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Introduction

What are we working on?

Figure: Latency hiding of global drying in pipelined Laundry methods
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Introduction

What EXA2CT-ly are we working on?

Increasing gap between computation
and communication costs

I Floating point performance steadily
increases

I Network latencies only go down
marginally

I Memory latencies decline slowly

I Avoid communication by trading
communication for computation

I Hide latency of communications

EXascale Algorithms and Advanced Computational Techniques
https://projects.imec.be/exa2ct/
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Krylov subspace methods

General idea

Iteratively improve an approximate solution of linear system Ax = b,

xi ∈ x0 +Ki (A, r0) = x0 + span{r0,Ar0,A
2r0, . . . ,A

i−1r0}

I minimize an error measure over expanding
Krylov subspace Ki (A, r0)

I usually in combination with sparse linear
algebra

I three building blocks
i. axpy

ii. SpMVM
iii. dot-product

E.g.: Conjugate Gradients

1: r (0) ← b − Ax (0)

2: p(0) ← r (0)

3: for i = 0, . . . do

4: w ← Ap(i)

5: αi ← (r (i), r (i))/(w , p(i))

6: x (i+1) ← x (i) + αip
(i)

7: r (i+1) ← r (i) − αiw
8: βi ← (r (i+1), r (i+1))/(r (i), r (i))

9: p(i+1) ← r (i+1) + βip
(i)

10: end for
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Krylov subspace methods

Communication patterns in the building blocks

i. axpy
I no dependencies on other vector elements

(no communication)
I scales well

ii. SpMVM
I dependencies given by matrix/vector

partition (one-to-one communication)
I bandwidth limited
I scales

iii. dot-product
I dependency on all vector elements (global

reduction)
I latency dominated
I scales as log2(#partitions)

E.g.: Conjugate Gradients

1: r (0) ← b − Ax (0)

2: p(0) ← r (0)

3: for i = 0, . . . do

4: w ← Ap(i)

5: αi ← (r (i), r (i))/(w , p(i))

6: x (i+1) ← x (i) + αip
(i)

7: r (i+1) ← r (i) − αiw
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Krylov subspace methods

Case study: Conjugate Gradients

Hestenes and Stiefel (1952)

+

+

+ +

+

+

SpMVM dot-product axpy dot-product axpy

1: r (0) ← b − Ax (0)

2: p(0) ← r (0)

3: for i = 0, . . . do

4: w ← Ap(i)

5: αi ← (r (i), r (i))/(w , p(i))

6: x (i+1) ← x (i) + αip
(i)

7: r (i+1) ← r (i) − αiw
8: βi ← (r (i+1), r (i+1))/(r (i), r (i))

9: p(i+1) ← r (i+1) + βip
(i)

10: end for
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Krylov subspace methods

Case study: Conjugate Gradients

Chronopoulos and Gear (1989)

dot-productaxpy

+

+

+

SpMVM

1: r(0) ← b − Ax (0)

2: . . . (loop-unrolling)
3: for i = 1, . . . do

4: p(i) ← r (i) + βip
(i−1)

5: s(i) ← w (i) + βi s
(i−1)

6: x (i+1) ← x (i) + αip
(i)

7: r (i+1) ← r (i) − αi s
(i)

8: w (i+1) ← Ar (i+1)

9: γi+1 ← (r (i+1), r (i+1))

10: δ ← (w (i+1), r (i+1))
11: βi+1 ← γi+1/γi
12:

αi+1 ← γi+1/(δ − βi+1γi+1/αi )
13: end for
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Krylov subspace methods

Case study: Conjugate Gradients

Chronopoulos and Gear (1989)

I Equivalent to CG (in infinite precision)

I Extra recurrence relation for s(i) = Ap(i)

I Two dot-products are grouped in one global
reduction

I Communication avoiding
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Hiding global reductions

Objective

I Dot-products are latency dominated

I Dot-products block all other (local) work

I Other (local) operations (SpMVM/axpy) scale well

Objective

Rewrite Krylov solvers such that latency of dot-products (global reductions) can
be overlapped with application of the SpMVM and/or the preconditioner.

I Use non-blocking asynchronous global communication

I MPI-3 standard introduces MPI Iallreduce()

I GPI-2 introduces gaspi allreduce() + uses PGAS (partitioned global
address space)
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Hiding global reductions

Pipelined Conjugate Gradients

Ghysels and Vanroose (2013)

I Equivalent to CG (in infinite precision)

I Extra recurrence relations for s(i) = Ap(i) and
z = As(i)

I Two dot-products are grouped in one global
reduction

I Communication avoiding

I Overlap global communication with local
computations: line 4 + 5 + 6

I Communication avoiding
+ communication hiding

1: r(0) ← b − Ax (0)

2: . . . (loop-unrolling)
3: for i = 1, . . . do

4: γi ← (r (i), r (i))

5: δ ← (w (i), r (i))

6: q(i) ← Aw (i)

7: βi ← γi/γi−1

8: αi ← γi/(δ − βiγi/αi−1)

9: z(i) ← q(i) + βi z
(i−1)

10: s(i) ← w (i) + βi s
(i−1)

11: p(i) ← r (i) + βip
(i−1)

12: x (i+1) ← x (i) + αip
(i)

13: r (i+1) ← r (i) − αi s
(i)

14: w (i+1) ← w (i) − αi z
(i)

15: end for
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Hiding global reductions

Pipelined Conjugate Gradients

Ghysels and Vanroose (2013)

dot-product

+

+

+

SpMVM axpy

1: r(0) ← b − Ax (0)

2: . . . (loop-unrolling)
3: for i = 1, . . . do

4: γi ← (r (i), r (i))
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Hiding global reductions

Preconditioned pipelined Conjugate Gradients

Ghysels and Vanroose (2013)

I Equivalent to CG (in infinite precision)

I Extra recurrence relations for w (i) = Au(i),
s(i) = Ap(i) and z = Aq(i)

I Two dot-products are grouped in one global
reduction

I Overlap global communication with extra
local computations: line 4 + 5 + 7 + 6

I Communication avoiding
+ communication hiding

1: r(0) ← b − Ax (0)

2: . . . (loop-unrolling)
3: for i = 1, . . . do

4: γi ← (r (i), u(i))

5: δ ← (w (i), u(i))

6: m(i) ← M−1w (i)

7: n(i) ← Am(i)

8: βi ← γi/γi−1

9: αi ← γi/(δ − βiγi/αi−1)

10: z(i) ← n(i) + βi z
(i−1)

11: q(i) ← m(i) + βiq
(i−1)

12: s(i) ← w (i) + βi s
(i−1)

13: p(i) ← u(i) + βip
(i−1)

14: x (i+1) ← x (i) + αip
(i)

15: r (i+1) ← r (i) − αi s
(i)

16: u(i+1) ← u(i) − αiq
(i)

17: w (i+1) ← w (i) − αi z
(i)

18: end for
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Hiding global reductions

Preconditioned pipelined Conjugate Gradients

Ghysels and Vanroose (2013)

dot-product

+

+

+

precond axpySpMVM

1: r(0) ← b − Ax (0)

2: . . . (loop-unrolling)
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Hiding global reductions

Preconditioned pipelined Conjugate Residuals

Ghysels and Vanroose (2013)

I Equivalent to CR (in infinite precision)

I Based on (·, ·)A-inner product

I Two dot-products are grouped in one global
reduction

I Overlap global communication with local
computations: line 5 + 6 + 7

I No overlap with preconditioner

I Only 3 additional axpy’s save memory

1: r(0) ← b − Ax (0)

2: . . . (loop-unrolling)
3: for i = 1, . . . do

4: m(i) ← M−1w (i)

5: γi ← (w (i), u(i))

6: δ ← (m(i),w (i))

7: n(i) ← Am(i)

8: βi ← γi/γi−1

9: αi ← γi/(δ − βiγi/αi−1)

10: z(i) ← n(i) + βi z
(i−1)

11: q(i) ← m(i) + βiq
(i−1)

12: p(i) ← u(i) + βip
(i−1)

13: x (i+1) ← x (i) + αip
(i)

14: u(i+1) ← u(i) − αiq
(i)

15: w (i+1) ← w (i) − αi z
(i)

16: end for
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Hiding global reductions

Comparison of CG variants

flops time (excl axpy’s, dot’s) # syncs mem
CG 10 2G + SpMVM + PC 2 4

Chron/Gear-CG 12 G + SpMVM + PC 1 5
Gropp-CG 14 max(G,SpMVM) + max(G,PC) 2 6

pipe-CG 20 max(G,SpMVM+PC) 1 9
CR 12 2G + SpMVM + PC 2 5

pipe-CR 16 max(G,SpMVM) + PC 1 7

I G: latency of global reduction

I SpMVM: sparse matrix-vector time

I PC: application of preconditioner
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Hiding global reductions

Strong scaling experiment

I Hydrostatic ice sheet flow, 100× 100× 50 Q1 finite elements

I Line search Newton method (rtol=10−8, atol=10−15)

I CG preconditioned with block Jacobi with ICC(0) (rtol=10−5, atol=10−50)

I max pipe-CG/CG speedup:
2.14×
max pipe-CG/CG1 speedup:
1.43×

I max pipe-CR/CR speedup:
2.09×

(CG1 = Chrono/Gear CG)
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Hiding global reductions

Other pipelined Krylov methods

I Preconditioned pipelined GMRES

Ghysels, Ashby, Meerbergen and Vanroose (2012)

Vi−`+1 = [v0, v1, . . . , vi−`]

Zi+1 = [z0, z1, . . . , zi−`, zi−`+1, . . . , zi︸ ︷︷ ︸
`

]

I Compute ` new basis vectors for Krylov subspace (SpMVMs) during global
communication (dot-products).

I Orthogonalization step when previous global reduction has finished
I More technical, but deeper and variable pipelining possible p(`)-GMRES

I Augmented and deflated Krylov subspace methods
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Hiding global reductions

Roofline Model

I Arithmetic intensity: q =
floating-point operations

byte off-chip memory traffic
I High q → compute bound (dense algebra, fft, ...)

I Low q → bandwidth bound (sparse algebra, stencils, ...)

I Roofline gives upperbound for performance for given q
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Increasing arithmetic intensity

Arithmetic intensity of s dependent SpMVMs

1 SpMVM s× SpMVM s× SpMVM in place
flops 2nnz 2s · nnz 2s · nnz

words moved nnz + 2n snnz + 2sn nnz + 2n
q 2 2 2s

See J. Demmel’s course: CS 294-76 on Communication-Avoiding algorithms
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Increasing arithmetic intensity

V(ν1,ν2)-cycle multigrid

while ‖rh‖ > tol‖f h‖ do
V-cycle(vh, f h)

end while

I I 2h
h Full weighting

I I h2h Linear interpolation

V-cycle(vh, f h)

if Coarsest level then
vh ← (Ah)−1f h

else
for k = 1, . . . , ν1 do

vh ← (1− ωD−1Ah)vh + ωD−1f h

end for
rh ← f h − Ahvh

r 2h ← I 2h
h rh

e2h ← V-cycle2h(0, r 2h)
eh ← I h2he2h

vh ← vh + eh

for k = 1, . . . , ν2 do
vh ← (1− ωD−1Ah)vh + ωD−1f h

end for
end if
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Increasing arithmetic intensity

Consecutive smoothing steps

I A smoother is an SpMVM kernel with dependent vectors where only the last
vector is required

I Possibility to increase arithmetic intensity
I Tiling over different smoother iterations
I q(ν × ω-Jac) = νq1(ω-Jac)

I Divide the domain in tiles which fit in the cache
I Ground surface is loaded in cache and reused s (= ν) times
I Redundant work at the tile edges

0
B

0

B 0

 1

 2

 3

s
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Increasing arithmetic intensity

Cost of ν smoothing steps

Since the arithmetic intensity increases for more smoothing steps

q(ν × ω-Jac) = νq1(ω-Jac)

according to the roofline:

performance increases & the average cost decreases
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Increasing arithmetic intensity

Work Unit Cost model
I Classical Work Unit cost model ignores memory bandwidth

1 WU = smoother cost = O(n)

I Cost of multigrid to reach tolerance

= (9ν + 19)(1 +
1

4
+

1

16
+ . . . )

⌈
log(tol)

log(ρ(ν))

⌉
WU ≤ (9ν + 19)

4

3

⌈
log(tol)

log(ρ(ν))

⌉
WU

I Optimum for low ν because computational cost increases with ν

I . . . but communication overhead decreases!
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Increasing arithmetic intensity

Roofline Cost model

In contrast to naive model, the modified cost model suggests to repeat
application of the smoother.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  5  10  15  20

W
o
rk

 U
n
it

s

smoothing steps

WU naive
WU roofline

By tiling the smoother

I the optimal number of smoothing steps shifts to the right

I vectorization can be exploited
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Conclusions & future work

Summary

I Krylov subspace methods
I 3 building blocks: axpy, SpMVM, dot-product
I CG variants that group building blocks
I Reduce global reduction steps
I Communication avoiding

I Hiding global reductions
I Pipelined CG and pipelined CR
I Preconditioned versions
I Overlap global reduction steps with other computational steps
I Communication hiding (+ communication avoiding)

I Increasing arithmetic intensity
I Tiling of smoother improves data locality and scalability
I Trade-off between better convergence and increasing cost of smoother
I Optimal number of smoothing steps increases
I This allows exploiting of vector units
I Still to be combined with an improved interpolation and restriction
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Conclusions & future work
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Conclusions & future work
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preconditioned Conjugate Gradient algorithm, Parallel Computing, 2013.

P. Ghysels, P. Klosiewicz, W. Vanroose, Improving the arithmetic intensity of
multigrid with the help of polynomial smoothers, Num. Linear Algebra Appl., 19,
2012.

Q: What’s the difference between pipelined and s-step Krylov methods?
A: Global communication is hidden vs avoided
A: Off-the-shelf preconditioning possible vs specialized preconditioning

Q: Is the code available online?
A: Yes, pipe-CG, Gropp-CG, pipe-CR and p(`)-GMRES are in the PETSc library
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