MPI as a target for XcalableMP?

  Enhance cooperation between runtime
systems and compilers
  Granularity, runtime support for “divisible tasks”
  Feedback for autotuning software
  [PEPPHER European project]

Thank you!

  More information about StarPU
http://runtime.bordeaux.inria.fr

