
StarPU: a runtime system for
multiGPU multicore machines

Raymond Namyst
RUNTIME group, INRIA Bordeaux

Journées du Groupe Calcul
Lyon, November 2010

  Mid-size research
group
  9 permanent researchers
  5 engineers
  ~10 PhD students

  Part of
  INRIA Bordeaux – Sud-

Ouest Research Center
  LaBRI, Computer Science

Lab at University of
Bordeaux 1

The RUNTIME Team
High Performance Runtime Systems for Parallel Architectures

Parallel
Compilers

HPC Applications

Runtime system

Operating System

CPU

Parallel
Libraries

  Do dynamically what can’t be done
statically
  Understand evolution of architectures
  Enable new programming models
  Put intelligence into the runtime!

  Exploiting shared memory machines
  Thread scheduling over hierarchical

multicore architectures
  OpenMP

  Task scheduling over accelerator-based
machines

  Communication over high speed
networks
  Multicore-aware communication

engines
  Multithreaded MPI implementations

  Integration of multithreading and
communication
  Runtime support for hybrid

programming
  MPI + OpenMP + CUDA + TBB + …

Overview of research activities
Toward “portability of performance”

GPU …

  Multicore chips
  Architects’ answer to the

question: “What circuits
should we add on a die?”
  No point in adding new

predicators or other
intelligent units…

  Back to complex memory
hierarchies
  Shared caches
  NUMA factors

  Clusters can no longer be
considered as
“flat sets of processors”

Evolution of multiprocessor architecture
Multicore is a solid trend

  The Bubble Scheduling
concept
  Capturing application’s

structure with nested
bubbles

  Scheduling = dynamic
mapping trees of threads
onto a tree of cores

  Designing portable
NUMA-aware scheduling
policies
  Focus on algorithmic

issues

Thread Scheduling over Multicore Machines
Scheduling structured sets of threads

BubbleSched

Operating System

CPU CPU CPU CPU

Mem Mem

  Extension to GNU
OpenMP
  Binary compliant with existing

applications

  Designing multicore-
friendly programs with
OpenMP
  Parallel sections generate

bubbles
  Nested parallelism is

welcome!

  Composability
  Challenge = autotuning the

number of threads per
parallel region

Thread Scheduling over Multicore Machines
The ForestGOMP OpenMP environment

void work()
{
 ...

#pragma omp parallel for
 for (int i=0; i<MAX; i++)

 {
 ...

#pragma omp parallel for
num_threads (2)
 for (int k=0; k<MAX; k++)
 ...
 }
}

  MPI should fit the
underlying topology
  HWLOC library [with OpenMPI

group]

  Experimental platform for
hybrid applications
  Topology-aware process

allocation

  Customizable core/process
ratio

  # of OpenMP tasks
independent from # of cores
  OMP_NUM_THREADS ignored

Mixing OpenMP with MPI
It makes sense even on shared-memory machines

0
10
20
30
40
50
60

BT-MZ.C.32 SP-MZ.C.32

E
x
e
cu

ti
o

n
 t

im
e
 (

se
cs

) Impact of Thread distribution

Optimum
Worst
Default

0
20
40
60
80

64 32 16 8

E
x
e
cu

ti
o

n
 t

im
e

(s
e
co

n
d

s)

Number of MPI processes

Impact of thread/process
ratio

  GPU are the new kids on the
block
  Very powerful data-parallel

accelerators
  Specific instruction set
  No hardware memory

consistency

  Other chips already feature
specialized harware
  IBM Cell/BE

  1 PPU + 8 SPUs
  Intel Larrabee MIC

  48-core with SIMD units

  Are we happy with that?
  No, but it’s probably

unavoidable!

Recent evolution of hardware
Towards multi-GPU clusters

  One interpretation of
“Amdalh’s law”
  We will always need

powerful, general
purpose cores to speed
up sequential parts of
our applications!

  “Future processors will
be a mix of general
purpose and
specialized cores”
 [anonymous source]

Future evolution of hardware
Heterogeneity is a also solid trend

Mixed Large
and

Small Core

Programming environments

  Software Development Kits and Hardware Specific
Languages
  “Stay close to the hardware and get good

performance”
  Low-level abstractions

  Compilers generate code for accelerator device

  Examples
  Nvidia’s CUDA

  Compute Unified Device Architecture)
  ATI Stream

  Previously Brook and Close-To-Metal
  IBM Cell SDK

  OpenCL

Programming the hard way

Programming environments

  Higher-level libraries are available
  Generic libraries

  Intel CT

  Well-known computation kernels
  BLAS routines

  e.g. CUBLAS
  FFT kernels

  Implementations are continuously enhanced
  High Efficiency

  Limitations
  Data must usually fit accelerators memory
  Multi-GPU configurations not yet supported

Are we forced to use such low-level tools?

Programming environments

  Directive-based languages for offloading tasks
to accelerators
  Idea: use simpler directives… and better

compilers!
  HMPP (Caps Enterprise)
  GPU SuperScalar (Barcelona Supercomputing Center)

High-Level Languages and Tools

#pragma omp task inout(C[BS][BS])!

void matmul(float ∗A, float ∗B, float ∗C) {!

// regular implementation!

}!

#pragma omp target device(cuda) implements(matmul)!

copy_in(A[BS][BS] , B[BS][BS] , C[BS][BS])!

copy_out(C[BS][BS])!

void matmul cuda (float ∗A, float ∗B, float ∗C) {!

// optimized kernel for cuda!

} !

  Rational
  Dynamically schedule

tasks on all
processing units
  See a pool of

heterogeneous cores

  Avoid unnecessary
data transfers
between accelerators
  Software VSM for

heterogeneous
machines

Overview of StarPU
A runtime system for heterogeneous architectures

A = A+B

M.

CPU

CPU

CPU

CPU M. GPU

M. GPU

CPU

CPU

CPU

CPU

M. A

B
B

M. GPU

M. GPU

  Ideas
  Accept tasks that may

have multiple
implementations
  Together with potential

inter-dependencies
  Leads to a dynamic

acyclic graph of tasks

  Provide a high-level
data management layer
  Application should only

describe
  which data may be

accessed by tasks
  How data may be divided

Overview of StarPU
Maximizing PU occupancy, minimizing data transfers

Parallel
Compilers

Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel
Libraries

GPU …

Parallel
Compilers

Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel
Libraries

  StarPU provides a Virtual
Shared Memory
subsystem
  Weak consistency

  Explicit data fetch
  Replication

  MSI protocol
  Single writer

  Except for specific,
“accumulation data”

  High-level API
  Partitioning filters

  Input & output of tasks
= reference to VSM data

Memory Management
Automating data transfers

GPU …

CPU

Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

Parallel
Libraries

  Tasks =
  Data input & output
  Dependencies with

other tasks
  Multiple

implementations
  E.g. CUDA + CPU

implementation
  Scheduling hints

  StarPU provides an
Open Scheduling
platform
  Scheduling algorithm =

plug-ins

Tasks scheduling
Dealing with heterogeneous hardware accelerators

GPU … (ARW, BR, CR) f
cpu
gpu
spu

  When a task is submitted,
it first goes into a pool of
“frozen tasks” until all
dependencies are met

  Then, the task is “pushed”
to the scheduler

  Idle processing units
actively poll for work
(“pop”)

  What happens inside the
scheduler is… up to you!

Tasks scheduling
How does it work?

Scheduler

CPU
workers

GPU
workers

Push

Pop Pop

  Queue based scheduler
  Each worker « pops »

task in a specific queue

  Implementing a strategy
  Easy!
  Select queue topology
  Implement « pop » and

« push »
  Priority tasks
  Work stealing
  Performance models, …

  Scheduling algorithms
testbed

Tasks scheduling
Developing your own scheduler

CPU
workers

GPU
workers

Push

Pop

  Queue based scheduler
  Each worker « pops »

task in a specific queue

  Implementing a strategy
  Easy!
  Select queue topology
  Implement « pop » and

« push »
  Priority tasks
  Work stealing
  Performance models, …

  Scheduling algorithms
testbed

Tasks scheduling
Developing your own scheduler

CPU
workers

GPU
workers

?

Push

Pop

  Task completion time
estimation
  History-based
  User-defined cost

function
  Parametric cost model

  Can be used to
improve scheduling
  E.g. Heterogeneous

Earliest Finish Time

Dealing with heterogeneous architectures
Performance prediction

time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

  Data transfer time
estimation
  Sampling based on

off-line calibration

  Can be used to
  Better estimate

overall exec time
  Minimize data

movements

Dealing with heterogeneous architectures
Performance prediction

time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

  On the influence of
the scheduling policy
  LU decomposition

  8 CPUs (Nehalem) + 3
GPUs (FX5800)

  80% of work goes on
GPUs, 20% on CPUs

  StarPU exhibits good
scalability wrt:
  Problem size
  Number of GPUs

Dealing with heterogeneous architectures
Performance

  With University of
Tennessee & INRIA
HiePACS
  Cholesky decomposition

  5 CPUs (Nehalem) + 3 GPUs
(FX5800)

  Efficiency > 100%

Dealing with heterogeneous architectures
Implementing PLASMA on top of StarPU

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 5120 15360 25600 35840 46080

Pe
rfo

rm
an

ce
 (G

flo
p/

s)

Matrix order

4 G
B

3 GPUs + 5 CPUs
3 GPUs
2 GPUs
1 GPU

Performance feedback API

  “starpu_top”

Online/offline performance analysis

 1

 10

 100

 1000

 10000

 22 24 26 28 30 32 34 36 38

submitted
ready

 0

 20

 40

 60

 80

 100

 22 24 26 28 30 32 34 36 38

cp
u

 0

 0

 20

 40

 60

 80

 100

 22 24 26 28 30 32 34 36 38

cu
d

a
 0

  Run legacy OpenCL
codes on top of
StarPU
  OpenCL sees a

number of starPU
devices

  Performance issues
  OpenCL kernels are

“generic”
  So they are likely to

behave well only on a
particular type of
architecture

Using StarPU through a standard API
A StarPU driver for OpenCL (Sylvain Henry)

OpenCL

StarPU

CPU GPU …

Legacy OpenCL Application

Moving to multi-GPU clusters

  MPI + StarPU
  StarPU is able to use GPUs and CPUs

simultaneously

  We just need to mix StarPU and MPI

  Several applications
  TPACF
  LU decomposition
  Stencil computation (e.g. Wave Propagation)

  Experiments on the AC Cluster from NCSA
  4 GPU quad-core nodes

Putting it all together

Using raw MPI+StarPU integration

  Keep MPI SPMD style
  Static distribution of data (at the moment)

  No load balancing between MPI processes

  StarPU scope limited to shared-memory nodes

  Inter-process data dependencies
  MPI communications triggered by StarPU data

availability
  StarPU memory management system provides support

  MPI datatypes

Without going to a full DSM system

  LU decomposition
  MPI + multi-GPU

  MPI Cyclic-distribution
  ~ SCALAPACK
  No pivoting !

  Future work
  Integrate into

D-PLASMA

LU with MPI+StarPU
Performance

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70

S
pe

ed
 (G

Fl
op

/s
)

Problem size (GB)

1 x (#1 GPU)
1 x (#4 GPU)
2 x (#4 GPU)
4 x (#4 GPU)

  It’s all about data
movements
  Prefetching
  Asynchronism

Wave propagation
Stencil computation

Wave propagation

  Load balancing vs data stability
  We estimate the task cost as
   α compute + β transfer
  Problem size: 256 x 4096 x 4096, divided into 64

blocks
  Task distribution (1 color per GPU)
  Dynamic scheduling can lead to stable configurations

Can a dynamic scheduler compete with a static approach?

Tim
e

β = 0	

 β = 6	

β = 0.5	

 β = 3	

Wave propagation

  Impact of scheduling policy
  3 GPUs (FX5800) – no CPU used
  256 x 4096 x 4096 : 64 blocks
  Speed up = 2.7 (2 PCI 16x + 1 PCI 8x config)

Performance

Wave propagation
Behavior on several cluster nodes

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4

Ite
ra

tio
ns

 p
er

 s
ec

on
d

pe
r n

od
e

Number of MPI nodes

K=1

K=2

K=4

K=8

  MPI + StarPU + OpenMP
  Many algorithms can take

advantage of shared
memory

  We can’t seriously
“taskify” the world!

  The Stencil case
  When neighbor tasks can

be scheduled on a single
node
  Just use shared memory!
  Hence an OpenMP stencil

kernel

Towards parallel tasks on CPUs
Going further

  Mixing StarPU with
  OpenMP
  Intel TBB
  Pthreads
  Etc.

  Raises the
Composability issue
  Challenge =

autotuning the
number of threads per
parallel region

Integrating StarPU and Multithreading
How to deal with parallel tasks on multicore?

void work()
{
 ...

#pragma omp parallel for
 for (int i=0; i<MAX; i++)

 {
 ...

#pragma omp parallel for
num_threads (2)
 for (int k=0; k<MAX; k++)
 ...
 }
}

Main plot

  Whatever your programming model, you need a
runtime system able to handle communication,
multitasking, I/O, etc.
  It should also make it possible to mix different execution

models
  In Indirect Hybridization I trust!

  Up to now, we have designed separate multithreaded
runtime systems for
  Multicore machines
  Accelerator
  Clusters

  Can we easily put it all together?
  Only a matter of using a common threads library?
  Early experiments on multi-GPU clusters

Composability is actually the biggest challenge

  First approach
  Use an OpenMP main

stream
  Suggested (?) by

recent parallel
language extension
proposals
  E.g. Star SuperScalar

(UPC Barcelona)
  HMPP (CAPS

Enterprise)

  Implementing
scheduling is difficult
  Much more than a

simple offloading
approach…

Integrating StarPU and Multithreading
Integrating tasks and threads

CPU CPU CPU CPU

Mem Mem

GPU GPU

  Alternate approach
  Let StarPU spawn

OpenMP tasks
  Performance modeling

would still be valid

  Would also work with other
tools
  E.g. Intel TBB

  How to find the appropriate
granularity?
  May depend on the

concurrent tasks!

  StarPU tasks = first class
citizen
  Need to bridge the gap with

existing parallel languages

Integrating StarPU and Multithreading
Integrating tasks and threads

CPU
workers

GPU
workers

  Experiments with
  StarSs [UPC

Barcelona]

  Writing StarSs
+OpenMP code is
easy
  Platform for

experimenting hybrid
scheduling
  OpenMP + StarPU

High-level integration
Generating StarPU code out of StarSs (Sylvain Gault)

#pragma css task inout(v)
void scale_vector(float *v, float a, size_t n);

#pragma css target device(smp) implements
(scale_vector)
void scale_vector_cpu(float *v, float a, size_t n) {

 int i;
 for (i = 0; i < n; i++)
 v[i] *= a;

}

int main(void)
{

 float v[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
 size_t vs = sizeof(v)/sizeof(*v);

#pragma css start

scale_vector(v, 4, vs);
…

Future work

  Bridge the gap with parallel languages
  StarPU+OpenMP as a target for the StarSs

language
  Kernel generation
  Data representation

  StarPU+OpenMP+MPI as a target for XcalableMP?

  Enhance cooperation between runtime
systems and compilers
  Granularity, runtime support for “divisible tasks”
  Feedback for autotuning software
  [PEPPHER European project]

Thank you!

  More information about StarPU
http://runtime.bordeaux.inria.fr

