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•  SIAM Conference on Parallel Processing – Spring 2016 

•  Organized by SIAG on Supercomputing 

•  Very likely to be organized in Paris 
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Plan 
•  Motivation 

•  Selected past work on reducing communication 

•  Communication complexity of linear algebra operations 

•  Communication avoiding for dense linear algebra  
•  LU, QR, Rank Revealing QR factorizations 

•  Progressively implemented in ScaLAPACK or LAPACK 

•  Algorithms for multicore processors 

•  Communication avoiding for sparse linear algebra  
•  Iterative methods and preconditioning 

•  Conclusions 
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Data driven science 

CO2 Underground storage 

Astrophysics: CMB data analysis 

     Numerical simulations require 
increasingly computing power as 
data sets grow exponentially 

Figures from astrophysics: 
•  Produce and analyze multi-frequency 2D images of 

the universe when it was 5% of its current age. 
•  COBE (1989) collected 10 gigabytes of data, required 

1 Teraflop per image analysis. 
•  PLANCK (2010) produced 1 terabyte of data, requires 

100 Petaflops per image analysis. 
•  CMBPol (2020) is estimated to collect .5 petabytes of 

data, will require 100 Exaflops per image analysis. 
Source: J. Borrill, LBNL, R. Stompor, Paris 7 

http://www.scidacreview.org/0704/html/cmb.html 

Source: T. Guignon, IFPEN http://www.epm.ornl.gov/chammp/chammp.html 

Climate modeling 
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Motivation - the communication wall 
•  Runtime of an algorithm is the sum of: 

•  #flops x time_per_flop 
•  #words_moved / bandwidth  
•  #messages x latency 

•  Time to move data >> time per flop 
•  Gap steadily and exponentially growing over time  

•  Performance of an application is less than 10% of the peak performance 

   “We are going to hit the memory wall, unless something basic changes”   [W. Wulf, S. 
McKee, 95] 

Annual improvements 
Time/flop Bandwidth Latency 

59% 
Network 26% 15% 

DRAM 23% 5% 
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Motivation  

•  The communication problem needs to be taken into account 
higher in the computing stack 

•  A paradigm shift in the way the numerical algorithms are 
devised is required 

•  Communication avoiding algorithms - a novel perspective for 
numerical linear algebra 
•  Minimize volume of communication 
•  Minimize number of messages 
•  Minimize over multiple levels of memory/parallelism 
•  Allow redundant computations (preferably as a low order term) 
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Previous work on reducing communication 

•  Tuning 
•  Overlap communication and computation, at most a factor of 2 speedup 

•  Ghosting  
•  Store redundantly data from neighboring processors for future computations 

•  Scheduling 
•  Block algorithms for linear algebra 

•  Barron and Swinnerton-Dyer, 1960 
•  ScaLAPACK, Blackford et al 97 

•   Cache oblivious algorithms for linear  
      algebra  

•  Gustavson 97, Toledo 97, Frens and  
      Wise 03, Ahmed and Pingali 00 
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Communication in CMB data analysis 
•  Map-making problem 

•  Find the best map x from observations d, scanning strategy A, and noise N−1  
•  Solve generalized least squares problem involving sparse matrices of size 1012-by-107 

•  Spherical harmonic transform (SHT) 
•  Synthesize a sky image from its harmonic representation 

•  Computation over rows of a 2D object (summation of spherical harmonics) 
•  Communication to transpose the 2D object 
•  Computation over columns of the 2D object (FFTs) 

Map making, with R. Stompor, M. Szydlarski 
Results obtained on Hopper, Cray XE6, NERSC 

SHT, with R. Stompor, M. Szydlarski 
Simulation on a petascale computer 

Computation 

Communication 

Overall runtime 
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Communication Complexity of  
Dense Linear Algebra 

•  Matrix multiply, using 2n3 flops (sequential or parallel)  
•  Hong-Kung (1981), Irony/Tishkin/Toledo (2004) 
•  Lower bound on Bandwidth = Ω (#flops / M1/2 ) 
•  Lower bound on Latency     = Ω (#flops / M3/2 ) 
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•  Same lower bounds apply to LU using reduction 
•  Demmel, LG, Hoemmen, Langou 2008  

•  And to almost all direct linear algebra [Ballard, Demmel, Holtz, 
Schwartz, 09] 
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2D Parallel algorithms and communication bounds 

Algorithm Minimizing 
 #words (not #messages) 

Minimizing  
#words and #messages 

Cholesky ScaLAPACK  ScaLAPACK 

LU ScaLAPACK 
uses partial pivoting 

 [LG, Demmel, Xiang, 08] 
[Khabou, Demmel, LG, Gu, 12] 

uses tournament pivoting 

QR ScaLAPACK  [Demmel, LG, Hoemmen, Langou, 08]  
uses different representation of Q 

RRQR  ScaLAPACK [Branescu, Demmel, LG, Gu, Xiang 11] 
uses tournament pivoting, 3x flops  

•   Only several references shown, block algorithms (ScaLAPACK) and  
   communication avoiding algorithms 

•   If memory per processor = n2 / P, the lower bounds become 
    #words_moved ≥ Ω ( n2 / P1/2 ),    #messages ≥ Ω ( P1/2 )  
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LU factorization (as in ScaLAPACK pdgetrf) 
LU factorization on a P = Pr x Pc grid of processors 
For ib = 1 to n-1 step b 
     A(ib)	   = A(ib:n, ib:n) 

 (1) Compute panel factorization 
        - find pivot in each column, swap rows 

 (2) Apply all row permutations 
       - broadcast pivot information along the rows 
        - swap rows at left and right 

(3) Compute block row of U  
      - broadcast right diagonal block of L of current panel 

 (4) Update trailing matrix  
       - broadcast right block column of L 
        - broadcast down block row of U 

L	  

U	  

A(ib)	  

L	  

U	  
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TSQR: QR factorization of a tall skinny matrix 
using Householder transformations 

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R00	  
R10	  
R20	  
R30	  

R01	  

R11	  

R02	  

•   QR decomposition of m x b matrix W,  m >> b 
•  P processors, block row layout 

•   Classic Parallel Algorithm 
•  Compute Householder vector for each column 
•  Number of messages ∝ b log P 

•  Communication Avoiding Algorithm 
•  Reduction operation, with QR as operator 
•  Number of messages ∝ log P 

J. Demmel, LG, M. Hoemmen, J. Langou, 08 
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Parallel TSQR 

QR 
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References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha,  
                    Becker, Patterson, 02  
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Q is represented implicitly as a product  
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Flexibility of TSQR and CAQR algorithms 

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R00	  
R10	  
R20	  
R30	  

R01	  

R11	  

R02	  Parallel:	  

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R01	  
R02	  

R00	  

R03	  
Sequen5al:	  

W	  =	  	  

W0	  
W1	  
W2	  
W3	  

R00	  
R01	  

R01	  
R11	  

R02	  

R11	  
R03	  

Dual	  Core:	  

Reduc5on	  tree	  will	  depend	  on	  the	  underlying	  architecture,	  
could	  be	  chosen	  dynamically	  
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Modeled Speedups of CAQR vs ScaLAPACK 

Petascale	  	  
	  	  	  	  	  	  up	  to	  22.9x	  

IBM	  Power	  5	  
	  	  	  	  	  	  up	  to	  9.7x	  

“Grid”	  
	  	  	  	  	  	  up	  to	  11x	  

	  Petascale	  machine	  with	  8192	  procs,	  each	  at	  500	  GFlops/s,	  a	  bandwidth	  of	  4	  GB/s.	  
./102,10,102 9512 wordsss −−− ⋅==⋅= βαγ
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Lightweight scheduling for CALU 
Static scheduling 

time 

Static + 10% dynamic scheduling 

100% dynamic scheduling 

Task dependency graph of CALU 
Donfack, LG, Gropp, Kale, IPDPS 2012 
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Plan 
•  Motivation 

•  Selected past work on reducing communication 

•  Communication complexity of linear algebra operations 

•  Communication avoiding for dense linear algebra  
•  LU, LU_PRRP, QR, Rank Revealing QR factorizations 

•  Often not in ScaLAPACK or LAPACK 

•  Algorithms for multicore processors 

•  Communication avoiding for sparse linear algebra  
•  Iterative methods and preconditioning 

•  Conclusions 
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Preconditioned Krylov subspace methods  

•  Solve Ax=b by using iterative methods 
       Find a solution xk from x0 + Kk (A, r0), where Kk (A, r0) = span {r0, A r0, …, Ak-1 r0} 

such that the Petrov-Galerkin condition b - Axk ⊥ Lk is satisfied. 

•  Convergence depends on            and the eigenvalue distribution (for SPD 
matrices). 

•  To accelerate convergence, solve M-1Ax = M-1b 

•  SAGE preconditioner – with F. Nataf and S. Yousef 

•  Fully algebraic robust preconditioner 

•  Based on solving a generalized eigenvalue problem 

€ 

κ(A)
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Challenge in getting scalable preconditioners 

•  Solve linear systems arising from large discretized systems of PDEs with strongly 
heterogeneous coefficients (high contrast, multiscale) 

•  Lack of robustness for most of the existing preconditioners 
•  wrt jumps in coefficients / partitioning into irregular subdomains,  
       e.g. two level DDM methods (Additive Schwarz, RAS), incomplete LU 
•  A few small eigenvalues hinder the convergence of iterative methods 

€ 

Darcy         a(u,v) = κ ∇u⋅
Ω
∫ ∇v dx

Elasticity    a(u,v) = C ε(u) :ε (
Ω
∫ v) dx

Source: Y. Achdou, F. Nataf 
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•  Deflation through augmentation or preconditioning 
•  Two level domain decomposition methods, e.g.: 

•  Geneo: a robust two level Schwarz method [Jolivet, Nataf, Spillane et al] 
•  Based on solving local generalized eigenvalue problems 
•  Requires information from the underlying PDE. 

•  Direction preserving preconditioners  MT = AT 
•  Filtering factorization, Wagner, Wittum (1997), Achdou, Nataf (2001) 
•  Direction preserving semiseparable approximation of SPD matrices, 

Gu, Li, Vassilevski (2010) 
•  If the near null-space of the original fine grid matrix is preserved, then 

view the preconditioner as a coarse discretization matrix 
•  Multigrid methods  

•  Bootstrup AMG (Brandt, Brannick, Kahl, and Livshits) 

Approaches to deal with low frequency modes 
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Numerical results 
•  Linear elasticity problems 

•  Results obtained by using domain decomposition methods 
•  AS-1: additive Schwarz 
•  AS-ZEM : additive Schwarz with Nicolaides coarse  
     space correction 
•  Geneo: a recent robust two level Schwarz method [Jolivet, Nataf, Spillane et al] 

•  proof of convergence of GenEO under several technical assumptions 
fulfilled by standard FE and bilinear forms, SPD input matrix 

subd dofs AS-1 AS-ZEM  (VH) GenEO (VH) 
4 1452 79 54    (24) 16     (46) 

8 29040 177 87    (48) 16   (102) 

16 58080 378 145    (96) 16   (214) 
AS-ZEM (Rigid body motions): mj = 6 
VH: size of the coarse space 
Results provided by F. Nataf 

E1=2·1011 

ν1 = 0.25 
E2=107 

ν2 = 0.45 
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•  Given A is SPD, preconditioner M is defined as 

•  The approximation of S aims at coupling all subdomains and correcting for 
small eigenvalues 

•  E.g. the kernel of elasticity is spanned by rigid body motions, which should 
be included in this approximation 

SAGE: Schur complement Approximation based 
on a Generalized Eigenvalue problem 
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•  We have that λmax(AΓΓ-1 S) ≤1 
•  Consider the generalized eigenvalue problem 
            Su = λ AΓΓ u 
       let λmin , …, λk ≤ τ, and let u1, …, uk be the associated eigenvectors 

•  The Schur complement S is approximated by : 

•  The condition number of M-1 A is bounded by τ-1 since 

Approximation of the Schur complement 

  

€ 

˜ S -1 = (I +UΣUT )AΓΓ
−1,  where

  U = (u1,...,uk ),   Σ = diag(σ1,K,σk )

   σi =
τ − λi

λi

,   i =1,K,k

€ 

τ ≤ λ( ˜ S −1S) ≤1
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SAGE: numerical results 
•  Results for a 3D problem, ndofs 72963, no of nonzeros 2456997  
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Conclusions 

•  Introduced a new class of communication avoiding algorithms that 
minimize communication 
•  Attain theoretical lower bounds on communication 

•  Minimize communication at the cost of redundant computation 

•  Are often faster than conventional algorithms in practice 

•  Remains a lot to do for sparse linear algebra 
•  Communication bounds, communication optimal algorithms 

•  Enlarged Krylov subspace solvers 

•  Preconditioners - limited by memory and communication, not flops 

•  And BEYOND 
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