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  Mid-size research 
group 
  9 permanent researchers 
  5 engineers 
  ~10 PhD students 

  Part of 
  INRIA Bordeaux – Sud-

Ouest Research Center 
  LaBRI, Computer Science 

Lab at University of 
Bordeaux 1 

The RUNTIME Team  
High Performance Runtime Systems for Parallel Architectures 
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  Do dynamically what can’t be done 
statically 
  Understand evolution of architectures 
  Enable new programming models 
  Put intelligence into the runtime! 

  Exploiting shared memory machines 
  Thread scheduling over hierarchical 

multicore architectures 
  OpenMP 

  Task scheduling over accelerator-based 
machines 

  Communication over high speed 
networks 
  Multicore-aware communication 

engines 
  Multithreaded MPI implementations 

  Integration of multithreading and 
communication 
  Runtime support for hybrid 

programming 
  MPI + OpenMP + CUDA + TBB + … 

Overview of research activities 
Toward “portability of performance” 

GPU … 



  Multicore chips 
  Architects’ answer to the 

question: “What circuits 
should we add on a die?” 
  No point in adding new 

predicators or other 
intelligent units… 

  Back to complex memory 
hierarchies 
  Shared caches 
  NUMA factors 

  Clusters can no longer be 
considered as  
“flat sets of processors” 

Evolution of multiprocessor architecture 
Multicore is a solid trend 



  The Bubble Scheduling 
concept 
  Capturing application’s 

structure with nested 
bubbles 

  Scheduling = dynamic 
mapping trees of threads 
onto a tree of cores 

  Designing portable 
NUMA-aware scheduling 
policies 
  Focus on algorithmic 

issues 

Thread Scheduling over Multicore Machines 
Scheduling structured sets of threads 

BubbleSched 

Operating System 

CPU CPU CPU CPU 

Mem Mem 



  Extension to GNU 
OpenMP 
  Binary compliant with existing 

applications 

  Designing multicore-
friendly programs with 
OpenMP 
  Parallel sections generate 

bubbles 
  Nested parallelism is 

welcome! 

  Composability 
  Challenge = autotuning the 

number of threads per 
parallel region 

Thread Scheduling over Multicore Machines 
The ForestGOMP OpenMP environment 

void work() 
{ 
  ... 

#pragma omp parallel for   
  for (int i=0; i<MAX; i++) 

 {  
   ...  

#pragma omp parallel for 
num_threads (2) 
      for (int k=0; k<MAX; k++) 
        ... 
    } 
} 



  MPI should fit the 
underlying topology 
  HWLOC library [with OpenMPI 

group] 

  Experimental platform for 
hybrid applications 
  Topology-aware process 

allocation 

  Customizable core/process 
ratio 

  # of OpenMP tasks 
independent from # of cores 
  OMP_NUM_THREADS ignored 

Mixing OpenMP with MPI 
It makes sense even on shared-memory machines 
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  GPU are the new kids on the 
block 
  Very powerful data-parallel 

accelerators 
  Specific instruction set 
  No hardware memory 

consistency 

  Other chips already feature 
specialized harware 
  IBM Cell/BE 

  1 PPU + 8 SPUs 
  Intel Larrabee MIC 

  48-core with SIMD units 

  Are we happy with that? 
  No, but it’s probably 

unavoidable! 

Recent evolution of hardware 
Towards multi-GPU clusters 



  One interpretation of 
“Amdalh’s law” 
  We will always need 

powerful, general 
purpose cores to speed 
up sequential parts of 
our applications! 

  “Future processors will 
be a mix of general 
purpose and 
specialized cores” 
 [anonymous source] 

Future evolution of hardware 
Heterogeneity is a also solid trend 

Mixed Large 
and 

Small Core 



Programming environments 

  Software Development Kits and Hardware Specific 
Languages 
  “Stay close to the hardware and get good 

performance” 
  Low-level abstractions 

  Compilers generate code for accelerator device 

  Examples 
  Nvidia’s CUDA 

  Compute Unified Device Architecture) 
  ATI Stream 

  Previously Brook and Close-To-Metal 
  IBM Cell SDK 

  OpenCL 

Programming the hard way 



Programming environments 

  Higher-level libraries are available 
  Generic libraries 

  Intel CT 

  Well-known computation kernels 
  BLAS routines 

  e.g. CUBLAS 
  FFT kernels 

  Implementations are continuously enhanced 
  High Efficiency 

  Limitations 
  Data must usually fit accelerators memory 
  Multi-GPU configurations not yet supported 

Are we forced to use such low-level tools? 



Programming environments 

  Directive-based languages for offloading tasks 
to accelerators 
  Idea: use simpler directives… and better 

compilers! 
  HMPP (Caps Enterprise) 
  GPU SuperScalar (Barcelona Supercomputing Center) 

High-Level Languages and Tools 

#pragma omp task inout(C[BS][BS])!

void matmul( float ∗A, float ∗B, float ∗C) {!

// regular implementation!

}!

#pragma omp target device(cuda) implements(matmul)!

copy_in(A[BS][BS] , B[BS][BS] , C[BS][BS])!

copy_out(C[BS][BS])!

void matmul cuda ( float ∗A, float ∗B, float ∗C) {!

// optimized kernel for cuda!

}  !



  Rational 
  Dynamically schedule 

tasks on all 
processing units 
  See a pool of 

heterogeneous cores 

  Avoid unnecessary 
data transfers 
between accelerators 
  Software VSM for 

heterogeneous 
machines 

Overview of StarPU 
A runtime system for heterogeneous architectures 
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  Ideas 
  Accept tasks that may 

have multiple 
implementations 
  Together with potential 

inter-dependencies 
  Leads to a dynamic 

acyclic graph of tasks 

  Provide a high-level 
data management layer  
  Application should only 

describe 
  which data may be 

accessed by tasks 
  How data may be divided 

Overview of StarPU 
Maximizing PU occupancy, minimizing data transfers 
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  StarPU provides a Virtual 
Shared Memory 
subsystem 
  Weak consistency 

  Explicit data fetch 
  Replication 

  MSI protocol 
  Single writer 

  Except for specific, 
“accumulation data”  

  High-level API 
  Partitioning filters 

  Input & output of tasks 
= reference to VSM data 

Memory Management 
Automating data transfers 

GPU … 
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  Tasks = 
  Data input & output 
  Dependencies with 

other tasks 
  Multiple 

implementations 
  E.g. CUDA + CPU 

implementation 
  Scheduling hints 

  StarPU provides an 
Open Scheduling 
platform 
  Scheduling algorithm = 

plug-ins 

Tasks scheduling 
Dealing with heterogeneous hardware accelerators 

GPU … (ARW, BR, CR) f 
cpu 
gpu 
spu 



  When a task is submitted, 
it first goes into a pool of 
“frozen tasks” until all 
dependencies are met 

  Then, the task is “pushed” 
to the scheduler 

  Idle processing units 
actively poll for work 
(“pop”) 

  What happens inside the 
scheduler is… up to you! 

Tasks scheduling 
How does it work? 

Scheduler 

CPU 
workers 

GPU 
workers 

Push 

Pop Pop 



   Queue based scheduler 
  Each worker « pops » 

task in a specific queue 

   Implementing a strategy 
  Easy! 
  Select queue topology 
  Implement « pop » and 

« push » 
  Priority tasks 
  Work stealing 
  Performance models, … 

   Scheduling algorithms 
testbed 

Tasks scheduling 
Developing your own scheduler 

CPU 
workers 

GPU 
workers 

Push 

Pop 



   Queue based scheduler 
  Each worker « pops » 

task in a specific queue 

   Implementing a strategy 
  Easy! 
  Select queue topology 
  Implement « pop » and 

« push » 
  Priority tasks 
  Work stealing 
  Performance models, … 

   Scheduling algorithms 
testbed 

Tasks scheduling 
Developing your own scheduler 
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GPU 
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  Task completion time 
estimation 
  History-based 
  User-defined cost 

function 
  Parametric cost model 

  Can be used to 
improve scheduling 
  E.g. Heterogeneous 

Earliest Finish Time 

Dealing with heterogeneous architectures 
Performance prediction 

time 

cpu #3 

gpu #1 

cpu #2 

cpu #1 

gpu #2 



  Data transfer time 
estimation 
  Sampling based on 

off-line calibration  

  Can be used to 
  Better estimate 

overall exec time 
  Minimize data 

movements 

Dealing with heterogeneous architectures 
Performance prediction 

time 

cpu #3 

gpu #1 

cpu #2 

cpu #1 

gpu #2 



  On the influence of 
the scheduling policy 
  LU decomposition  

  8 CPUs (Nehalem) + 3 
GPUs (FX5800) 

  80% of work goes on 
GPUs, 20% on CPUs 

  StarPU exhibits good 
scalability wrt: 
  Problem size 
  Number of GPUs 

Dealing with heterogeneous architectures 
Performance 



  With University of 
Tennessee & INRIA 
HiePACS 
  Cholesky decomposition  

  5 CPUs (Nehalem) + 3 GPUs 
(FX5800) 

  Efficiency > 100% 

Dealing with heterogeneous architectures 
Implementing PLASMA on top of StarPU 
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Performance feedback API 

  “starpu_top” 

Online/offline performance analysis 
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  Run legacy OpenCL 
codes on top of 
StarPU 
  OpenCL sees a 

number of starPU  
devices 

  Performance issues 
  OpenCL kernels are 

“generic” 
  So they are likely to 

behave well only on a 
particular type of 
architecture 

Using StarPU through a standard API 
A StarPU driver for OpenCL (Sylvain Henry) 

OpenCL 

StarPU 

CPU GPU … 

Legacy OpenCL Application 



Moving to multi-GPU clusters 

  MPI + StarPU 
  StarPU is able to use GPUs and CPUs 

simultaneously 

  We just need to mix StarPU and MPI 

  Several applications 
  TPACF 
  LU decomposition 
  Stencil computation (e.g. Wave Propagation) 

  Experiments on the AC Cluster from NCSA 
  4 GPU quad-core nodes 

Putting it all together 



Using raw MPI+StarPU integration 

  Keep MPI SPMD style 
  Static distribution of data (at the moment) 

  No load balancing between MPI processes 

  StarPU scope limited to shared-memory nodes 

  Inter-process data dependencies 
  MPI communications triggered by StarPU data 

availability 
  StarPU memory management system provides support 

  MPI datatypes 

Without going to a full DSM system 



  LU decomposition 
  MPI + multi-GPU 

   MPI Cyclic-distribution 
  ~ SCALAPACK 
  No pivoting ! 

  Future work 
  Integrate into 

D-PLASMA 

LU with MPI+StarPU 
Performance 
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  It’s all about data 
movements 
  Prefetching 
  Asynchronism 

Wave propagation 
Stencil computation 



Wave propagation 

  Load balancing vs data stability 
  We estimate the task cost as 
   α compute + β transfer 
  Problem size: 256 x 4096 x 4096, divided into 64 

blocks 
  Task distribution (1 color per GPU) 
  Dynamic scheduling can lead to stable configurations 

Can a dynamic scheduler compete with a static approach? 

Tim
e  

β = 0	

 β = 6	

β = 0.5	

 β = 3	





Wave propagation 

   Impact of scheduling policy 
  3 GPUs (FX5800) – no CPU used 
  256 x 4096 x 4096 : 64 blocks 
  Speed up = 2.7 (2 PCI 16x + 1 PCI 8x config) 

Performance 



Wave propagation 
Behavior on several cluster nodes 
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  MPI + StarPU + OpenMP 
  Many algorithms can take 

advantage of shared 
memory 

  We can’t seriously 
“taskify” the world! 

  The Stencil case 
  When neighbor tasks can 

be scheduled on a single 
node 
  Just use shared memory! 
  Hence an OpenMP stencil 

kernel 

Towards parallel tasks on CPUs 
Going further 



  Mixing StarPU with 
  OpenMP 
  Intel TBB 
  Pthreads 
  Etc. 

  Raises the 
Composability issue 
  Challenge = 

autotuning the 
number of threads per 
parallel region 

Integrating StarPU and Multithreading 
How to deal with parallel tasks on multicore? 

void work() 
{ 
  ... 

#pragma omp parallel for   
  for (int i=0; i<MAX; i++) 

 {  
   ...  

#pragma omp parallel for 
num_threads (2) 
      for (int k=0; k<MAX; k++) 
        ... 
    } 
} 



Main plot 

  Whatever your programming model, you need a 
runtime system able to handle communication, 
multitasking, I/O, etc. 
  It should also make it possible to mix different execution 

models 
  In Indirect Hybridization I trust! 

  Up to now, we have designed separate multithreaded 
runtime systems for 
  Multicore machines 
  Accelerator 
  Clusters 

  Can we easily put it all together? 
  Only a matter of using a common threads library? 
  Early experiments on multi-GPU clusters  

Composability is actually the biggest challenge 



  First approach 
  Use an OpenMP main 

stream 
  Suggested (?) by 

recent parallel 
language extension 
proposals 
  E.g. Star SuperScalar 

(UPC Barcelona) 
  HMPP (CAPS 

Enterprise) 

  Implementing 
scheduling is difficult 
  Much more than a 

simple offloading 
approach… 

Integrating StarPU and Multithreading 
Integrating tasks and threads 

CPU CPU CPU CPU 

Mem Mem 

GPU GPU 



  Alternate approach 
  Let StarPU spawn 

OpenMP tasks 
  Performance modeling 

would still be valid 

  Would also work with other 
tools 
  E.g. Intel TBB 

  How to find the appropriate 
granularity? 
  May depend on the 

concurrent tasks! 

  StarPU tasks = first class 
citizen 
  Need to bridge the gap with 

existing parallel languages 

Integrating StarPU and Multithreading 
Integrating tasks and threads 

CPU 
workers 

GPU 
workers 



  Experiments with 
  StarSs [UPC 

Barcelona] 

  Writing StarSs
+OpenMP code is 
easy 
  Platform for 

experimenting hybrid 
scheduling 
  OpenMP + StarPU 

High-level integration 
Generating StarPU code out of StarSs (Sylvain Gault) 

#pragma css task inout(v) 
void scale_vector(float *v, float a, size_t n); 

#pragma css target device(smp) implements
(scale_vector) 
void scale_vector_cpu(float *v, float a, size_t n) { 

 int i; 
 for (i = 0; i < n; i++) 
  v[i] *= a; 

} 

int main(void)  
{ 

 float v[] = {1, 2, 3, 4, 5, 6, 7, 8, 9}; 
 size_t vs = sizeof(v)/sizeof(*v); 

#pragma css start 

scale_vector(v, 4, vs); 
… 



Future work 

  Bridge the gap with parallel languages 
  StarPU+OpenMP as a target for the StarSs 

language 
  Kernel generation 
  Data representation 

  StarPU+OpenMP+MPI as a target for XcalableMP? 

  Enhance cooperation between runtime 
systems and compilers 
  Granularity, runtime support for “divisible tasks” 
  Feedback for autotuning software 
  [PEPPHER European project] 



Thank you! 

  More information about StarPU 
http://runtime.bordeaux.inria.fr 


