Latency hiding of global reductions in pipelined Krylov methods

Wim Vanroose¹, Pieter Ghysels² & Bram Reps¹

wim.vanroose@uantwerp.be pghysels@lbl.gov bram.reps@uantwerp.be
¹ University of Antwerp - Dept Math & Computer Science, Belgium
² LBNL - Future Technologies Group, Berkeley, CA, USA

CANUM 2014 March 31 - April 4, 2014

Universiteit Antwerpen

Introduction What are we working on?

Figure: Latency hiding of global drying in pipelined Laundry methods

Introduction What are we working on?

Figure: Latency hiding of global drying in pipelined Laundry methods

Introduction What EXA2CT-Iy are we working on?

Increasing gap between computation and communication costs

- Floating point performance steadily increases
- Network latencies only go down marginally
- Memory latencies decline slowly
- Avoid communication by trading communication for computation
- Hide latency of communications

Latency hiding of global reductions in pipelined Krylov methods $$\operatorname{Outline}\xspace$ of the talk

Krylov subspace methods (cf. Laundry methods)

Hiding global reductions (cf. hiding drying time)

Increasing arithmetic intensity (cf. piling up laundry)

Conclusions & future work (cf. washing instructions and ecological detergents)

Latency hiding of global reductions in pipelined Krylov methods $$\operatorname{Outline}\xspace$ of the talk

Krylov subspace methods (cf. Laundry methods)

Hiding global reductions (cf. hiding drying time)

Increasing arithmetic intensity (cf. piling up laundry)

Conclusions & future work (cf. washing instructions and ecological detergents)

Krylov subspace methods General idea

Iteratively improve an approximate solution of linear system Ax = b,

$$x_i \in x_0 + \mathcal{K}_i(A, r_0) = x_0 + \operatorname{span}\{r_0, Ar_0, A^2r_0, \dots, A^{i-1}r_0\}$$

- ► minimize an error measure over expanding Krylov subspace K_i(A, r₀)
- usually in combination with sparse linear algebra
- three building blocks
 - i. axpy
 - ii. SpMVM
 - iii. dot-product

E.g.: Conjugate Gradients 1: $r^{(0)} \leftarrow b - Ax^{(0)}$ 2: $p^{(0)} \leftarrow r^{(0)}$ 3: for i = 0, ... do 4: $w \leftarrow Ap^{(i)}$ 5: $\alpha_i \leftarrow (r^{(i)}, r^{(i)})/(w, p^{(i)})$ 6: $x^{(i+1)} \leftarrow x^{(i)} + \alpha_i p^{(i)}$ 7: $r^{(i+1)} \leftarrow r^{(i)} - \alpha_i w$ 8: $\beta_i \leftarrow (r^{(i+1)}, r^{(i+1)})/(r^{(i)}, r^{(i)})$ 9: $p^{(i+1)} \leftarrow r^{(i+1)} + \beta_i p^{(i)}$ 10: end for

Krylov subspace methods General idea

Iteratively improve an approximate solution of linear system Ax = b,

$$x_i \in x_0 + \mathcal{K}_i(A, r_0) = x_0 + \operatorname{span}\{r_0, Ar_0, A^2r_0, \dots, A^{i-1}r_0\}$$

- ► minimize an error measure over expanding Krylov subspace K_i(A, r₀)
- usually in combination with sparse linear algebra
- three building blocks
 - i. axpy
 - ii. SpMVM
 - iii. dot-product

E.g.: Conjugate Gradients 1: $r^{(0)} \leftarrow b - Ax^{(0)}$ 2: $p^{(0)} \leftarrow r^{(0)}$ 3: for i = 0, ... do 4: $w \leftarrow Ap^{(i)}$ 5: $\alpha_i \leftarrow (r^{(i)}, r^{(i)})/(w, p^{(i)})$ 6: $x^{(i+1)} \leftarrow x^{(i)} + \alpha_i p^{(i)}$ 7: $r^{(i+1)} \leftarrow r^{(i)} - \alpha_i w$ 8: $\beta_i \leftarrow (r^{(i+1)}, r^{(i+1)})/(r^{(i)}, r^{(i)})$ 9: $p^{(i+1)} \leftarrow r^{(i+1)} + \beta_i p^{(i)}$ 10: end for

Krylov subspace methods Communication patterns in the building blocks

i. axpy

- no dependencies on other vector elements (no communication)
- scales well

ii. SpMVM

- dependencies given by matrix/vector partition (one-to-one communication)
- bandwidth limited
- scales

iii. dot-product

- dependency on all vector elements (global reduction)
- Iatency dominated
- scales as log₂(#partitions)

E.g.: Conjugate Gradients 1: $r^{(0)} \leftarrow b - Ax^{(0)}$ 2: $p^{(0)} \leftarrow r^{(0)}$ 3: for i = 0, ... do 4: $w \leftarrow Ap^{(i)}$ 5: $\alpha_i \leftarrow (r^{(i)}, r^{(i)})/(w, p^{(i)})$ 6: $x^{(i+1)} \leftarrow x^{(i)} + \alpha_i p^{(i)}$ 7: $r^{(i+1)} \leftarrow r^{(i)} - \alpha_i w$ 8: $\beta_i \leftarrow (r^{(i+1)}, r^{(i+1)})/(r^{(i)}, r^{(i)})$ 9: $p^{(i+1)} \leftarrow r^{(i+1)} + \beta_i p^{(i)}$ 10: end for

Krylov subspace methods Case study: Conjugate Gradients

1:
$$r^{(0)} \leftarrow b - Ax^{(0)}$$

2: $\rho^{(0)} \leftarrow r^{(0)}$
3: for $i = 0, ...$ do
4: $w \leftarrow A\rho^{(i)}$
5: $\alpha_i \leftarrow (r^{(i)}, r^{(i)})/(w, p^{(i)})$
6: $x^{(i+1)} \leftarrow x^{(i)} + \alpha_i p^{(i)}$
7: $r^{(i+1)} \leftarrow r^{(i)} - \alpha_i w$
8: $\beta_i \leftarrow (r^{(i+1)}, r^{(i+1)})/(r^{(i)}, r^{(i)})$
9: $p^{(i+1)} \leftarrow r^{(i+1)} + \beta_i p^{(i)}$
10: end for

6

Krylov subspace methods Case study: Conjugate Gradients

Chronopoulos and Gear (1989)

1:
$$r_{(0)} \leftarrow b - Ax^{(0)}$$

2: ... (loop-unrolling)
3: for $i = 1, ... do$
4: $p^{(i)} \leftarrow r^{(i)} + \beta_i p^{(i-1)}$
5: $s^{(i)} \leftarrow w^{(i)} + \beta_i s^{(i-1)}$
6: $x^{(i+1)} \leftarrow x^{(i)} - \alpha_i s^{(i)}$
7: $r^{(i+1)} \leftarrow r^{(i)} - \alpha_i s^{(i)}$
8: $w^{(i+1)} \leftarrow Ar^{(i+1)}$
9: $\gamma_{i+1} \leftarrow (r^{(i+1)}, r^{(i+1)})$
10: $\delta \leftarrow (w^{(i+1)}, r^{(i+1)})$
11: $\beta_{i+1} \leftarrow \gamma_{i+1}/\gamma_i$
12: $\alpha_{i+1} \leftarrow \gamma_{i+1}/(\delta - \beta_{i+1}\gamma_{i+1}/\alpha_i)$
13: end for

Krylov subspace methods Case study: Conjugate Gradients

Chronopoulos and Gear (1989)

- Equivalent to CG (in infinite precision)
- Extra recurrence relation for $s^{(i)} = Ap^{(i)}$
- Two dot-products are grouped in one global reduction
- Communication avoiding

1:
$$r_{(0)} \leftarrow b - Ax^{(0)}$$

2: ... (loop-unrolling)
3: for $i = 1, ... do$
4: $p^{(i)} \leftarrow r^{(i)} + \beta_i p^{(i-1)}$
5: $s^{(i)} \leftarrow w^{(i)} + \beta_i s^{(i-1)}$
6: $x^{(i+1)} \leftarrow x^{(i)} - \alpha_i s^{(i)}$
8: $w^{(i+1)} \leftarrow Ar^{(i+1)}$
9: $\gamma_{i+1} \leftarrow (r^{(i+1)}, r^{(i+1)})$
10: $\delta \leftarrow (w^{(i+1)}, r^{(i+1)})$
11: $\beta_{i+1} \leftarrow \gamma_{i+1}/\gamma_i$
12:
 $\alpha_{i+1} \leftarrow \gamma_{i+1}/(\delta - \beta_{i+1}\gamma_{i+1}/\alpha_i)$
13: end for

Krylov subspace methods (cf. Laundry methods)

Hiding global reductions (cf. hiding drying time)

Increasing arithmetic intensity (cf. piling up laundry)

Conclusions & future work (cf. washing instructions and ecological detergents)

Hiding global reductions Objective

- Dot-products are latency dominated
- Dot-products block all other (local) work
- Other (local) operations (SpMVM/axpy) scale well

Objective

Rewrite Krylov solvers such that latency of dot-products (global reductions) can be overlapped with application of the SpMVM and/or the preconditioner.

- Use non-blocking asynchronous global communication
- MPI-3 standard introduces MPI_Iallreduce()
- GPI-2 introduces gaspi_allreduce() + uses PGAS (partitioned global address space)

Hiding global reductions Pipelined Conjugate Gradients

Ghysels and Vanroose (2013)

- Equivalent to CG (in infinite precision)
- Extra recurrence relations for $s^{(i)} = Ap^{(i)}$ and $z = As^{(i)}$
- Two dot-products are grouped in one global reduction
- Communication avoiding
- Overlap global communication with local computations: line 4 + 5 + 6
- Communication avoiding
 + communication hiding

$$\begin{array}{ll} 1: \ r_{(0)} \leftarrow b - Ax^{(0)} \\ 2: \ \dots \ (\text{loop-unrolling}) \\ 3: \ \text{for} \ i = 1, \dots \ \text{do} \\ 4: \ \gamma_i \leftarrow (r^{(i)}, r^{(i)}) \\ 5: \ \delta \leftarrow (w^{(i)}, r^{(i)}) \\ 6: \ q^{(i)} \leftarrow Aw^{(i)} \\ 7: \ \beta_i \leftarrow \gamma_i / \gamma_{i-1} \\ 8: \ \alpha_i \leftarrow \gamma_i / (\delta - \beta_i \gamma_i / \alpha_{i-1}) \\ 9: \ z^{(i)} \leftarrow q^{(i)} + \beta_i z^{(i-1)} \\ 10: \ s^{(i)} \leftarrow w^{(i)} + \beta_i s^{(i-1)} \\ 11: \ p^{(i)} \leftarrow r^{(i)} + \beta_i p^{(i-1)} \\ 11: \ p^{(i)} \leftarrow r^{(i)} + \beta_i p^{(i-1)} \\ 12: \ x^{(i+1)} \leftarrow x^{(i)} - \alpha_i s^{(i)} \\ 13: \ r^{(i+1)} \leftarrow w^{(i)} - \alpha_i z^{(i)} \\ 14: \ w^{(i+1)} \leftarrow w^{(i)} - \alpha_i z^{(i)} \\ 15: \ \text{end for} \end{array}$$

Hiding global reductions Pipelined Conjugate Gradients

1:
$$r_{(0)} \leftarrow b - Ax^{(0)}$$

2: ... (loop-unrolling)
3: for $i = 1, ... do$
4: $\gamma_i \leftarrow (r^{(i)}, r^{(i)})$
5: $\delta \leftarrow (w^{(i)}, r^{(i)})$
6: $q^{(i)} \leftarrow Aw^{(i)}$
7: $\beta_i \leftarrow \gamma_i / (\delta - \beta_i \gamma_i / \alpha_{i-1})$
9: $z^{(i)} \leftarrow q^{(i)} + \beta_i z^{(i-1)}$
10: $s^{(i)} \leftarrow w^{(i)} + \beta_i s^{(i-1)}$
11: $p^{(i)} \leftarrow r^{(i)} + \beta_i p^{(i-1)}$
12: $x^{(i+1)} \leftarrow x^{(i)} + \alpha_i p^{(i)}$
13: $r^{(i+1)} \leftarrow r^{(i)} - \alpha_i s^{(i)}$
14: $w^{(i+1)} \leftarrow w^{(i)} - \alpha_i z^{(i)}$
15: end for

6

Hiding global reductions Preconditioned pipelined Conjugate Gradients

Ghysels and Vanroose (2013)

- Equivalent to CG (in infinite precision)
- Extra recurrence relations for $w^{(i)} = Au^{(i)}$, $s^{(i)} = Ap^{(i)}$ and $z = Aq^{(i)}$
- Two dot-products are grouped in one global reduction
- Overlap global communication with *extra* local computations: line 4 + 5 + 7 + 6
- Communication avoiding
 + communication hiding

$$\begin{array}{lll} 1: \ r_{(0)} \leftarrow b - Ax^{(0)} \\ 2: \ \dots & (\text{loop-unrolling}) \\ 3: \ \text{for } i = 1, \dots & \text{do} \\ 4: \ \gamma_i \leftarrow & (r^{(i)}, u^{(i)}) \\ 5: \ \delta \leftarrow & (w^{(i)}, u^{(i)}) \\ 6: \ m^{(i)} \leftarrow M^{-1}w^{(i)} \\ 7: \ n^{(i)} \leftarrow Am^{(i)} \\ 8: \ \beta_i \leftarrow \gamma_i/\gamma_{i-1} \\ 9: \ \alpha_i \leftarrow \gamma_i/(\delta - \beta_i\gamma_i/\alpha_{i-1}) \\ 10: \ z^{(i)} \leftarrow n^{(i)} + \beta_i z^{(i-1)} \\ 11: \ q^{(i)} \leftarrow m^{(i)} + \beta_i q^{(i-1)} \\ 12: \ s^{(i)} \leftarrow w^{(i)} + \beta_i s^{(i-1)} \\ 13: \ p^{(i)} \leftarrow u^{(i)} + \beta_i p^{(i-1)} \\ 14: \ x^{(i+1)} \leftarrow x^{(i)} + \alpha_i p^{(i)} \\ 15: \ r^{(i+1)} \leftarrow r^{(i)} - \alpha_i s^{(i)} \\ 16: \ u^{(i+1)} \leftarrow w^{(i)} - \alpha_i z^{(i)} \\ 18: \ \text{end for} \end{array}$$

Hiding global reductions Preconditioned pipelined Conjugate Gradients

Ghysels and Vanroose (2013)

1.
$$r(0) \leftarrow D$$
 (x)
2. ... (loop-unrolling)
3: for $i = 1, ..., do$
4: $\gamma_i \leftarrow (r^{(i)}, u^{(i)})$
5: $\delta \leftarrow (w^{(i)}, u^{(i)})$
6: $m^{(i)} \leftarrow M^{-1}w^{(i)}$
7: $n^{(i)} \leftarrow Am^{(i)}$
8: $\beta_i \leftarrow \gamma_i/(\delta - \beta_i\gamma_i/\alpha_{i-1})$
9: $\alpha_i \leftarrow \gamma_i/(\delta - \beta_i\gamma_i/\alpha_{i-1})$
10: $z^{(i)} \leftarrow n^{(i)} + \beta_i z^{(i-1)}$
11: $q^{(i)} \leftarrow m^{(i)} + \beta_i s^{(i-1)}$
12: $s^{(i)} \leftarrow w^{(i)} + \beta_i s^{(i-1)}$
13: $p^{(i)} \leftarrow u^{(i)} + \beta_i p^{(i-1)}$
14: $x^{(i+1)} \leftarrow x^{(i)} + \alpha_i p^{(i)}$
15: $r^{(i+1)} \leftarrow r^{(i)} - \alpha_i s^{(i)}$
16: $u^{(i+1)} \leftarrow w^{(i)} - \alpha_i z^{(i)}$
17: $w^{(i+1)} \leftarrow w^{(i)} - \alpha_i z^{(i)}$
18: end for

1. $r_{(0)} = h - A x^{(0)}$

Hiding global reductions Preconditioned pipelined Conjugate Residuals

Ghysels and Vanroose (2013)

- Equivalent to CR (in infinite precision)
- Based on $(\cdot, \cdot)_A$ -inner product
- Two dot-products are grouped in one global reduction
- Overlap global communication with local computations: line 5 + 6 + 7
- No overlap with preconditioner
- Only 3 additional axpy's save memory

1: $r_{(0)} \leftarrow b - Ax^{(0)}$ 2: ... (loop-unrolling) 3: for i = 1, ... do 4. $m^{(i)} \leftarrow M^{-1} w^{(i)}$ 5: $\gamma_i \leftarrow (w^{(i)}, u^{(i)})$ $\delta \leftarrow (m^{(i)}, w^{(i)})$ 6: $n^{(i)} \leftarrow Am^{(i)}$ 7: 8: $\beta_i \leftarrow \gamma_i / \gamma_{i-1}$ $\alpha_i \leftarrow \gamma_i / (\delta - \beta_i \gamma_i / \alpha_{i-1})$ 9: $z^{(i)} \leftarrow n^{(i)} + \beta_i z^{(i-1)}$ 10: $a^{(i)} \leftarrow m^{(i)} + \beta_i a^{(i-1)}$ 11. $\mathbf{p}^{(i)} \leftarrow \mathbf{u}^{(i)} + \beta_i \mathbf{p}^{(i-1)}$ 12. $x^{(i+1)} \leftarrow x^{(i)} + \alpha_i p^{(i)}$ 13. $u^{(i+1)} \leftarrow u^{(i)} - \alpha_i a^{(i)}$ 14: $w^{(i+1)} \leftarrow w^{(i)} - \alpha_i z^{(i)}$ 15. 16[.] end for

Hiding global reductions Comparison of CG variants

	flops	time (excl axpy's, dot's)	# syncs	mem
CG	10	2G + SpMVM + PC	2	4
Chron/Gear-CG	12	G + SpMVM + PC	1	5
Gropp-CG	14	max(G,SpMVM) + max(G,PC)	2	6
pipe-CG	20	max(G,SpMVM+PC)	1	9
CR	12	2G + SpMVM + PC	2	5
pipe-CR	16	max(G,SpMVM) + PC	1	7

- ► G: latency of global reduction
- SpMVM: sparse matrix-vector time
- ▶ PC: application of preconditioner

Hiding global reductions Strong scaling experiment

- \blacktriangleright Hydrostatic ice sheet flow, 100 \times 100 \times 50 Q1 finite elements
- ▶ Line search Newton method (rtol=10⁻⁸, atol=10⁻¹⁵)
- ▶ CG preconditioned with block Jacobi with ICC(0) (rtol=10⁻⁵, atol=10⁻⁵⁰)

- max pipe-CG/CG speedup: 2.14× max pipe-CG/CG1 speedup: 1.43×
- ► max pipe-CR/CR speedup: 2.09×

(CG1 = Chrono/Gear CG)

Hiding global reductions Other pipelined Krylov methods

Preconditioned pipelined GMRES

Ghysels, Ashby, Meerbergen and Vanroose (2012)

$$V_{i-\ell+1} = [v_0, v_1, \dots, v_{i-\ell}]$$

$$Z_{i+1} = [z_0, z_1, \dots, z_{i-\ell}, \underbrace{z_{i-\ell+1}, \dots, z_i}_{\ell}]$$

- Compute ℓ new basis vectors for Krylov subspace (SpMVMs) during global communication (dot-products).
- Orthogonalization step when previous global reduction has finished
- \blacktriangleright More technical, but deeper and variable pipelining possible p($\ell)\text{-}\mathsf{GMRES}$
- Augmented and deflated Krylov subspace methods

Latency hiding of global reductions in pipelined Krylov methods $$\operatorname{Outline}\xspace$ of the talk

Krylov subspace methods (cf. Laundry methods)

Hiding global reductions (cf. hiding drying time)

Increasing arithmetic intensity (cf. piling up laundry)

Conclusions & future work (cf. washing instructions and ecological detergents)

Hiding global reductions Roofline Model

- Arithmetic intensity: q = floating-point operations byte off-chip memory traffic
- High $q \rightarrow$ compute bound (dense algebra, fft, ...)
- Low $q \rightarrow$ bandwidth bound (sparse algebra, stencils, ...)
- ► Roofline gives upperbound for performance for given *q*

Hiding global reductions Roofline Model

- Arithmetic intensity: $q = \frac{\text{floating-point operations}}{\text{byte off-chip memory traffic}}$
- High $q \rightarrow$ compute bound (dense algebra, fft, ...)
- Low $q \rightarrow$ bandwidth bound (sparse algebra, stencils, ...)
- Roofline gives upperbound for performance for given q

Hiding global reductions Roofline Model

- Arithmetic intensity: $q = \frac{\text{floating-point operations}}{\text{byte off-chip memory traffic}}$
- High $q \rightarrow$ compute bound (dense algebra, fft, ...)
- Low $q \rightarrow$ bandwidth bound (sparse algebra, stencils, ...)
- ► Roofline gives upperbound for performance for given *q*

Increasing arithmetic intensity Arithmetic intensity of s dependent SpMVMs

	1 SpMVM	s× SpMVM	$s \times SpMVM$ in place
flops	2 <i>n</i> _{nz}	$2s \cdot n_{nz}$	$2s \cdot n_{nz}$
words moved	$n_{nz} + 2n$	$sn_{nz} + 2sn$	$n_{nz} + 2n$
q	2	2	2s

See J. Demmel's course: CS 294-76 on Communication-Avoiding algorithms

6

Increasing arithmetic intensity $V(\nu_1, \nu_2)$ -cycle multigrid

- I_h^{2h} Full weighting
- ► I^h_{2h} Linear interpolation

V-cycle(v^h , f^h) if Coarsest level then $v^h \leftarrow (A^h)^{-1} f^h$ else for $k = 1, ..., \nu_1$ do $\mathbf{v}^h \leftarrow (1 - \omega D^{-1} \mathbf{A}^h) \mathbf{v}^h + \omega D^{-1} f^h$ end for $r^h \leftarrow f^h - A^h v^h$ $r^{2h} \leftarrow I_{\mu}^{2h} r^{h}$ $e^{2h} \leftarrow \text{V-cycle}^{2h}(0, r^{2h})$ $e^h \leftarrow I_{2}^h e^{2h}$ $v^h \leftarrow v^{\bar{h}} + e^h$ for $k = 1, ..., \nu_2$ do $\mathbf{v}^h \leftarrow (1 - \omega D^{-1} \mathbf{A}^h) \mathbf{v}^h + \omega D^{-1} f^h$ end for end if

Increasing arithmetic intensity

Consecutive smoothing steps

- A smoother is an SpMVM kernel with dependent vectors where only the last vector is required
 - Possibility to increase arithmetic intensity
 - Tiling over different smoother iterations
 - $q(\nu \times \omega$ -Jac) = $\nu q_1(\omega$ -Jac)
- Divide the domain in tiles which fit in the cache
- Ground surface is loaded in cache and reused $s~(=\nu)$ times
- Redundant work at the tile edges

Increasing arithmetic intensity Cost of ν smoothing steps

Since the arithmetic intensity increases for more smoothing steps

$$m{q}(
u imes\omega ext{-Jac})=
um{q}_1(\omega ext{-Jac})$$

according to the roofline:

performance increases & the average cost decreases

Increasing arithmetic intensity Work Unit Cost model

Classical Work Unit cost model ignores memory bandwidth

 $1 \text{WU} = \text{smoother cost} = \mathcal{O}(n)$

Cost of multigrid to reach tolerance

$$=(9\nu+19)(1+\frac{1}{4}+\frac{1}{16}+\dots)\left\lceil\frac{\log(\texttt{tol})}{\log(\rho(\nu))}\right\rceil\mathsf{WU}\leq(9\nu+19)\frac{4}{3}\left\lceil\frac{\log(\texttt{tol})}{\log(\rho(\nu))}\right\rceil\mathsf{WU}$$

- \blacktriangleright Optimum for low ν because computational cost increases with ν
- ... but communication overhead decreases!

Increasing arithmetic intensity Roofline Cost model

In contrast to naive model, the modified cost model suggests to repeat application of the smoother.

By tiling the smoother

- the optimal number of smoothing steps shifts to the right
- vectorization can be exploited

Increasing arithmetic intensity Roofline Cost model

In contrast to naive model, the modified cost model suggests to repeat application of the smoother.

By tiling the smoother

- the optimal number of smoothing steps shifts to the right
- vectorization can be exploited

Latency hiding of global reductions in pipelined Krylov methods $$\operatorname{Outline}\xspace$ of the talk

Krylov subspace methods (cf. Laundry methods)

Hiding global reductions (cf. hiding drying time)

Increasing arithmetic intensity (cf. piling up laundry)

Conclusions & future work (cf. washing instructions and ecological detergents)

Conclusions & future work Summary

Krylov subspace methods

- 3 building blocks: axpy, SpMVM, dot-product
- CG variants that group building blocks
- Reduce global reduction steps
- Communication avoiding

Hiding global reductions

- Pipelined CG and pipelined CR
- Preconditioned versions
- Overlap global reduction steps with other computational steps
- Communication hiding (+ communication avoiding)

Increasing arithmetic intensity

- Tiling of smoother improves data locality and scalability
- Trade-off between better convergence and increasing cost of smoother
- Optimal number of smoothing steps increases
- This allows exploiting of vector units
- Still to be combined with an improved interpolation and restriction

Conclusions & future work References

- P. Ghysels, T.J. Ashby, K. Meerbergen & W. Vanroose, Hiding Global Communication Latency in the GMRES Algorithm on Massively Parallel Machines, SIAM J. Sci. Comput., 35, 2013.
- P. Ghysels, W. Vanroose, Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm, Parallel Computing, 2013.
- P. Ghysels, P. Klosiewicz, W. Vanroose, Improving the arithmetic intensity of multigrid with the help of polynomial smoothers, Num. Linear Algebra Appl., 19, 2012.

Conclusions & future work References & FAQs

- P. Ghysels, T.J. Ashby, K. Meerbergen & W. Vanroose, Hiding Global Communication Latency in the GMRES Algorithm on Massively Parallel Machines, SIAM J. Sci. Comput., 35, 2013.
- P. Ghysels, W. Vanroose, Hiding global synchronization latency in the preconditioned Conjugate Gradient algorithm, Parallel Computing, 2013.
- P. Ghysels, P. Klosiewicz, W. Vanroose, Improving the arithmetic intensity of multigrid with the help of polynomial smoothers, Num. Linear Algebra Appl., 19, 2012.
- Q: What's the difference between pipelined and s-step Krylov methods?
 - A: Global communication is hidden vs avoided
 - A: Off-the-shelf preconditioning possible vs specialized preconditioning
- Q: Is the code available online?
 - A: Yes, pipe-CG, Gropp-CG, pipe-CR and $p(\ell)\text{-}\mathsf{GMRES}$ are in the PETSc library