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Kinetic models for plasmas and particle beams

In the sequel we shall consider only the collisionless relativistic
Vlasov-Maxwell equations

∂fs
∂t

+
p

msγs
· ∇x fs + qs(E +

p
msγs

× B) · ∇pfs = 0,

∂tE− c2∇× B = − J
ε0
, ∇ · E =

ρ

ε0
,

∂tB +∇× E = 0, ∇ · B = 0,

where γ2
s = 1 + |p|2

m2
s c2 and the source terms are computed by

ρ =
∑

s

qs

∫
fs dp, J =

∑
s

qs

ms

∫
fs

p
γs

dp.

In some cases Maxwell’s equations can be replaced by a
reduced model like Poisson’s equation.
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Invariants of Vlasov-Maxwell system

Invariance along characteristics:

d
dt

f (X (t),P(t), t) = 0

where Ẋ = P
mγ , Ṗ = q(E(X (t), t) + P(t)

mγ × B(X (t), t)).

Energy:
∫

f (γ − 1) dx dp + 1
2(

∫
(E2 + B2) dx .

Lq norms:
∫

f q dx dp.
Phase space volume:

∫
V f (x ,p, t) dx dp.

Conservative form of Vlasov equation

∂f
∂t

+∇x,p · (Ff ) = 0,

with F = ( p
γm ,E + p

γm × B) so that ∇x,p · F = 0.
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The backward semi-Lagrangian Method

f conserved along characteristics
Find the origin of the characteristics
ending at the grid points
Interpolate old value at origin of
characteristics from known grid values
→ High order interpolation needed

Typical interpolation schemes.
Cubic spline [Cheng-Knorr 1976,
Sonnendrücker-Roche-Bertrand-Ghizzo 1998]
Cubic Hermite with derivative transport
[Nakamura-Yabe 1999]



Comparison of PIC and Eulerian methods

Particle-In-Cell (PIC) method is the most widely used.
Pros:

Good qualitative results with few particles.
Very good when particle dynamics dominated by fields which
do not depend on particles (e.g. in accelerators when self
field small compared to applied field).
More efficient when dimension is increased (phase-space =
6D).

Cons Hard to get good precision : slow convergence,
numerical noise, low resolution at high velocities.

Grid based Vlasov methods
Pros High-order method, same resolution everywhere on
grid.
Cons Needs huge computer ressources in 2D or 3D.



Outline

1 Mathematical modeling of charged particles

2 Important features of the Vlasov equation

3 Grid based methods for the Vlasov equation
Problems with grid based methods
Motivation for adaptive grids
Hierarchical approximation and local adaptivity

Hierarchical approximation based on interpolating wavelets



Problems with grid based methods

Numerical diffusion
Curse of dimensionality: Nd grid points needed in d
dimensions on uniform grids.
Number of grid points grows exponentially with dimension
→ killer for Vlasov equation where d up to 6.
Memory needed

In 2D, 163842 grid → 2 GB
In 4D, 2564 grid → 32 GB
In 6D, 646 grid → 512 GB

Adaptive algorithm is a must in higher dimensions
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A typical beam simulation

Semi-Gaussian beam in periodic focusing channel
Applied field ~B = (−1

2B′(z)x , −1
2B′(z)y , B(z)), with

B(z) = B0
2 (1 + cos(2πz

s )), with B0 = 2 T and S = 1 m.
Semi-Gaussian beam of emittance ε = 10−3,

f0(r , vr ,Pθ) =
n0

πa2 exp(−v2
r + (Pθ/(mr))2

2v2
th

),

where Pθ = mrvθ + mB(z) r2

2 , n0 = I
qvz

, I = 0.05 A and
E = 80 MeV so that vz = 626084 ms−1.



Semi-Gaussian beam in periodic focusing channel
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Adaptive semi-Lagrangian method

Semi-Lagrangian method consists of two stages :
advection and interpolation
Interpolation can be made adaptive : approximate f n with
as few points as possible for a given numerical error using
non linear approximation.
Construct approximation layer by layer, starting from
coarse approximation and adding pieces to improve
precision where needed, using nested grids.
It is possible to modify hierarchical decomposition so as to
exactly conserve mass and any given number of moments
even when grid points are removed.



Uniform and Hierarchical Refinements

Coarse grid

Uniform refinement Hierarchical refinement



Nonlinear approximation

Decomposition of fj+1 in uniform and hierarchical basis

fj+1 =
∑

k

c j+1
k ϕj+1

k (uniform)

=
∑

k

c j
kϕ

j
k +

∑
k

d j
kψ

j
k (hierarchical)

In hierarchical decomposition coefficients d2i+1 at fine
scale are small if f is close to affine in [x2i , x2i+2].
Linear (uniform) approximation consists in using a given
number of basis functions independently of approximated
function f .
Nonlinear approximation consists in keeping the N highest
coefficients in hierarchical decomposition (depends on f )
[De Vore 1998]
Only grid points where f varies most are kept.



Localization of points

PIC code non linear approximation



Construction of a hierarchical approximation

Hierarchical approximation is constructed by defining an
interpolation method enabling to go from coarse grid to fine
grid.
Two methods have been tried:

1 Interpolating wavelets based on Lagrange polynomial
interpolation. Classical wavelet compression technique.
Addressed moment conservation issues
[Gutnic-Haefele-Paun-Sonnendrücker 2004,
Gutnic-Haefele-Sonnendrücker 2006].

2 Hierarchical approximation based on finite element
interpolants. More local, cell based → simpler and
potentially more efficient parallelization.
[Campos Pinto-Mehrenberger 2003].



Hierarchical expression of fj+1 of interpolating wavelets

Consider Gridfunction fj defined by its values c j
k on Gj of

step 2−j .

cubic
polynomial

value
predicted Define dyadic refinement

procedure via interpolation
operator, e.g. Lagrange
interpolation

Refinement procedure linear with respect to c j
k so that on

can introduce basis functions ϕj
k defined by infinite

refinement of δk ,n



Basis functions = Scaling functions

linear Lagrange interpolation cubic Lagrange interpolation



Multiresolution Analysis (MRA)

Our ad hoc hierarchical procedure fits into the mathematical
framework of multiresolution analysis (wavelets) [Cohen 2003].

A multiresolution analysis is a sequence of subspaces
(Vj)j∈Z of L2(R) verifying the following properties

There exists a function ϕ called scaling function such that
t 7→ ϕ(2j t − k)k∈Z forms a basis of Vj .
The spaces Vj are nested Vj ⊂ Vj+1. Hence

ϕ(t) =
∑
n∈Z

hnϕ(2t − n).

∩jVj = {0} et ∪jVj = L2(R).



Example : the Schauder multiresolution analysis

Scaling function defined by

ϕ(t) = max(0,1− |x |)

The space Vj is the set of functions which are linear on
each of the intervals [k2−j , (k + 1)2−j [.
Scaling relation

ϕ(t) =
1
2
ϕ(2t + 1) + ϕ(2t) +

1
2
ϕ(2t − 1).



Filter

Multiresolution analysis completely defined by scaling
relation

ϕ(t) =
∑
n∈Z

hnϕ(2t − n).

Scaling function completely defined by coefficients (hn)n∈Z.

Properties of (hn)n∈Z translate on properties on ϕ.

Express that V0 ⊂ V1, and by change of scale Vj ⊂ Vj+1.

Fourier transform of scaling relation

ϕ̂(2ω) =
1
2

m(ω)ϕ̂(ω), where m(ω) =
∑
n∈Z

hne−inω.

In frequency domain change of scale corresponds to
filtering by filter m.



Case of interpolating wavelets

cubic
polynomial

value
predicted

Interpolation procedure yields scaling relation.

For Lagrange interpolation, denoting by ϕj
k = ϕ(2j · −k),

we get

ϕj
k = ϕj+1

2k +
N∑

n=1−N

anϕ
j+1
2k+1+n.

e.g in case of linear interpolation N = 1, a0 = a1 = 1
2 .



The supplementary space

It is natural to look for Wj such that Vj+1 = Vj ⊕Wj . Only
one possibility if orthonality is required, infinitely many else.
Wj will be uniquely defined by the projection
Pj : V j+1 → V j .
One convenient choice is to use the restriction for Pj , i.e.

Pj(f ) =
∑

k

f (x j
k )ϕj

k (x) =
∑

k

〈f , δj
k 〉ϕ

j
k (x).

Ṽ j = span((δj
k )k ) defines set of nested space with scaling

relation δj
k = δj+1

2k , thus another MRA.



Expression of fj+1 in Vj+1 and Vj ⊕Wj

A basis of Wj will consist of (ϕj+1
2k+1)k .

Compare fj+1 to its restriction on Gj :
equal at even grid points
define d j

k as

d j
k = c j+1

2k+1 − P2N−1(x
j+1
2k+1) = c j+1

2k+1 −
N∑

n=1−N

anc j+1
2k+2n.

fj+1 ∈ Vj+1 can be expressed equivalently as

fj+1 =
∑

k

c j+1
k ϕj+1

k

=
∑

k

c j
kϕ

j
k +

∑
k

d j
kψ

j
k



Biorthogonal wavelets (1)

The interpolating scaling functions (basis of Vj ) and wavelets
(basis of Wj ) fit in the framework of biorthogonal wavelets

Introduced by Cohen, Daubechies and Fauveau (1992).
Biorthogonal wavelets defined by set of four L2 functions
ϕ, ϕ̃, ψ, ψ̃ called respectively scaling function, dual scaling
function, wavelet and dual wavelet.
ϕ and ϕ̃ are defined by their scaling relations

ϕ(x) =
∑
n∈Z

hnϕ(2x − n),

ϕ̃(x) =
∑
n∈Z

h̃nϕ̃(2x − n).



Biorthogonal wavelets (2)

Then ψ and ψ̃ are defined by

ψ(x) =
∑
n∈Z

gnϕ(2x − n) with gn = (−1)n+1h̃1−n,

ψ̃(x) =
∑
n∈Z

g̃nϕ̃(2x − n) with g̃n = (−1)n+1h1−n.

The following space decompositions are associated to the
biorthogonal wavelets

Vj+1 = Vj ⊕Wj , Ṽj+1 = Ṽj ⊕ W̃j .

where (ϕ(2j · −k))k span Vj and (ψ(2j · −k))k span Wj .



Biorthogonal wavelets (3)

Bases are biorthogonal:
〈ϕ, ϕ̃(· − k)〉 = δ0,k , 〈ϕ, ψ̃(· − k)〉 = 0.
Projections of f onto Vj and Wj defined by their coefficients

c j
k = 〈f , ϕ̃j

k 〉, d j
k = 〈f , ψ̃j

k 〉, where ϕj
k = ϕ(2j · −k).

fj+1 ∈ Vj+1 can be expressed equivalently as

fj+1 =
∑

k

c j+1
k ϕj+1

k

=
∑

k

c j
kϕ

j
k +

∑
k

d j
kψ

j
k



Scaling functions and wavelets

ϕ ϕ̃ ψ ψ̃

Case of interpolating wavelets: ψj
k = ϕj+1

2k+1, ϕ̃ = δ.



Thresholding

Consider following expression: fj+1 =
∑

k c j
kϕ

j
k +

∑
k d j

kψ
j
k .

Adaptivity introduced by neglecting the terms in this
expansion such that |d j

k | < εj .
Error commited can be easily estimated

‖d j
kψ

j
k‖Lp = |d j

k |2
− j

p ‖ψ‖Lp < εj2
− j

p ‖ψ‖Lp .

Moments of fj+1 can be conserved by appropriately
modifying ψ: taking ψm = ψ −

∑
k skϕ(· − k) with (sk )k

chosen such that
∫

x lψm(x) dx = 0 for 0 ≤ l ≤ m.
→ modifies the supplementary space Wj of Vj in Vj+1.



Computation of sources for Maxwell’s equations

The coupling of Vlasov with Maxwell lies in part on the
computation of the charge and current densities from the
distribution function

ρ =
∑

s

qs

∫
fs dp, J =

∑
s

qs

ms

∫
fs

p
γs

dp,

where fs is approximated by its wavelet decomposition.
In practice for the computation of ρ, one needs to be able
to compute ∫

φj
k (p) dp, and

∫
ψj

k (p) dp

→ Straightforward.



Computation of J

A little bit more complicated for J where we need∫
φj

k (p)
p

γ(p)
dp, and

∫
ψj

k (p)
p

γ(p)
dp.

As γ is a non linear function of p, no exact integration.
We chose to approximate 1

γ by its polynomial interpolation
(of degree 2 or 3), in order to boil down the problem to the
computation of moments of wavelet and scaling function,
which we know how to do.
Full algorithm in [Besse, Latu, Ghizzo, S, Bertrand, JCP
2008].



The Algorithm for the Vlasov-Maxwell Problem

Initialisation: decomposition and compression of f0.
Computation of electromagnetic field from Maxwell.
Prediction of the grid G̃ (for important details) at the next
time step following the characteristics forward. Retain
points at level just finer.
Construction of Ĝ: grid where we have to compute values
of f n+1 in order to compute its wavelet transform.
Transport-interpolation : follow the characteristics
backwards in x and interpolate using wavelet
decomposition.
Wavelet transform of f n+1: compute the ck and dk
coefficients at the points of G̃.

Rem: No splitting in this case. Generally done for
Vlasov-Poisson.



Computer science issues

Multiresolution code a lot harder to make efficient that
uniform grid counterpart.
Careful work on data structures and code optimization
needed.
Data structures:

Adaptive grid G
Distribution function F
Wavelet decomposition D

Wall clock time depends mostly on data access speed.
Try and make it as fast as possible for code optimization.
For cache optimization data needs to be accessed by level
or by physical position in different parts of the algorithm.



Optimization of data structure (2D)

Hash tables efficient for memory reduction and random
access, but not for ordered walk through by level with
access to adjacent levels.
Use sparse data structure based on two levels of dense
arrays instead of hash-table

first array contains all grid points up to some intermediate
level
second array which is allocated where needed contains all
the grid points from this intermediate up to the finest level
all grid points can be accessed with at most one indirection
pointer

Computing time decreased by a factor of 3 in 2D



Optimization of data structure (4D)

Data structure based on two levels of dense arrays (used
in 2D code) consumes too much memory for large grid
sizes (more than 1284).
Data structure based on hexadecatree is used but instead
of storing one level per node, we store two levels per node,
i.e. 162 = 256 points.



Parallelization

Two kinds of data locality because wavelet transform
accesses grid points by levels.
One single domain decomposition ⇒ complex data shape
access.
Code was parallelized using OpenMP targeting shared
memory computers to avoid calling communication
subroutines.
Efficiency on SGI Origin 3800 at 500 MHz for large grid
(2D code)

1 proc 16 proc 32 proc 64 proc
100% 89% 79% 66%



Comparison dense vs. adaptive

Comparison with optimize solver on uniforme mesh in 2D
phase space for semi-Gaussian beam for different mesh
sizes (2k × 2k ).

k 10 11 12 13 14
mesh size (MB) 8 32 128 512 2048

Loss 2D (s) 0.11 0.44 2.70 24.20 138.60
Obiwan 2D (s) 0.33 0.83 2.46 3.70 8.90

Adaptive code becomes faster for very fine grids.
Same remark for 4D code. Enables to take grids of 5124

that uniform mesh solver cannot handle.



Transport of a 5 MeV proton beam

Beam parameters:
Lattice consists of 60 periods of length L = 1 m. Field given
by

B(z) = α(1 + cos(2πz/L)2), α = 1.12 T .

I = 1.9 A ⇒ K = 10−4, εKV = 10−5πm · rad .
σ0 = 2.3 rad per period, σ = 0.45 rad per period ⇒ σ

σ0
≈ 0.2

Numerical parameters:
512× 512 fine grid. Grid point suppression threshold 10−4.
50 time steps per lattice period.



+50% mismatch in all of r , vr and I

0 20 periods 30 periods

40 periods 50 periods 60 periods



Localization of grid points after
30 and 60 periods



Parametric Vlasov-Maxwell instability (1/3)



Parametric Vlasov-Maxwell instability (2/3)



Parametric Vlasov-Maxwell instability (3/3)



Laser wake-field (1/2)



Laser wake-field (2/2)



Conclusions

Grid based Vlasov solvers are a valuable tool to have in
one’s simulation toolbox.
No noise. Better representation in low density regions of
phase space.
Adaptive grid strategy can be made efficient by careful
optimization.
2D (4D phase-space) code is now running and can
perform realistic simulations of transverse phase space.
Adaptive solvers make it possible to access very fine
resolutions needed at some regions in the computation
domain.
Likely that such methods can be applied to 2D 1

2 and 3D in
the future.
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