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Introduction

Notations

Notations

Images

An N-D image is defined by a pair (P, I) consisting of a finite discrete set P ⊂ Zd

(d > 0) of N-D points (pixels in Z2, voxels in Z3, etc.) and a function I:

I : P −→ L
p 7−→ up,

where L = {l1, . . . , lk} is a finite and ordered set of labels.

Neighborhoods

N (p) will denote the neighborhood of any point p ∈ P.

N0(p) = {q :
Pd

i=1 |qi − pi | = 1} ∀p ∈ P,
N1(p) = {q : |qi − pi | ≤ 1 ∀1 ≤ i ≤ d} ∀p ∈ P,

where pi denote the i th coordinate of the point p.

Level sets

uµ = {uµp | p ∈ P, uµp = 1}, uµp = 1{up≥µ}.
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Introduction

General problem

General problem I

Objective

Partition an image in disjoints homogeneous regions according to some criteria.

Applications

Medical diagnosis

Photo edition
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Introduction

General problem

General problem II

Approach by energy minimization

A segmentation is represented by a binary image u ∈ {0, 1}P . Then, we select
u∗ ∈ argminu E(u), for

E(u) = β
X
p∈P

Ep(up) +
X

p,q∈P2
q∈N (p)

Ep,q(up, uq), (1)

where

Ep and Ep,q depend on inputs (image and user interaction),

β ∈ R+ is a parameter.

Remarks

Minimizing (1) is NP-hard.

Resolution by max-flow/min-cut in polynomial time, for some energy classes.
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Background

Graph cuts framework

Graph cuts framework I

Description and history

Global optimization method based on max-flow/min-cut computations in graphs.

Initially introduced by Greig et al. for binary image restoration [GPS89].

Recently rediscovered with the arrival of a new max-flow algorithm [BK04].

Good heuristics for solving multi-labels problems.
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Background

Graph cuts framework

Graph cuts framework II

Image graphs

Given an image, we build a directed weighted graph G = (V, E, c) :

Nodes : V = P ∪ {s, t} (s=source, t=sink),

Edges : E = En ∪ Et ⊂ V2 (n-links and t-links),

Edge capacities : c : E → R+,

Flow : f : V2 → R+.

Figure 1: A simple 3×3 grid graph.
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Background

Graph cuts framework

Graph cuts framework III

Remark 2.1 (s-t cut = segmentation)

A cut C = (S, T ) is a partition of V (i.e. S ∪ T = V and S ∩ T = ∅) such that:

s ∈ S, t ∈ T

The mapping C 7→ uC ∈ {0, 1}P , such that uCp =


1 if p ∈ S
0 if p ∈ T makes a

one to one correspondance between cuts and segmentations.

Definition 2.2 (capacity of a cut)

The capacity of a cut C is defined by v(C) =
P

i∈S,j∈T
(i,j)∈E

c(i, j).

Idea

Build capacities c(.) such that v(C) = E(uC).
Hence, the minimum cut in G is a minimizer of E (see [KZ04]).
Use a max-flow algorithm to compute a minimizer of E .
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Background

Graph cuts framework

Graph cuts framework IV

Definition 2.3 (Maximum-flow problem)

A flow f in G = (V, E, c) is valid iff:

Flow bounds : 0 ≤ f (i, j) ≤ c(i, j) ∀(i, j) ∈ E (2)

Flow conservation :
X

(j,i)∈E
f (j, i)

| {z }
fin(i)

=
X

(i,j)∈E
f (i, j)

| {z }
fout (i)

∀i ∈ P \ {s, t} (3)

Then, the maximum-flow problem can be formulated as:

max
f

X
(s,i)∈E

f (s, i), subject to (2) and (3).

Theorem 2.4 (Ford-Fulkerson [FF62])

Let G be a weighted directed graph. The max-flow in G is the smallest capacity of any
cuts dividing V into disjoint sets S and T . Then f∗ = v(C∗) and C∗ is deduced from f∗.
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Background

Graph cuts framework

Graph cuts framework V

Theorem 2.5

The maximum-flow (i.e. minimum-cut) problem is in P.

Max-flow/min-cut algorithms

Augmenting paths
Ford-Fulkerson → O(mf∗)
Edmons-Karp → O(nm2)
Dinic → O(n2m)
Boykov-Kolmogorov → O(n2mf∗) [BK04]

Push-relabel algorithms
Generic push-relabel algorithm → O(n2m)
Push-relabel with dynamic trees → O(nm log(n))

For grid graphs

Experimental results show a complexity of O(n) (see [BK04]).
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Background

Energy models for segmentation

Boykov/Jolly’s energy model [BJ01] I

Semi-automatic

Two kinds of seeds :
Object seeds (O ⊂ P)
Background seeds (B ⊂ P)

Double role :
Reduction of the feasible cuts space.
Computation of a fixed color model with normalized histograms.
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Background

Energy models for segmentation

Boykov/Jolly’s energy model [BJ01] II

Definition

Let v be an image. The segmentation of v can be obtained by minimizing the following
energy ([BJ01])

E(u) = β ·
X
p∈P

Ep(up)

| {z }
Region term

+
X

p,q∈P
q∈N (p)

Ep,q(up, uq)

| {z }
Boundary term

, β ∈ R+.


Ep(1) = −log Pr(vp|p ∈ O)
Ep(0) = −log Pr(vp|p ∈ B)

and Ep,q(up, uq) = Bp,q · |up − uq |

where : Bp,q = exp
“
− (vp−vq)2

2σ2

”
· 1

dist(p,q)
where dist(.) is the euclidian distance.
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Background

Energy models for segmentation

Total Variation based energy models I

Definition of TV + Lα models

Let v be an image. We take a level-set of a minimizer of:

Eα(u, v) =
X

p,q∈P2
q∈N (p)

wpq |up − uq |

| {z }
∼TV (u)

+β · ‖u − v‖αLα , α ∈ {1, 2}.

→ Such models were successfully used in image restoration [ROF92] and video
segmentation [RCD07].

13/42 Nicolas Lermé, François Malgouyres, Lucas Létocart Reducing graphs for graph cut segmentation



Reducing graphs for graph cut segmentation

Background

Conclusion on graph cuts

Conclusion on graph cuts I

Conclusion on graph cuts

(+) Low running times.

(+) Flexible and interactive models.

(+) Easily extensible to higher dimensions.

(+) Yield optimal solutions for a wide range of problems.

(-) Still too slow for very large data (3D, 4D, etc.)

(-) Prohibitive memory usage: algorithm [BK04] allocates 24|P|+ 14|En| bytes.

HHHH
Connectivity 0 Connectivity 1

2D 6426 4459
3D 319 219
4D 68 45

Table 1: Maximum size of an image for which the graph fits in 2GB of RAM.
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Reducing graphs

State of the art

State of the art I

Banded graph cuts [LSGX05, SG06]

Kind of method : heuristic, multi-resolution scheme.

Benefit : ' 8x faster, ' 4x less memory usage (2D).

Drawback : fail to recover thin structures and details.

Figure 2: General working of the algorithm described in [LSGX05].
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Reducing graphs

State of the art

State of the art II

Region adjacency graphs [LSTS04, CA08]

Kind of method : heuristic, coarse graphs.
Principle :

1 Computes a pre-segmentation S0(v) with a low-level segmentation algorithm.
2 Builds a region adjacency graph G from S0(v).
3 Computes the minimum-cut on G an get the final solution Sfinal (v).

Benefit : ' 6x faster.

Drawbacks : performances are better when over-segmentation occurs, not robust
to noise.

Figure 3: Region adjacency graph (left) and corresponding s − t graph (right).
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Reducing graphs

State of the art

Experiment I

Figure 4: Left: Image of cells. Right: Flow passing through t-links (gray :f = 0; white : f > 0; black :
f < 0).

Remarks

Only few nodes are used during the max-flow computation.

Goal : one would like to extract the smallest graph G′ from G while keeping a
solution u′ identical (or very close) to u. Ideally, we want to maximize the
reduction rate ρ = 1− |V

′|
|V| such that u′ ' u.
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Reducing graphs

Proposed method

Preliminaries I

Definitions

The graph is such that (see [KZ04]):

(s, p) ∈ Et ⇒ (p, t) 6∈ Et ∀p ∈ P.

For any p ∈ P we denote:
c(p) = c(s, p)− c(p, t).

→ A node p is linked to s if c(p) > 0 else p is linked to t .

Next, for any B ⊂ Zd and p ∈ P, we define:

eBp = {p + b | b ∈ B}

For Z ⊂ P, and B ⊂ Zd , we define the dilation of Z by B as:

eZB = {p + b | b ∈ B, p ∈ Z} =
[

p∈Z

eBp.
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Reducing graphs

Proposed method

Preliminaries II

Definitions

For any Z ⊂ P, we define the maximum amount of flow coming in and out through the
n-links by:

Pin(Z ) =
X

p 6∈Z,q∈Z
q∈N (p)

c(p, q), Pout (Z ) =
X

p∈Z,q 6∈Z
q∈N (p)

c(p, q).

The maximum amount of flow passing through the t-links and the flow orientation is
defined by:

A(Z ) =
X
p∈Z

|c(p)|, O(Z ) =
X
p∈Z

sign(c(p)),

where the sign(.) function is defined as:

sign(t) =

8<: 1 if t > 0
−1 if t < 0
0 otherwise.
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Reducing graphs

Proposed method

Building G′ I

Intuitive idea [LML10a, LML10b]

Let B ⊂ Zd . We remove Z from the nodes of G under the condition :(
O(eZB) = +|eZB | and A(eZB \ Z ) ≥ Pout (eZB), or
O(eZB) = −|eZB | and A(eZB \ Z ) ≥ Pin(eZB).

(4)

Building such a set Z is done by testing each pixel z of Z .

The conjonction of (4) for any z ∈ Z implies (4) for Z .

Figure 5: Illustration of condition (4).
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Reducing graphs

Proposed method

Building G′ II

A more conservative test

Consider now a square window B of size (2r + 1) (r > 0) centered at the origin. Then,
we propose a more conservative test of (4) for any p ∈ Z :(

c(q) ≥ +δ · γ ∀q ∈ eBp or
c(q) ≤ −δ · γ ∀q ∈ eBp,

(5)

where γ ∈ [0, 1] is a parameter and δ = P(B)

(2r+1)2−1
, with:

P(B) = max(|{(p, q) | p ∈ Z , q 6∈ Z and p ∈ N (q)}|,
|{(p, q) | p ∈ Z , q 6∈ Z and q ∈ N (p)}|).

A(eBp \ {p}) =
P

q∈eBp\{p}
|c(p)|

≥ γ · [(2r + 1)2 − 1] · δ
≥ γ · P(B)

≥ γ · Pout (eBp) (since 1 ≥ cp,q)
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Reducing graphs

Proposed method

Building G′ III

Remind : δ = P(B)

(2r+1)2−1
and c(q) ≥ δ · γ ∀q ∈ eBp

Remarks

Window radius r small⇒ δ large and few tests required.

Window radius r large⇒ δ small and a lot of tests required.
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Reducing graphs

Proposed method

Condition applied to energy models

TV-based energy models

TV + L1 model : ∀p ∈ P, |c(p)| ≥ δ · γ ⇔ β ≥ δ · γ

TV + L2 model : ∀p ∈ P, |c(p)| ≥ δ · γ ⇔ β · |vp − µ+ 1
2 | ≥

δ·γ
2

Boykov/Jolly’s energy model [BK04]

∀p ∈ P, |c(p)| ≥ δ · γ ⇔ β ·
˛̨̨
log
“

Pr(vp|p∈O)

Pr(vp|p∈B)

”˛̨̨
≥ δ · γ

Remark

β small (strong regularization) ⇒ we need δ small⇒ we need r
large ⇒ we need wide bands

β large (small regularizarion) ⇒ we can afford δ large⇒ we can afford r
small ⇒ we can afford narrow bands
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Reducing graphs

Proposed method

Algorithmic considerations I

Algorithm 1 algorithm for computing G′

INPUTS: image v , square window B of size (2r + 1)
OUTPUTS: reduced graph G′.

1: G′ ← allocateGraph()
2: forall p ∈ P do
3: deltaTestsSum← 0
4: forall q ∈ B do
5: computeDelta()
6: if c(p) ≥ +δ · γ then
7: deltaTestsSum← deltaTestsSum + 1
8: end-if
9: if c(p) ≤ −δ · γ then

10: deltaTestsSum← deltaTestsSum − 1
11: end-if
12: end-for
13: if |deltaTestsSum| 6= card(B) then
14: % We add node p to G′ and link it with its neighbors
15: end-if
16: end-for
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Reducing graphs

Proposed method

Algorithmic considerations II

Worst-case complexity

Special case of convolution algorithm with a separable kernel⇒ O(|P| · |B|).
Decomposing the test along dimensions d yields an optimized algorithm in O(|P|)
independent of r , except for image borders.

Optimized algorithm (1)

Consider a square window B of size (2r + 1). For any point p ∈ P, we let:

gδ(p) =

8<: 1 if c(q) ≥ +δ · γ ∀q ∈ eBp,

−1 if c(q) ≤ −δ · γ ∀q ∈ eBp,
0 otherwise.

gδ(i, j) will denote the value of gδ(.) in 2D for a point (i, j).
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Reducing graphs

Proposed method

Algorithmic considerations III

Optimized algorithm (2)

The idea is to decompose condition (5) along dimensions d by introducing a list M
where each element M[i] is the sum of the tests along the lines of B:

M[i] =
+rX

l=−r

gδ(i, j + l) (i, j) ∈ P.

Moreover, we also maintain a variable s(i, j) which is the sum of all elements in M:

s(i, j) =
+rX

c=−r

M[i + c] (i, j) ∈ P.

Then, for any pixel (i, j) ∈ P of the image, we first update the list M then s(.):

M[i + r ] ← M[i + r ]− gδ(i + r , j − r − 1) + gδ(i + r , j + r)
s(i, j) ← s(i − 1, j)− M[i − r − 1] + M[i + r ]
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Reducing graphs

Proposed method

Algorithmic considerations IV

Figure 6: Illustration of the optimized algorithm on a 2D image with r = 1. Here, only the node
p = (13, 2) is added to G′ since |s(13, 2)| = 32.
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Reducing graphs

Proposed method

Algorithmic considerations V

Connecting nodes in G′

For connecting nodes to their respective neighbors, we maintain a list L which store
nodes indexes belonging to G′ and a counter nodeId indicating the last node index
added. Extra memory storage is O(|L|(d−1)).

In 2D, we apply the procedure below:

1 We initialize all elements of L to -1.
2 nodeId ← 0.
3 For any point (i, j) ∈ P

If condition (5) is false for (i, j):
We add current node to G′.
If L[i] ≥ 0⇒ addEdge(nodeId, L[i]).
If L[i − 1] ≥ 0⇒ addEdge(nodeId, L[i − 1]).
L[i]← nodeId .
nodeId ← nodeId + 1.

If condition (5) is true for (i, j):
L[i]← −1.
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Reducing graphs

Proposed method

Algorithmic considerations VI

Figure 7: Illustration of building a graph G′ (right) from a 2D image (left). Blue squares correspond
to nodes to add.
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Reducing graphs

Numerical results

General information I

Information on tests

Experiments performed on an Athlon Dual Core 6000+ with 2GB RAM.

Times are averaged over 10 runs.

Max-flow algorithm of Boykov/Kolmogorov [BK04] in v3.0.

All tests are performed in connectivity 1.

Segmentations are stored using sparse domains.

Next sections

1 Study of the influence of the window radius r and γ with a TV + L2 model.
2 Reduction results using a TV + L2 model.
3 Reduction results using a Boykov/Jolly’s model.

30/42 Nicolas Lermé, François Malgouyres, Lucas Létocart Reducing graphs for graph cut segmentation



Reducing graphs for graph cut segmentation

Reducing graphs

Numerical results

Influence of r and γ parameters I

Images

Image "plane"
Image "cells" Image "lena" Volume "woman"

Image Size Memory Min Max Mean Sampling
"plane" 1443× 963 5.3 MB 0.0 179.0 117.71 3.0x
"cells" 1536× 1536 9.0 MB 0.0 60.0 8.11 3.0x
"lena" 2048× 2048 16.0 MB 14.0 255.0 116.77 4.0x

"woman" 211× 172× 92 12.7 MB 10.0 255.0 110.46 0.6x

Table 2: Table summarizing characteristics of images used for tests

31/42 Nicolas Lermé, François Malgouyres, Lucas Létocart Reducing graphs for graph cut segmentation



Reducing graphs for graph cut segmentation

Reducing graphs

Numerical results

Influence of r and γ parameters II

Image "plane" Image "cells"

Image "lena" Image "woman"

Figure 8: Influence of window radius r for segmenting images with a TV + L2 energy model.
Standard graph cuts correspond to r = 0.
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Reducing graphs

Numerical results

Influence of r and γ parameters III

Image "plane" Image "cells"

Image "lena" Image "woman"

Figure 9: Influence of γ parameter for segmenting images with a TV + L2 energy model. The
Window radius r is chosen to minimize both time and memory usage.
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Reducing graphs

Numerical results

Results with TV + L2 model I

Images

Image "book" Volume "brain" + noise 3% Volume "ct-thorax-0.8"

Image Size Memory Min Max Mean Sampling
"book" 3012 × 2048 25.53 MB 0.0 242.0 148.28 1.0x
"brain" 181 × 217 × 181 27.12 MB 0.0 173.0 26.06 1.0x

"ct-thorax-0.8" 409 × 409 × 252 160.81 MB 0.0 255.0 33.07 0.8x

Table 3: Table summarizing information on images used for tests.

Information on tests

Model’s parameters are optimized for better visualization.

Window radius is chosen such that memory usage is minimized while γ = 1.
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Reducing graphs

Numerical results

Results with TV + L2 model II

Original Our algorithm
Image Time Memory Time Memory (ρ)
"book" 5.05 1.07 GB 1.92 94.68 MB (91.36%)
"brain" / 3.59 GB 7.31 434.33 MB (86.80%)

"ct-thorax-0.8" / 21.38 GB 22.81 1.43 GB (91.85%)

Figure 10: Speed (secs) and memory usage compared to standard graph cuts for segmenting
2D/3D images with a TV + L2 energy model. Top row shows the segmentation results where object
part correspond to white area.
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Reducing graphs

Numerical results

Results with Boykov/Jolly’s model [BJ01] I

Images

Image Size Memory Min Max Mean Sampling
"book" 3012 × 2048 25.53 MB 0.0 242.0 148.28 1.0x
"brain" 181 × 217 × 181 27.12 MB 0.0 173.0 26.06 1.0x

"ct-thorax-0.48" 245 × 245 × 151 160.81 MB 0.0 255.0 33.07 0.8x

Table 4: Table summarizing information on images used for tests.

Information on tests

Model’s parameters are optimized for better visualization.

Window radius is chosen such that memory usage is minimized while γ = 1.

Object seeds and background seeds were placed by hand.
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Reducing graphs

Numerical results

Results with Boykov/Jolly’s model [BJ01] II

Original Our algorithm
Image Time Memory Time Memory (ρ)
"book" 5.58 1.08 GB 3.25 231.25 MB (78.5%)
"brain" / 3.59 GB 9.02 734.64 MB (78.9%)

"ct-thorax-0.48" / 4.58 GB 8.25 606.27 MB (83.6%)

Figure 11: Speed (secs) and memory usage compared to standard graph cuts for segmenting
2D/3D images with a Boykov/Jolly’s energy model [BJ01]. Top and middle rows show respectively
the seeds and the segmentation results where object part correspond to white area.
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Conclusion

Conclusion

(+) Experimental results show important reduction rates.

(+) Exact or approximate solutions can be obtained simply by tunning γ.

(+) Reduction principle is easily extensible to higher dimensions.

(-) Dependency between reductions rates and model’s parameters.

(-) Noise sensibility.

Future work

Evaluate results for segmenting lung tumors in TDM images.

Extend implementation to color images.

Application to the segmentation of lung tumors in TDM/PET images.

Prove theoretical exactness of the reduction when γ = 1.

Investigate other methods for solving the multi labels problem.
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Conclusion

Figure 12: An example of multiway cut on a 3×3 grid graph.
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