Nicolas Lermé^{1,2}, François Malgouyres¹, Lucas Létocart²

¹LAGA, ²LIPN – Université Paris 13

CANUM 2010, Carcans-Maubuisson, France

June 1, 2010

Summary

Introduction

- Notations
- General problem

Background

- Graph cuts framework
- Energy models for segmentation
- Conclusion on graph cuts

8 Reducing graphs

- State of the art
- Proposed method
- Numerical results

Conclusion

- Introduction

Notations

votations

Images

An N-D image is defined by a pair (\mathcal{P}, I) consisting of a finite discrete set $\mathcal{P} \subset \mathbb{Z}^d$ (d > 0) of N-D points (pixels in \mathbb{Z}^2 , voxels in \mathbb{Z}^3 , etc.) and a function *I*:

where $\mathcal{L} = \{l_1, \dots, l_k\}$ is a finite and ordered set of labels.

Neighborhoods

 $\mathcal{N}(p)$ will denote the neighborhood of any point $p \in \mathcal{P}$.

$$\begin{aligned} \mathcal{N}_0(p) &= \{ q : \sum_{i=1}^d |q_i - p_i| = 1 \} \\ \mathcal{N}_1(p) &= \{ q : |q_i - p_i| \leq 1 \forall 1 \leq i \leq d \} \\ \end{aligned} \quad \forall p \in \mathcal{P},$$

where p_i denote the *i*th coordinate of the point *p*.

Level sets

$$u^{\mu} = \{ u^{\mu}_{p} \mid p \in \mathcal{P}, \ u^{\mu}_{p} = 1 \}, \qquad u^{\mu}_{p} = \mathbf{1}_{\{ u_{p} \ge \mu \}}.$$

- Introduction

General problem

General problem I

Objective

Partition an image in disjoints homogeneous regions according to some criteria.

Applications

Medical diagnosis

Photo edition

Introduction

General problem

General problem II

Approach by energy minimization

A segmentation is represented by a binary image $u \in \{0, 1\}^{\mathcal{P}}$. Then, we select $u^* \in \operatorname{argmin}_{u} E(u)$, for

$$E(u) = \beta \sum_{p \in \mathcal{P}} E_p(u_p) + \sum_{\substack{p,q \in \mathcal{P}^2 \\ q \in \mathcal{N}(p)}} E_{p,q}(u_p, u_q),$$
(1)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

where

- *E_p* and *E_{p,q}* depend on inputs (image and user interaction),
- $\beta \in \mathbb{R}^+$ is a parameter.

Remarks

- Minimizing (1) is NP-hard.
- Resolution by max-flow/min-cut in polynomial time, for some energy classes.

Graph cuts framework

Description and history

- Global optimization method based on max-flow/min-cut computations in graphs.
- Initially introduced by Greig et al. for binary image restoration [GPS89].
- Recently rediscovered with the arrival of a new max-flow algorithm [BK04].
- Good heuristics for solving multi-labels problems.

Graph cuts framework

Graph cuts framework II

Image graphs

Given an image, we build a directed weighted graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, c)$:

- Nodes : $\mathcal{V} = \mathcal{P} \cup \{s, t\}$ (s=source, t=sink),
- Edges : $\mathcal{E} = \mathcal{E}_n \cup \mathcal{E}_t \subset \mathcal{V}^2$ (n-links and t-links),
- Edge capacities : $c : \mathcal{E} \to \mathbb{R}^+$,
- Flow : $f : \mathcal{V}^2 \to \mathbb{R}^+$.

Figure 1: A simple 3×3 grid graph.

< ロ > < 同 > < 三 > < 三 > -

Graph cuts framework

Remark 2.1 (s-t cut = segmentation)

A cut C = (S, T) is a partition of V (i.e. $S \cup T = V$ and $S \cap T = \emptyset$) such that:

$$s \in S, t \in T$$

The mapping $\mathcal{C} \mapsto u^{\mathcal{C}} \in \{0,1\}^{\mathcal{P}}$, such that $u_p^{\mathcal{C}} = \begin{cases} 1 & \text{if } p \in \mathcal{S} \\ 0 & \text{if } p \in \mathcal{T} \end{cases}$ makes a one to one correspondance between cuts and segmentations.

Definition 2.2 (capacity of a cut)

The capacity of a cut
$$C$$
 is defined by $v(C) = \sum_{\substack{i \in S, j \in T \\ (i,j) \in E}} c(i,j)$.

Idea

Build capacities c(.) such that $v(\mathcal{C}) = E(u^{\mathcal{C}})$. Hence, the minimum cut in \mathcal{G} is a minimizer of E (see [KZ04]). Use a max-flow algorithm to compute a minimizer of E.

< D > < P > < E > <</pre>

Background

Graph cuts framework

Graph cuts framework IV

Definition 2.3 (Maximum-flow problem)

A flow f in $\mathcal{G} = (\mathcal{V}, \mathcal{E}, c)$ is valid iff:

Flow bounds :
$$0 \le f(i,j) \le c(i,j)$$
 $\forall (i,j) \in \mathcal{E}$ (2)
Flow conservation : $\underbrace{\sum_{(j,i)\in\mathcal{E}} f(j,i)}_{f_{in}(i)} = \underbrace{\sum_{(i,j)\in\mathcal{E}} f(i,j)}_{f_{out}(i)}$ $\forall i \in \mathcal{P} \setminus \{s,t\}$ (3)

Then, the maximum-flow problem can be formulated as:

$$\max_{f} \sum_{(s,i) \in \mathcal{E}} f(s,i), \text{ subject to (2) and (3).}$$

Theorem 2.4 (Ford-Fulkerson [FF62])

Let \mathcal{G} be a weighted directed graph. The max-flow in \mathcal{G} is the smallest capacity of any cuts dividing \mathcal{V} into disjoint sets \mathcal{S} and \mathcal{T} . Then $f^* = v(\mathcal{C}^*)$ and \mathcal{C}^* is deduced from f^* .

- Background

Graph cuts framework Graph cuts framework V

Theorem 2.5

The maximum-flow (i.e. minimum-cut) problem is in P.

Max-flow/min-cut algorithms

Augmenting paths		$O(\pi f^*)$
Ford-Fulkerson	\rightarrow	$O(mr^*)$
Edmons-Karp	\rightarrow	<i>O</i> (<i>nm</i> ²)
Dinic	\rightarrow	$O(n^2m)$
Boykov-Kolmogorov	\rightarrow	<i>O</i> (<i>n</i> ² <i>mf</i> *) [BK04]
 Push-relabel algorithm Generic push-relabel a Push-relabel with dyna 	s Ilgorithn Imic tree	$egin{array}{rcl} { m n} & o & O(n^2m) \ { m es} & o & O(nm \ log(n)) \end{array}$

For grid graphs

Experimental results show a complexity of O(n) (see [BK04]).

Energy models for segmentation

Boykov/Jolly's energy model [BJ01] I

Semi-automatic

- Two kinds of seeds :
 - Object seeds ($\mathcal{O} \subset \mathcal{P}$)
 - Background seeds ($\mathcal{B} \subset \mathcal{P}$)
- Double role :
 - Reduction of the feasible cuts space.
 - Computation of a fixed color model with normalized histograms.

W

Energy models for segmentation

Boykov/Jolly's energy model [BJ01] II

Definition

Let v be an image. The segmentation of v can be obtained by minimizing the following energy ([BJ01])

$$E(u) = \beta \cdot \sum_{\substack{p \in \mathcal{P} \\ \text{Region term}}} E_{p,q}(u_p) + \sum_{\substack{p,q \in \mathcal{P} \\ q \in \mathcal{N}(p) \\ \text{Boundary term}}} E_{p,q}(u_p, u_q), \qquad \beta \in \mathbb{R}^+.$$

$$\begin{cases} E_p(1) = -\log \Pr(v_p | p \in \mathcal{O}) \\ E_p(0) = -\log \Pr(v_p | p \in \mathcal{B}) \\ \text{Pr}(v_p | p \in \mathcal{B}) \end{cases} \quad \text{and} \quad E_{p,q}(u_p, u_q) = B_{p,q} \cdot |u_p - u_q|$$
where : $B_{p,q} = \exp\left(-\frac{(v_p - v_q)^2}{2\sigma^2}\right) \cdot \frac{1}{dist(p,q)} \qquad \text{where } dist(.) \text{ is the euclidian distance.}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Energy models for segmentation

Total Variation based energy models I

Definition of $TV + L^{\alpha}$ models

Let v be an image. We take a level-set of a minimizer of:

$$E_{\alpha}(u, v) = \sum_{\substack{p, q \in \mathcal{P}^{2} \\ q \in \mathcal{N}(p)}} w_{pq} |u_{p} - u_{q}| + \beta \cdot ||u - v||_{L^{\alpha}}^{\alpha}, \qquad \alpha \in \{1, 2\}$$

 \rightarrow Such models were successfully used in image restoration [ROF92] and video segmentation [RCD07].

A (10) A (10) A (10)

Conclusion on graph cuts

Conclusion on graph cuts I

Conclusion on graph cuts

- (+) Low running times.
- (+) Flexible and interactive models.
- (+) Easily extensible to higher dimensions.
- (+) Yield optimal solutions for a wide range of problems.
- (-) Still too slow for very large data (3D, 4D, etc.)
- (-) Prohibitive memory usage: algorithm [BK04] allocates $24|\mathcal{P}| + 14|\mathcal{E}_n|$ bytes.

\searrow	Connectivity 0	Connectivity 1
2D	6426	4459
3D	319	219
4D	68	45

Table 1: Maximum size of an image for which the graph fits in 2GB of RAM.

State of the art I

Banded graph cuts [LSGX05, SG06]

- Kind of method : heuristic, multi-resolution scheme.
- Benefit : ~ 8x faster, ~ 4x less memory usage (2D).
- Drawback : fail to recover thin structures and details.

Figure 2: General working of the algorithm described in [LSGX05].

State of the art

State of the art II

Region adjacency graphs [LSTS04, CA08]

- Kind of method : heuristic, coarse graphs.
- Principle :
 - Ocomputes a pre-segmentation $S_0(v)$ with a low-level segmentation algorithm.
 - 2 Builds a region adjacency graph G from $S_0(v)$.
 - Occupies the minimum-cut on \mathcal{G} anget the final solution $S_{final}(v)$.
- Benefit : \simeq 6x faster.
- **Drawbacks** : performances are better when over-segmentation occurs, not robust to noise.

Figure 3: Region adjacency graph (left) and corresponding s - t graph (right).

Experiment I

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Figure 4: Left: Image of cells. Right: Flow passing through t-links (gray :f = 0; white : f > 0; black : f < 0).

Remarks

• Only few nodes are used during the max-flow computation.

• **Goal** : one would like to extract the smallest graph \mathcal{G}' from \mathcal{G} while keeping a solution u' identical (or very close) to u. Ideally, we want to maximize the reduction rate $\rho = 1 - \frac{|\mathcal{V}'|}{|\mathcal{V}|}$ such that $u' \simeq u$.

Proposed method Preliminaries I

Definitions

The graph is such that (see [KZ04]):

$$(s,p) \in \mathcal{E}_t \Rightarrow (p,t) \notin \mathcal{E}_t \quad \forall p \in \mathcal{P}.$$

For any $p \in \mathcal{P}$ we denote:

$$c(p) = c(s, p) - c(p, t).$$

 \rightarrow A node *p* is linked to *s* if c(p) > 0 else *p* is linked to *t*.

Next, for any $B \subset \mathbb{Z}^d$ and $p \in \mathcal{P}$, we define:

$$\widetilde{B}_p = \{p + b \mid b \in B\}$$

For $Z \subset \mathcal{P}$, and $B \subset \mathbb{Z}^d$, we define the dilation of Z by B as:

$$\widetilde{Z}_B = \{ p + b \mid b \in B, \ p \in Z \} = \bigcup_{p \in Z} \widetilde{B}_p.$$

Proposed method Preliminaries II

Definitions

For any $Z \subset \mathcal{P}$, we define the maximum amount of flow coming in and out through the n-links by:

$$P_{in}(Z) = \sum_{\substack{p \notin Z, q \in Z \\ q \in \mathcal{N}(p)}} c(p,q), \qquad P_{out}(Z) = \sum_{\substack{p \in Z, q \notin Z \\ q \in \mathcal{N}(p)}} c(p,q)$$

The maximum amount of flow passing through the t-links and the flow orientation is defined by:

$$A(Z) = \sum_{p \in Z} |c(p)|, \qquad O(Z) = \sum_{p \in Z} sign(c(p)),$$

where the sign(.) function is defined as:

$$sign(t) = \begin{cases} 1 & \text{if } t > 0\\ -1 & \text{if } t < 0\\ 0 & otherwise. \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$\overset{{}_{\mathsf{Proposed method}}}{\mathsf{Building}} \, \mathcal{G}' \, \mathsf{I}$

Intuitive idea [LML10a, LML10b]

Let $B \subset \mathbb{Z}^d$. We remove Z from the nodes of \mathcal{G} under the condition :

$$\begin{cases} O(\widetilde{Z}_B) = +|\widetilde{Z}_B| & \text{and} \quad A(\widetilde{Z}_B \setminus Z) \ge P_{out}(\widetilde{Z}_B), \text{ or} \\ O(\widetilde{Z}_B) = -|\widetilde{Z}_B| & \text{and} \quad A(\widetilde{Z}_B \setminus Z) \ge P_{in}(\widetilde{Z}_B). \end{cases}$$
(4)

- Building such a set Z is done by testing each pixel z of Z.
- The conjonction of (4) for any $z \in Z$ implies (4) for Z.

Figure 5: Illustration of condition (4).

• • = • •

$\begin{array}{c} {}^{\scriptstyle {\rm Proposed method}}\\ {\rm Building}\; {\cal G}'\; {\rm II} \end{array}$

A more conservative test

Consider now a square window *B* of size (2r + 1) (r > 0) centered at the origin. Then, we propose a more conservative test of (4) for any $p \in Z$:

$$\begin{cases} c(q) \ge +\delta \cdot \gamma & \forall q \in \widetilde{B}_p \quad \text{or} \\ c(q) \le -\delta \cdot \gamma & \forall q \in \widetilde{B}_p, \end{cases}$$
(5)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

where $\gamma \in [0, 1]$ is a parameter and $\delta = \frac{P(B)}{(2r+1)^2-1}$, with:

 $P(B) = \max(|\{(p,q) \mid p \in Z, q \notin Z \text{ and } p \in \mathcal{N}(q)\}|, \\ |\{(p,q) \mid p \in Z, q \notin Z \text{ and } q \in \mathcal{N}(p)\}|).$

$$\begin{array}{lll} \mathcal{A}(\widetilde{B}_{p} \setminus \{p\}) & = & \sum_{q \in \widetilde{B}_{p} \setminus \{p\}} |c(p)| \\ & \geq & \gamma \cdot [(2r+1)^{2}-1] \cdot \delta \\ & \geq & \gamma \cdot P(B) \\ & \geq & \gamma \cdot P_{out}(\widetilde{B}_{p}) & (\text{since } 1 \geq c_{p,q}) \end{array}$$

 $\begin{array}{c} {}^{\scriptstyle {}_{\scriptstyle {\text{Proposed method}}}}\\ \textbf{Building } \mathcal{G}' \ \textbf{III} \end{array}$

Remind :
$$\delta = rac{P(B)}{(2r+1)^2-1}$$
 and $c(q) \geq \delta \cdot \gamma \qquad orall q \in \widetilde{B}_{
ho}$

Remarks

- Window radius *r* small $\Rightarrow \delta$ large and few tests required.
- Window radius *r* large $\Rightarrow \delta$ small and a lot of tests required.

< □ > < 同 > < 回 > < 回 > .

Proposed method

Condition applied to energy models

TV-based energy models

- $TV + L^1 \text{ model} : \forall p \in \mathcal{P}, |c(p)| \ge \delta \cdot \gamma \Leftrightarrow \beta \ge \delta \cdot \gamma$
- $TV + L^2 \text{ model} : \forall p \in \mathcal{P}, |c(p)| \ge \delta \cdot \gamma \Leftrightarrow \beta \cdot |v_p \mu + \frac{1}{2}| \ge \frac{\delta \cdot \gamma}{2}$

Boykov/Jolly's energy model [BK04]

$$\forall \boldsymbol{p} \in \mathcal{P}, \left| \boldsymbol{c}(\boldsymbol{p}) \right| \geq \delta \cdot \gamma \Leftrightarrow \beta \cdot \left| \log \left(\frac{\Pr(v_{\boldsymbol{p}} | \boldsymbol{p} \in \mathcal{O})}{\Pr(v_{\boldsymbol{p}} | \boldsymbol{p} \in \mathcal{B})} \right) \right| \geq \delta \cdot \gamma$$

Remark

- β small (strong regularization) \Rightarrow we need δ small \Rightarrow we need r large \Rightarrow we need wide bands
- β large (small regularization) \Rightarrow we can afford δ large \Rightarrow we can afford r small \Rightarrow we can afford narrow bands

Proposed method

Algorithmic considerations I

Algorithm 1 algorithm for computing \mathcal{G}'
INPUTS: image v, square window B of size $(2r + 1)$
OUTPUTS: reduced graph \mathcal{G}' .
1: $\mathcal{G}' \leftarrow \text{allocateGraph}()$
2: forall $p \in \mathcal{P}$ do
3: $deltaTestsSum \leftarrow 0$
4: forall $q \in B$ do
5: computeDelta()
6: if $c(p) \ge +\delta \cdot \gamma$ then
7: $deltaTestsSum \leftarrow deltaTestsSum + 1$
8: end-if
9: if $c(p) \leq -\delta \cdot \gamma$ then
10: $deltaTestsSum \leftarrow deltaTestsSum - 1$
11: end-if
12: end-for
13: if $ deltaTestsSum \neq card(B)$ then
14: % We add node p to \mathcal{G}' and link it with its neighbors
15: end-if
16: end-for

A (10) A (10) A (10)

æ

Algorithmic considerations II

Worst-case complexity

- Special case of convolution algorithm with a separable kernel $\Rightarrow O(|\mathcal{P}| \cdot |B|)$.
- Decomposing the test along dimensions *d* yields an optimized algorithm in $O(|\mathcal{P}|)$ independent of *r*, except for image borders.

Optimized algorithm (1)

Consider a square window *B* of size (2r + 1). For any point $p \in \mathcal{P}$, we let:

$$g_{\delta}(\rho) = \begin{cases} 1 & \text{if } c(q) \geq +\delta \cdot \gamma \quad \forall q \in \widetilde{B}_{\rho}, \\ -1 & \text{if } c(q) \leq -\delta \cdot \gamma \quad \forall q \in \widetilde{B}_{\rho}, \\ 0 & \text{otherwise.} \end{cases}$$

 $g_{\delta}(i,j)$ will denote the value of $g_{\delta}(.)$ in 2D for a point (i,j).

Proposed method

Algorithmic considerations III

Optimized algorithm (2)

The idea is to decompose condition (5) along dimensions d by introducing a list M where each element M[i] is the sum of the tests along the lines of B:

$$M[i] = \sum_{l=-r}^{+r} g_{\delta}(i,j+l) \qquad (i,j) \in \mathcal{P}.$$

Moreover, we also maintain a variable s(i, j) which is the sum of all elements in M:

$$\boldsymbol{s}(i,j) = \sum_{\boldsymbol{c}=-r}^{+r} \boldsymbol{M}[i+\boldsymbol{c}] \qquad (i,j) \in \mathcal{P}.$$

Then, for any pixel $(i, j) \in \mathcal{P}$ of the image, we first update the list *M* then s(.):

$$\begin{array}{rcl} \mathcal{M}[i+r] & \leftarrow & \mathcal{M}[i+r] - g_{\delta}(i+r,j-r-1) + g_{\delta}(i+r,j+r) \\ \mathbf{s}(i,j) & \leftarrow & \mathbf{s}(i-1,j) - \mathcal{M}[i-r-1] + \mathcal{M}[i+r] \end{array}$$

Proposed method

Algorithmic considerations IV

Figure 6: Illustration of the optimized algorithm on a 2D image with r = 1. Here, only the node p = (13, 2) is added to \mathcal{G}' since $|s(13, 2)| = 3^2$.

Proposed method

Algorithmic considerations V

Connecting nodes in \mathcal{G}'

For connecting nodes to their respective neighbors, we maintain a list *L* which store nodes indexes belonging to \mathcal{G}' and a counter *nodeld* indicating the last node index added. Extra memory storage is $O(|L|^{(d-1)})$.

In 2D, we apply the procedure below:

- We initialize all elements of L to -1.
- 2 nodeld \leftarrow 0.
- Solution For any point $(i, j) \in \mathcal{P}$
 - If condition (5) is false for (*i*, *j*):
 - We add current node to \mathcal{G}' .
 - If *L*[*i*] ≥ 0 ⇒ addEdge(nodeld, *L*[*i*]).
 - If $L[i-1] \ge 0 \Rightarrow addEdge(nodeld, L[i-1])$.
 - $L[i] \leftarrow nodeld.$
 - nodeld \leftarrow nodeld + 1.
 - If condition (5) is true for (*i*, *j*):
 - $L[i] \leftarrow -1$.

< ロ > < 同 > < 三 > < 三 > -

Proposed method

Algorithmic considerations VI

Figure 7: Illustration of building a graph \mathcal{G}' (right) from a 2D image (left). Blue squares correspond to nodes to add.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General information I

Information on tests

- Experiments performed on an Athlon Dual Core 6000+ with 2GB RAM.
- Times are averaged over 10 runs.
- Max-flow algorithm of Boykov/Kolmogorov [BK04] in v3.0.
- All tests are performed in connectivity 1.
- Segmentations are stored using sparse domains.

Next sections

- **(**) Study of the influence of the window radius *r* and γ with a $TV + L^2$ model.
- **2** Reduction results using a $TV + L^2$ model.
- 8 Reduction results using a Boykov/Jolly's model.

A (1) > A (1) > A

Numerical results

Influence of *r* and γ parameters I

Images

Image "plane"

Image "cells"

Image "lena"

Volume "woman"

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Image	Size	Memory	Min	Max	Mean	Sampling
"plane"	1443 × 963	5.3 MB	0.0	179.0	117.71	3.0x
"cells"	1536×1536	9.0 MB	0.0	60.0	8.11	3.0x
"lena"	2048×2048	16.0 MB	14.0	255.0	116.77	4.0x
"woman"	211 × 172 × 92	12.7 MB	10.0	255.0	110.46	0.6x

Table 2: Table summarizing characteristics of images used for tests

- Numerical results

Influence of r and γ parameters II

Figure 8: Influence of window radius *r* for segmenting images with a $TV + L^2$ energy model. Standard graph cuts correspond to r = 0.

∃ → < ∃</p>

Numerical results

Influence of r and γ parameters III

Figure 9: Influence of γ parameter for segmenting images with a $TV + L^2$ energy model. The Window radius *r* is chosen to minimize both time and memory usage.

э

Reducing graphs

- Numerical results

Results with $TV + L^2$ model I

Images

Image "book"

Volume "brain" + noise 3%

Volume "ct-thorax-0.8"

・ロン ・四 と ・ ヨ と ・ ヨ と

Image	Size	Memory	Min	Max	Mean	Sampling
"book"	3012 × 2048	25.53 MB	0.0	242.0	148.28	1.0x
"brain"	$181 \times 217 \times 181$	27.12 MB	0.0	173.0	26.06	1.0x
"ct-thorax-0.8"	$409 \times 409 \times 252$	160.81 MB	0.0	255.0	33.07	0.8x

Table 3: Table summarizing information on images used for tests.

Information on tests

- Model's parameters are optimized for better visualization.
- Window radius is chosen such that memory usage is minimized while $\gamma = 1$.

Reducing graphs

Results with $TV + L^2$ model II

< < >> < <</p>

	Original		Our algorithm		
Image	Time	Memory	Time	Memory (p)	
"book"	5.05	1.07 GB	1.92	94.68 MB (91.36%)	
"brain"	/	3.59 GB	7.31	434.33 MB (86.80%)	
"ct-thorax-0.8"	/	21.38 GB	22.81	1.43 GB (91.85%)	

Figure 10: Speed (secs) and memory usage compared to standard graph cuts for segmenting 2D/3D images with a $TV + L^2$ energy model. Top row shows the segmentation results where object part correspond to white area.

- Reducing graphs

- Numerical results

Results with Boykov/Jolly's model [BJ01] I

Images

Image	Size	Memory	Min	Max	Mean	Sampling
"book"	3012 × 2048	25.53 MB	0.0	242.0	148.28	1.0x
"brain"	$181 \times 217 \times 181$	27.12 MB	0.0	173.0	26.06	1.0x
"ct-thorax-0.48"	$245 \times 245 \times 151$	160.81 MB	0.0	255.0	33.07	0.8x

Table 4: Table summarizing information on images used for tests.

Information on tests

- Model's parameters are optimized for better visualization.
- Window radius is chosen such that memory usage is minimized while $\gamma = 1$.
- Object seeds and background seeds were placed by hand.

< ロ > < 同 > < 回 > < 回 >

Results with Boykov/Jolly's model [BJ01] II

	Original		Our algorithm	
Image	Time	Memory	Time	Memory (p)
"book"	5.58	1.08 GB	3.25	231.25 MB (78.5%)
"brain"	/	3.59 GB	9.02	734.64 MB (78.9%)
"ct-thorax-0.48"	/	4.58 GB	8.25	606.27 MB (83.6%)

Figure 11: Speed (secs) and memory usage compared to standard graph cuts for segmenting 2D/3D images with a Boykov/Jolly's energy model [BJ01]. Top and middle rows show respectively the seeds and the segmentation results where object part correspond to white area.

Conclusion

Conclusion

- (+) Experimental results show important reduction rates.
- (+) Exact or approximate solutions can be obtained simply by tunning γ .
- (+) Reduction principle is easily extensible to higher dimensions.
- (-) Dependency between reductions rates and model's parameters.
- (-) Noise sensibility.

Future work

- Evaluate results for segmenting lung tumors in TDM images.
- Extend implementation to color images.
- Application to the segmentation of lung tumors in TDM/PET images.
- Prove theoretical exactness of the reduction when $\gamma = 1$.
- Investigate other methods for solving the multi labels problem.

Conclusion

Figure 12: An example of multiway cut on a 3×3 grid graph.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References I

[BJ01]	Y. Boykov and M-P. Jolly. Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In <i>ICCV</i> , volume 1, pages 105–112, 2001.
[BK04]	Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. <i>IEEE Transactions on PAMI</i> , 26(9):1124–1137, 2004.
[CA08]	C. Cigla and A.A. Alatan. Region-based image segmentation via graph cuts. In <i>ICIP</i> , pages 2272–2275, 2008.
[FF62]	L. Ford and D. Fulkerson. <i>Flows in network.</i> Princeton University Press, 1962.
[GPS89]	D. M. Greig, B. T. Porteous, and A. H. Seheult. Exact maximum a posteriori estimation for binary images. <i>Journal of the Royal Statistical Society</i> , 51(2):271–279, 1989.

2

イロト イポト イヨト イヨト

References II

[KZ04] V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts? IEEE Transactions on PAMI, 26(2):147–159, 2004.

- [LML10a] N. Lermé, F. Malgouyres, and L. Létocart. Reducing graphs in graph cut segmentation. In *ICIP*, 2010.
- [LML10b] N. Lermé, F. Malgouyres, and L. Létocart. Réduction de "vision graph". Patent No. PB0091FR, January 2010.
- [LSGX05] H. Lombaert, Y.Y. Sun, L. Grady, and C.Y. Xu. A multilevel banded graph cuts method for fast image segmentation. In *ICCV*, volume 1, pages 259–265, 2005.

[LSTS04] Yin. Li, Jian. Sun, Chi-Keung. Tang, and Heung-Yeung. Shum. Lazy snapping. ACM Transactions on Graphics, 23(3):303–308, 2004.

A (1) > A (1) > A

References III

[RCD07] F. Ranchin, A. Chambolle, and F. Dibos.

Total Variation Minimization and Graph Cuts for Moving Objects Segmentation, pages 743-753. 2007

- [ROF92] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Phys. D. 60(1-4):259-268, 1992.
- [SG06] A.K. Sinop and L. Grady. Accurate banded graph cut segmentation of thin structures using laplacian pyramids.

In MICCAI. volume 9. pages 896-903. 2006.